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Wavelet transform is one of the most efficient tools for analyzing non-stationary signals such as transients,
and has been widely applied to solve numerous problems in power systems. This paper demonstrates a novel
application of wavelet transform to identify the causes of ground faults in power distribution systems. The
discrimination scheme which can automatically recognize the fault causes is proposed using artificial neural
networks. The scheme can be separated into two stages, the time-frequency analysis of transients by wavelet
transform and the pattern recognition to identify the causes of faults. By using the actual fault data, it is
shown that the proposed method provides satisfactory results for identifying the fault causes. Moreover, the
results obtained by this method are useful to explain the mechanisms of faults simultaneously.
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1. Introduction

Ground faults have been considered as ones of the
main problems in power distribution systems and ac-
count for more than 80 [%] of all faults. They affect
the reliability, security and quality of power systems.[1-3]
Ground faults can be caused by various sources for ex-
amples, animal and tree contact, the failure of electrical
equipment, etc. When a fault occurs, the faulted sec-
tion or circuit can be generally identified.[4-6] In case
that the fault is permanent, a dispatch of personnel
to the suspected site is needed to recover the system.
Therefore the prior knowledge of fault causes is essen-
tial to allow the appropriate recovering actions to be
taken, saving unnecessary costs, such as power system
down-time cost. In order to discriminate the causes
of ground faults, the signal-processing technique to the
detected fault signals has been applied. It was investi-
gated that the characteristics of zero-sequence current
and voltage are uniquely dependent on the cause of fault
and therefore they can be used for the purpose of fault
cause identification.[l] M. Watanabe et al. observed the
waveforms of zero-sequence current and used their total
harmonic distortion by Fourier transform to recognize
the causes of faults.[l] Another method was proposed
in [2] by comparing the phase plane trajectory of zero-
sequence current waveforms.

Generally, meaningful information is contained in
fault signals during transient periods that are natu-
rally non-stationary signals due to the sudden changes
of fault aspect and ground fault route. Therefore the
transient should be considered while identifying fault
causes. We discussed that the methods in [1,2] that
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randomly consider one cycle of fault signal may be inad-
equate. The more efficient discrimination method based
on fault transients requires a suitable signal-processing
technique to be developed and wavelet transform is
one of the algorithms that possibly solve this problem.
Wavelet transform is a useful tool for analyzing non-
stationary signals in both time and frequency domains
based on the basic function named mother wavelet. Re-
cently, the use of wavelet transform has been widely ap-
plied to many problems in power systems such as power
quality assessment(7], analysis of electromagnetic power
system transients[8l, power distribution relayingl9], fault
location[10], etc.

In this paper, we present a new method based on
wavelet transform for identifying the causes of ground
faults. The continuous wavelet transforml(11-15] is used
to extract all specific harmonics of zero-sequence cur-
rent transients, and provides the time-varying informa-
tion of harmonics. It is demonstrated that the time-
frequency analysis result or dynamic spectrum has its
own unique characteristics and can be used to iden-
tify the causes of faults. The influence of weather
condition on dynamic spectra and the equivalent cir-
cuits at the points of ground faults are additionally dis-
cussed. Moreover, we propose the automatic discrimi-
nation scheme by using artificial neural networks. By
using the actual fault data collected in Kansai area, it
is shown that the proposed scheme can provide satis-
factory results for identifying the causes of faults, and
clarify the mechanisms of faults simultaneously.

2. Fault Signal Acquisition System

In Japan, the non-grounded distribution system is
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Fig.2. An example of zero-sequence current wave-

form (inferior insulator and breaking of cable).

mostly adopted. Generally, the distributed substation
receives the electric power at the high voltage around
20~154 kV from the first or second step substation and
usually sends it to the customers at the high voltage
6.6 kV. Each year in the service area of Kansai electric
power company, which covers the main cities such as
Osaka, Kyoto and Kobe, there are a great number of
faults occurred. The remote observation system is in-
stalled to automatically detect a fault in the substation.
Once a fault occurs, the zero-sequence current (Iy) and
voltage (V) signals that are generally well known as the
significant data in fault cause analysis will be recorded.
Their definitions are expressed as
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where, I, I, I, and V, V,, V, are the current and
voltage phasors of each phase, respectively.

Fig. 1 shows a fault signal acquisition system. Zero-
sequence current transformer (ZCT) and grounded po-
tential transformer (GPT) are used to simultaneously
measure I; and V, respectively. The data is digitized
at 5 kHz sampling rate and is recorded by an analyz-
ing recorder (Yokogawa: AR1600) for 1.6 s. Fig. 2
shows an example of zero-sequence current waveforms
obtained by this system.

3. Fault Cause Discrimination by Wavelet
Transform

Conventionally, Fourier transform is applied for fault
analysis.[1,9] In case of transients that are usually non-
stationary signals, the study of time-varying informa-
tion is required and it seems to be insufficient if only
Fourier transform is utilized. The wavelet transform
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overcomes the limitation of Fourier transform by em-
ploying the analyzing functions, which localize in both
time and frequency domains. These analyzing functions
are generated in the form of translations and dilations
of a basic function, the so-called mother wavelet. Thus
wavelet transform is applied in many areas to analyze
the non-stationary signals.[7-10] In this paper, we em-
ploy the continuous wavelet transform to extract the dy-
namic spectra of fault signals. The continuous wavelet
transform of function x(t) with mother wavelet 1 (t) is
expressed as

CWT(f,b) = /2] /_ T R ft—betdt (2)

where { is frequency, b is time parameter, and (*) de-
notes a complex conjugate. The selected mother wavelet
should be a fast-decaying oscillation function. In this
study, we apply one of the family of complex Gabor
functions as shown in (3) to be mother wavelet, be-
cause it is considered as an optimal window for time-
localization and accordant with the function used in
Fourier transform.[12]

w(t) —e BA et oo

In this paper, we concentrate on the zero-sequence
current waveforms, because it was investigated based on
the actual data of ground fault waveforms that there are
more remarkable changes in zero-sequence current than
zero-sequence voltage according to fault causes.[l] Table
1 shows the fault data and their causes we used in this
paper. The time-frequency analysis of zero-sequence
current was performed. A result is called a dynamic
spectrum because wavelet analysis derives a spectrum
as a function of time. The computation of the first 40
ms of fault event with interval 0.2 ms and the frequency
range 60-2400 Hz with interval 60 Hz was determined.
Fig. 3 shows typical examples of dynamic spectra of
zero sequence current resulting from different causes ex-
pressed by contour maps. The value on the contour map
represents the relative intensity of power spectrum nor-
malized by that in case of fundamental frequency (60Hz)
at that time. As a result, we know both the quantity
and timing of harmonics. Moreover, we can describe
the mechanisms of ground faults as follows.

3.1 Inferior air switch An example of dynamic
spectra of this fault cause is illustrated in Fig. 3 (a).
The dynamic spectrum consists of harmonics (60-2000

Table 1. Fault data with their causes (30 data).

Fault cause Number
of data

1. Inferior air switch 18

(inferior porcelain)

2. Inferior three-pole HV cutout 4

(inferior porcelain)

3. Breaking of cable 4

4. Tree contacting 3

5. Inferior insulator and breaking 1

of cable (two causes included)
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Hz) with quantity more than 20 [%] appearing in a pe-
riod of 8 ms.

3.2 Inferior three-pole HV cutout  Fig. 3 (b)
shows an example of dynamic spectra in this case. We
obtain the similar result as Fig. 3 (a) but the range of
harmonics is 60-1000 Hz.

From Fig. 3 (a) and (b), we discuss that the peri-
ods of these harmonics are systematically related to the
16 ms period of the distribution system (60 Hz system).
We postulate that when the distribution voltage exceeds
the threshold value, the current will flow through the
point of ground fault, causing an event that resembles
discharge phenomenon. For these two cases, the faults
were caused by insulation degradation (inferior porce-
lain). It is discussed that the discharge occurred at the
aperture of the defective parts, which include voids in
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Examples of dynamic spectra of zero sequence current resulting from different causes.

porcelain and the stained surface. In addition, there are
discontinuous parts on the contour map in a specific fre-
quency region (720-1200 Hz) in Fig. 3 (a). We think
that they depend on the shape of defective parts and
the type of porcelain material. From this point of view,
it is advantageous to know more clearly about the kind
of faulty equipment.

3.3 Breaking of cable The dynamic spectrum
in case of breaking of cable is shown in Fig. 3 (c¢). In
this case, the harmonics do not change periodically and
there is only one pulse at the beginning of the fault
event. This fault phenomenon is definitely different
from those of (a) and (b). We discuss that the ground
fault happened through resistance and the pulse was
caused by uncompleted contact in the first stage. After
that, the fault point contacted to the ground. As a re-
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Fig.4. The dynamic spectrum of zero-sequence

current under no rain (inferior air switch).

sult, nothing appears in dynamic spectrum afterwards.

3.4 Tree contacting Fig. 3 (d) shows an exam-
ple of dynamic spectra obtained from the fault caused
by tree contacting. In this result, the 60-2400 Hz har-
monics appears in a period of 8 ms. Although the result
resembles those in (a) and (b), the variation of harmon-
ics is smoother and the width of dynamic spectrum is
narrower. We argue that the aperture of contact caused
the discharge. It is discussed that the discharge oc-
curred only at an aperture of a contact and the struc-
ture of a discharge gap was not complicated as those in
(a) and (b).

3.5 Inferior insulator and breaking of cable
Fig. 3 (e) shows the dynamic spectrum of this case.
Although the 60-2400 Hz harmonics with high quantity
occurs periodically, their periods have no relation with
the system period in the first stage (0-20 ms). Because
there were two simultaneous causes of ground faults, we
think that the ground faults occurred at several points
and the current flowed through ground more than one
route in the beginning. After 20 ms, the periodic phe-
nomenon, which is similar to those in (a) and (b), oc-
curred. In this stage, we discuss that it was influenced
by the inferior insulator only. It is obviously seen that
the dynamic spectrum is different from all cases above.

In conclusion, the dynamic spectra of zero-sequence
current have the special characteristics to identify the
causes of faults and are useful to explain the fault mech-
anisms.

4. Interpretation and Discussion

4.1 Influence of weather condition on dynamic
spectra The influence of weather condition such as
precipitation on dynamic spectra is discussed. In all
cases of faults except tree contacting, there is a ten-
dency that the quantity of higher harmonics seems to
be lower if there is no rain. For example, Fig. 4 shows
a dynamic spectrum of zero-sequence current under no
rain in case of inferior air switch. This result is different
from the typical example in Fig. 3 (a) that the harmon-
ics appear unsteadily with less quantity. Concerning the
feature of this fault, it is caused by the insulation de-
terioration (inferior porcelain). If there is rain or the
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current under rain (tree contacting).

humidity increases, the surface resistance of porcelain
becomes low. The leakage current flows through the
surface of an insulator and then will be cut off due to
the surface drying (because of the heat generated by
this leakage current itself). This repeated phenomenon
is known as scintillation discharge.l16] Therefore, with-
out such a kind of this discharge, the dynamic spectrum
in case of no rain exhibits lower quantity of harmonics.

On the contrary, in case of tree contacting, the reverse
result is obtained. Most of them occurred under no rain.
Fig. 5 shows the dynamic spectrum of zero-sequence
current under rain. This result differs from the typical
example in Fig. 3 (d) that the higher harmonics ap-
pear only in the first 10 ms of fault event. Considering
the fault nature, this fault is caused by the discharge
of air gap between electric cable and tree at the con-
tacted point. When there is rain, the resistance through
the air gap becomes low. The current then flows more
easily and continuously, leading to the dissolution of
discharge. From these results, the weather condition
should be considered while analyzing fault causes based
on dynamic spectra.

4.2 The equivalent circuits at the points of
ground faults Fig. 6 illustrates the ideas and
equivalent circuits at the points of ground faults of some
cases. In case of inferior air switch and three pole
HV cutout, the faults were caused by inferior porce-
lain. There are some voids (air gaps) in porcelain part
and the capacitance components ( C,, C,, C. ) indicate
the voids which are connected in series and parallel as
shown in Fig. 6 (a). The capacitance Cy is assumed as
the discharge along stained surface caused by salt dam-
age and rain. Concerning the fault caused by breaking
of cable, the broken cable did not contact to ground
perfectly at the first stage. Therefore its equivalent cir-
cuit is the fast switch operated at transient as shown
in Fig. 6 (b). Fig. 6 (c) shows an equivalent circuit
in case of tree contacting. The capacitance component
(C) is assumed as the air gap between tree and elec-
tric cable. Finally, the parallel combination of (a) and
(b) can be utilized as an equivalent circuit in case of
inferior insulator and breaking of cable. Note that the
damping time constant of fault current on each period

T.IEE Japan, Vol. 120-B, No.10, 2000
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increases if the multiplication result of capacitance and
resistance increases. As shown in Fig. 3, the width of
dynamic spectra in case of inferior porcelain as shown
in Fig. 3 (a) and (b) is broader than that of tree con-
tacting in Fig. 3 (d). It is discussed that the total
capacitance obtained from parallel connection in case
of inferior porcelain is larger than that in case of tree
contacting.

5. Automatic Discrimination Scheme by Ar-
tificial Neural Networks

Normally, the fault nature is complicated and the
knowledge about it is not easily transferable from per-
son to person. Therefore, it is convenient and neces-
sary to implement an automatic fault-discrimination
system so that the faults can be correctly recognized
even though there is no expert in the office. In this
section, artificial neural networksl17.18] are applied to
recognize the causes of faults based on pattern recogni-
tion of dynamic spectra. The artificial neural networks
are suitable to identify the causes of faults because of
their capability to learn and recognize the highly non-
linear and complicated models such as fault features.
Moreover, they are flexible to be improved based on
new information.

5.1 Selection of input data and training data
sets To recognize the patterns by neural networks,
the selection of input data sets is important. The ap-
propriate inputs should be effective to represent the
characteristic of pattern and meaningful to the cause
of fault. Considering Fig. 3, the number of elements
in dynamic spectrum is very large because of the com-
putation on the time and frequency domains. Thus it
is difficult to use all elements as the inputs of neural
network. We propose to construct the input data sets
by separating the frequency region in 2 levels, high and
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Table 2. Labeling method.
The value on contour map (p) | Labeled symbol
200 p O 40 L,
400 pO 60 Lo
600 pO 80 Lg
800 p O 100 Ly
pO 100 Ls

low, as shown in Fig. 7. The values of dynamic spec-
trum in the low frequency region are labeled as Ly,..,Ls
by the rule shown in Table 2. For the high frequency
region, the symbols Hi,..,.Hs are used to label in the
same way. The densities of labels in their own region
(L",,..,.L 5, H ,,.,H' ;) are used to be the inputs of net-
work. To construct training data, the effective training
data that can represent the main characteristics of fault
causes are inevitable. Therefore, the average value of
some of the most results is chosen. The numbers of the
data used to construct the training data and the recog-
nized data are indicated in Table 3. Fig. 8 shows the
training data sets of all causes.

5.2 Design of neural network structure In
this paper, the structure of three-layer networks as
shown in Fig. 9 is used. The neural networks were
designed to have 10 input, 10~50 hidden, and 5 output
neurons. Back propagation algorithm was applied to
train the networks with learning rate n = 0.2 and mo-
mentum rate o = 0.9.[17] The sigmoid function was used
as a neuron transfer function. The back propagation is
an iterative gradient algorithm designed to minimize a
cost function (here is the mean square error between
the actual output of network and the desired output).
If a node corresponds to the expected cause, the de-
sired output of that node is set to be 0.9, else it is set
to be 0.1. The least mean square error was set at 0.1 to
conditionally stop the training procedure.

5.3 Results and discussions Table 4 indicates
the recognition results by various networks and the most
correct results are acquired by the networks with 10, 30
and 40 hidden neurons. It shows that the better re-
sult may not be obtained though the hidden neurons
increase. The high accuracy 80 [%] can be achieved.
However, it is difficult to conclude that this scheme is
reliable because of the very few data in some causes. To
solve this problem, the test of further data by simula-
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tion is purposed to generalize the scheme and will be
explained in next subsection.

5.4 Test of further data by simulation The
efficiency of neural networks means the ability to rec-
ognize patterns which were not encountered during the
training period. Neural networks often require the large
number of examples to be able to have a reasonably
fair concept of its reliability. Therefore, the simula-
tion scheme that is similar to the method in [18] is
adopted to conquer this problem. With each input data
as a template, additional patterns were generated by su-
perimposing random noise = 10 [%] to all ten inputs,
and the new patterns continue to belong to the original
cause. The network with 10 hidden neurons was uti-
lized to recognize these new patterns, and the results
are shown in Table 5. The scheme shows satisfactory
results that provide high accuracy to correctly recog-
nize 228 patterns from 300 patterns or 76 [%]. The
accuracy is little lower than that in case of no noises.
Moreover, it is useful to know how much error deviating
from the actual data that we can still correctly recog-
nize. We therefore determined the recognition results
while adding the random noises + 5 [%] and + 20 [%]
to the data. The new patterns were recognized by the
same method. The accurate rates, 79.0 [%] and 75.7
[%], are obtained in case of noises + 5 [%] and £ 20
[%], respectively. The scheme is shown to be reliable to
some degree because it can almost recognize the causes
of faults correctly under noise interference.
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Table 3. Number of data used to construct train-
ing data and recognized data (30 data).

Fault Data used to construct Recognized |Total
cause training data data

No.1 8 10 18
No.2 2 2 4
No.3 2 2 4
No.4 2 1 3
No.5 1 0 1

Table 4. The recognition results by various

networks.
Fault | Number | Number of correctly recognized data
cause | of data | HN10 | HN20 | HN30 | HN40 | HN50
No.1 18 15 14 15 15 14
No.2 4 3 3 3 3 3
No.3 4 3 3 3 3 3
No.4 3 2 2 2 2 2
No.5 1 1 1 1 1 1
Total 30 24 23 24 24 23

Note: HN = the number of hidden neurons.

Table 5. The recognition results of new patterns
generated by adding + 10 [%] noises.

Template of new random patterns

Fault Data used to
cause construct Recognized Total

training patterns data

In Correct In | Correct | In | Correct
No.1 | 80 79 100 64 180 143
No.2 | 20 20 20 5 40 25
No.3 | 20 20 20 10 40 30
No.4 | 20 20 10 0 30 20
No.5 | 10 10 0 0 10 10
Total | 150 149 150 79 300 228

5.5 Comparison the results with conventional
method The conventional method, which is Fourier
transform, was applied to discriminate the fault causes.
We utilized ten data sets, including the spectral inten-
sities of odd-ordered harmonics from 3 to 19 and total
harmonic distortion of them as the inputs of neural net-
works. By using the similar model of neural networks,
we obtain the accuracy 76.7 [%] which is little lower than
that by wavelet transform (80 [%]). Based on available
data, the recognition result by wavelet transform seems
to be not different from that obtained by Fourier trans-
form. However, the accuracy is hopeful to be improved
because we can additionally get the time-varying infor-
mation of harmonics from wavelet analysis. The more
appropriate inputs of neural networks can be investi-
gated from this additional information when the new
fault data are collected.

6. Conclusions

Novel scheme for discriminating the causes of ground
faults has been introduced. The proposed scheme is
based on the time-frequency analysis results or dynamic
spectra of zero-sequence current obtained by wavelet
transform. We conclude the main concepts of this pa-
per as follows.

6.1 Dynamic spectrum provides the time-varying
information of each harmonic, which is difficult to be
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obtained by conventional Fourier transform, and can be
used as a new method for discriminating fault causes.
Besides, the dynamic spectrum is advantageous to ex-
plain the fault mechanism and the kind of faulty part.
The weather condition also influences the dynamic spec-
tra so it should be considered while analyzing fault
causes.

6.2 The equivalent circuits at the points of ground
faults have been proposed based on dynamic spectra
and they are useful to understand the physical mean-
ings of faults.

6.3 In order to construct the automatic discrim-
ination scheme, the three-layer neural networks were
utilized to recognize the patterns of dynamic spectra.
It has been shown that the proposed system is effec-
tive to discriminate fault causes with the accuracy 80
[%] in case of inferior air switch, inferior three-pole HV
cutout, inferior electric cable, tree contacting, inferior
insulator with breaking of cable. Based on available
data, although the discrimination accuracy by the pro-
posed method is only little higher than that by Fourier
transform, this method is hopeful to increase the accu-
racy.

6.4 To generalize and improve the proposed
scheme, more fault signal acquisition systems are re-
quired to be installed to accumulate the fault data. The
more appropriate inputs of neural networks, that can
effectively represent the characteristic of the dynamic
spectrum, should be examined based on the new infor-
mation of fault signals.
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