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Abstract

A fault diagnosis scheme for nonlinear time series is employed for parts and tool breakage diagnosis problems. The

fault is first detected from regression lines plotted for the raw time series. Finite Impulse Response (FIR) network is

then used to estimate the unknown system for the normal condition data and to fiiter the abnormal condition data.

To confirm and analyze the fault the regression lines are again plotted for the predicted normal and filtered

abnormal conditions' data. The results obtained from the above application of fault diagnosis scheme are discussed.
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1. Introduction

For analyzing any set of data first step, in general, is to
derive/estimate a mathematical model for it. Once the
model 1s' achieved it can be used either for prediction,
fault

classification.

diagnosis, pattern recognition, or pattern

is a statistical technique for
the

unknown

Regression analysis
modeling and exploring relationship between
the The

relationship between the variables may be linear or

variables embed in system.
nonlinear depending upon the nature of the time series.

The information about a dynamic process is often only
partial and incomplete. In many real-world problems,
data are masked by noise and some dynamic processes
are described by chaotic time series in which the data
seem to be random without apparent periodicity [1]. The
neural network, being able to acquire knowledge by a
learning process and store in massively parallel/
distributed synaptic weights, can solve such complex
problems that are intractable.

A kind of neufal network, that has short-term memory
in the form of tapped delay lines, known as time delay
neural network (TDNN) has been used in speech
3. A of TDNN,

finite-duration Impulse response (FIR) filters in its

processing (2, class that uses
synaptic connections between the layers, called as FIR
network, are used in time series modeling and prediction

[4, 5].
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In this paper a fault diagnosis scheme [6, 7, 8] for
nonlinear time series is employed. The fault is detected
from regression lines of the raw and filtered time series
where FIR network is used for modeling and filtering the
time series. The described scheme is applied to two
fault diagnosis problems using acoustic and vibration
data obtained in normal and abnormal conditions from
rotating parts of an automobile and a boring machine's
tool, respectively.

The paper is organized as follows: Details of linear
regression method are given in next section. Section 3
introduces FIR network and its application in this study.
Section 4 elaborates the scheme of fault diagnosis using
linear regression method and FIR network and its
application to acoustic and vibration data. Final remarks

are provided in Section 5.

2.

Regression analysis 1s a statistical technique for

Linear regression method

modeling and investigating the relationship between two
or more variables embed in an unknown system. In the
case of simple linear regression a single regressor or

predictor X and a response variable ) is considered.

Therefore,

y=p0+px+¢ @



where intercept ﬂo and the slope ﬂl are unknown
regression coefficients, and &£ 1is a random error with

. 2 o . .
mean zero and variance O . The criterion for estimating

the regression coefficients is called as method of least
squares. The fitted or estimated regression line from [9]

is therefore

@

is the estimated trend value, y= (l/n) n_l Y, , and
X = (l/n)z:f=1 X, .

3. Neural networks (NN) approach

A typical use of neural network is (nonlinear) regression,
where the task is to find a smooth interpolation between
points. The main advantage of the neural network is that

"1t enables us to approximate or reconstruct any nonlinear
continuous function F'(.); therefore, such a model is
more general and flexible.

Suppose d = f(x) describes the input-output

relation of an unknown system. Let ), denote the
output of the neural network produced in response to an

input vector X;. The difference between d, and Y,

provide the error signal vector €;, as depicted in Fig. 1.

This error signal is used to adjust the free parameters of
NN to minimize the squared difference between the
outputs of the unknown system and the NN in a

statistical sense.
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Fig. 1. Block diagram of system identification using
neural network.
3.1  Finite-duration impulse response (FIR)
filter network
To understand the function of a FIR network, a single
neuron extracted from the 4h layer of an L-layer static
[4]

feedforward neural network adopted from is

represented in the Fig. 2. The output of the neuron, xj” ,

is taken as a sigmoid function of the weighted sum of its

inputs:

3

I+ _ o 1ol
x = S| 2w
i i

! / , .
where Xx; and W, , are inputs and weights of the

neuron, respectively.

A modification of the basic neuron can be accomplished
by replacing each static synaptic weight by a FIR linear
filter. By FIR we mean that for an input excitation of
finite duration, the output of the filter will also be of
finite duration. The most basic FIR filter can be modeled
with a tapped delay line as illustrated in Fig. 3. For this

filter, the output )(k) corresponds to a weighted sum of

past delayed values. of the input as described in equation
(4). The FIR neuron model is shown in Fig. 4.

y(k) = Twmx(k=n)

The feedforward responsé of the FIR network can be
written as,
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X (k)= f) 2w, x| (k) G

1+1 . . . :
where xf (k) is the output of a neuron in layer / at

time & taken as the sigmoid function of the sum of all
filter outputs that feed the neuron. Comparing equations
3'and 5 we may note that the scalars are replaced by
vectors. As contrast to standard error backpropagation
used in static feedforward neural networks, temporal
back-propagation is used in FIR networks. Complete
detail of FIR network is given in [4, 10].

1.0

Fig. 2. A static neuron model (feedforward path).
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Fig. 3. FIR filter model.

FIR filters

1.0
Fig. 4. AFIR neuron model (feedforward path).
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4.
In the fault diagnosis scheme proposed/described in [6

Fault diagnosis scheme
7, 8] the fault is first detected from regression lines of the
raw time series, recorded in normal and abnormal
conditions. Model of the normal condition time series is
then estimated using FIR network. The trained network
is used for filtering of abnormal condition time series.
The fault is further confirmed/analyzed using the
regression lines of the predicted normal condition time
series and the filtered abnormal condition time series.
The above described fault diagnosis scheme is applied to
two fault diagnosis problems, i.e. rotating parts and tool
breakage diagnosis, using acoustic data obtained from
rotating parts of an automobile and vibration data

recorded from a boring tool, respectively.

4.1 Rotational parts breakage diagnosis

The above scheme is applied to an automobile's rotating
parts' breakage diagnosis problem using acoustic data
recorded in normal and abnormal conditions through
Integrated Sound Level Meter LA-5110, as shown in Fig.
5. Regression lines (Fig. 6) are first plotted for the raw
data, using equation 2, where a significant difference in
the amplitude clearly demonstrates the existence of a
fault.

Rotational

Parts Host PC

) @ =)

]

LA-5110

Fig. 5. Rotational parts fault diagnosis experimental
setup.

Further study/analysis is carried out after model
estimation of the given data. Before model estimation,
the two time series are normalized for the range -1 to +1.
Total number of available points is 1000. Initial 900
points of normalized normal condition data are used for
training and the next 100 data points are used for
validation. While using FIR networks, selection of
number of layers and taps per layer is quite critical. After
performing rigorous simulations the best set of number of
layers and taps is selected where the mean squared error

(MSE) is low. The selected network structure for acoustic



normal condition data with final MSE is given in Table 1.
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Fig. 6. Regression lines of the acoustic (raw) data.

The MSE pattern for the training set of normal condition
data is shown in Fig. 7, where it is noticed that error
signal nears zero in about 10 epochs of training. This
shows that the selected network has modeled the system
quite accurately. The input and output of a trained
network for normal condition data are shown in Fig. 8,
where the system identification accuracy of the selected

FIR network is quite visible.
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Fig. 7. MSE pattern for training set of acoustic

(normal condition) data (900 points).
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Fig. 8. Input and output of the FIR network trained

with normal condition acoustic data.
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. Fig. 9. Regression lines of the predicted normal
condition and filtered abnormal condition acoustic
data.

The normalized abnormal condition data are then
filtered through the trained FIR network. The regression
lines for the two time series, ie. predicted normal
condition data and the filtered abnormal condition data,
plotted using least square method, are shown in Fig. 9. A

significant difference in the two lines (Fig. 9) confirms the

‘existence of the fault that is first detected from the

observation of the regression lines of the two original time

series (Fig. 6).

4.2  Boring tool breakage diagnosis

The described scheme is applied to a horing tool
breakage diagnosis problem. An accelerometer (PV-65) is
used to acquire the vibration data in normal and
abnormal conditions from the boring tool (Fig. 10). As in
the previous case regression lines (Fig. 11) are plotted for
the raw vibration data. Significant differences in the
amplitudes and shapes of these lines clearly exhibit the

existence of a fault.

Accelerometer PV-65

Magnetic
Attachment
Device

=

Boring Machine (Pressure Saddle)

Fig. 10. Boring machine fault diagnosis experimental

setup
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Fig. 11. Regression lines of the vibration (raw) data.

Then the FIR network is used to estimate the model for
normal condition data. Before model estimation both the
normal and abnormal conditions are
normalized for the range -1 to +1. Out of 1000 available

data points, initial 900 points of normal condition data

time - . series

are used for training and the remaining 100 data points
for validation. After performing several simulations the
best set of number of layers and taps is selected where
the MSE is low and prediction is good. The MSE péttern
for the training set of normal condition data is shown in
Fig. 12. The selected FIR structure for modeling the
normal condition vibration data is listed in Table 1. It can
be noticed that 18 taps/node are needed at input layer to
train the vibration data as compare to that of 10
taps/node for acoustic data. The input and output of a
trained network for normal condition data are shown in
Fig. 13, where the model estimation capability of FIR
network is again evident. The MSE pattern also indicates
the accuracy of the model estimation by the selected
network structure of FIR network.

Table 1. FIR Network structures for acoustic and

vibration (normal condition) data.

BYEHRC, 1205108, Fh124F

Network . Vibration
Structure Acoustic Data Data
Layers 2 2
Input Node 1 1
Input Taps 10/node 18/node
Hidden Nodes 30 15
Hidden Taps 3/node 3/mode
Output Node 1 1
Epochs 30,000 - 30,000
MSE 0.000113998 0.00401513
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Fig. 12.

(normal condition) data (900 points).

MSE pattern for training set of vibration

The normalized abnormal condition time series is then
fed into the trained FIR network for filtering. The
regression lines for the two time series, i.e. predicted
normal condition data and filtered abnormal condition
data, plotted using least square method, are shown in
Fig. 14. A significant difference in the two lines again
confirms the existence of the fault that is first detected
from the observation of the regression lines of the two
original time series (Fig. 11). The behavior and amplitude
of the regression lines (Fig. 14) not only confirms the
existence of the fault but also increases the sensitivity of
the fault detection.

Tune

Fig. 13. Input and output of the network trained

with normal condition vibration data.
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Fig. 14. Regression lines of the predicted normal and

filtered abnormal conditions vibration data.



5. Conclusion

The fault diagnosis scheme is applied to two real-world
applications using acoustic and vibration data recorded
from rotating parts of an automobile and a boring tool in
normal and abnormal conditions. Initial fault detection
using regressions lines of the raw data are confirmed
from the regression lines of the predicted normal and
filtered abnormal conditions' data. Hence it can be safely
said that the described fault diagnosis scheme is suitable
for the given two fault diagnosis problems. The FIR
network is found suitable for model estimation of
unknown system, which may be suitable for other
applications, e.g. pattern classification/recognition, etc.
The selected FIR network structure is good only for the

used application. To estimate model for other data fresh

simulation would be needed. Preprocessing of the raw.

data may be helpful in realizing more accurate model.

(Manuscript received Dec. 6, *99, rivised March 1, 2000)
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