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Traditionally, tasks for a robotic system are specified by a desired timed trajectory in the manipulator’s
workspace, which the manipulator is required to track at every instant of time. However, there are many
tasks in which the desired motions are specified by the state of system rather than time, such as contour
following tasks. For such tasks, Passive Velocity Field Control(PVFC) has been proposed and the geome-
try of the controlled systems was analyzed. In this paper, a method to apply a decentralized PVFC to a
cooperative multiple mobile robotic system whose sub-system is under non-holonomic constraints and which
conveys a common rigid object in a horizontal plain is proposed, and the effectiveness of the control method
is demonstrated by experiments.
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1. Introduction

Traditionally, tasks for a robotic system are speci-
fied by a desired timed trajectory in the manipulator’s
workspace, which the manipulator is required to track
at every instant of time. However, there are many tasks
in which the desired motions are specified by the state
of system rather than time, such as contour following
tasks, painting so on in which the target point of the
system should keep a contact with an environment. If
the desired trajectory were specified in terms of time
and rigid servo controller was implemented, big forces
would give damage to the system due to the tracking
error.

Based on the considerations, Passive Velocity Field
Control(PVFC) has been proposed and the geometry of
the controlled systems was analyzed. (1) (2) In the con-
trol, the desired motion is specified by a desired ve-
locity field depending on the state of the system, e.g.,
joint angles or task space coordinates. The methodol-
ogy encodes tasks using time invariant desired velocity
fields instead of the more traditional method of timed
trajectories and guarantees that the closed loop system
behave passively with environment power as the sup-
ply rate. By maintaining the passivity property of the
closed loop system, stability and robustness will be en-
hanced, especially when interaction with uncertain en-
vironments. The most important feature of the control
algorithm is that the whole system becomes a virtual
passive system even though the velocity of the system
converges to the desired one. Since the system is pas-
sive, contact tasks with human being are safely realized
and stability of the system against an environment is
also easily analyzed. To these ends, the formulation of
PVFC has two distinct features as follows :

( 1 ) The task is encoded using a velocity field on

the configuration space of the system.
( 2 ) Controllers are constrained so that the closed

loop system appears to the physical environment
to be a passive system.

Please refer the details to (1) (2).
In our previous works (4) (5), decentralized implemen-

tation of PVFC including internal force control was
proposed in a case where an object is grasped rigidly
by multiple manipulators. In this paper, we propose
a method to apply the PVFC with some modification
to a cooperative multiple mobile robot system which
consists of two planar mobile robots which convey an
rigid object attached to the robots with passive rota-
tional joints.Each mobile robot is a three-wheeled mo-
bile robot and is under non-holonomic constraints.(See
Fig. 3) The specifications of the proposed controller are
as follows:

( 1 ) The center of the object follows a desired ve-
locity field without external disturbances.

( 2 ) The orientation of the object tracks a desired
value specified in terms of the position of the cen-
ter of the object.

( 3 ) Linear motion of the object has properties of a
system controlled by the original PVFC.

( 4 ) Internal force is controlled in a certain direc-
tion.

In this paper, we will focus on how to realize the
specification above by a decentralized PVFC controller
though a centralized PVFC was applied for the same
system in (7). In chapter 2, the original PVFC and an ex-
tended PVFC are summarized since the proposed con-
trol method is based on the PVFC. In chapter 3, dy-
namics of the cooperative mobile robot is analyzed and
in chapter 4, a proposed control method is described.
In chapter 5, experimental results are shown to demon-
strate the validity of the proposed control algorithm. In
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chapter 6, concluding remarks and future problems are
discussed.

2. Passive Velocity Field Control(PVFC)

In this section the original PVFC and an extension are
briefly summarized to capture the function of PVFC.
The passivity can be defined in mathematical term,
however, it can be simply understood that the energy of
the system is preserved if no external force is exerted.

2.1 Original PVFC In PVFC, instead of re-
quiring the motion of the system to track a desired
timed trajectory, as is traditionally the case, the task is
encoded using a velocity field on the configuration space
of the system, i.e., specifying a desired velocity V (q) at
each configuration q. By requiring that the velocity of
the system converges to a scalar multiple of the encod-
ing field, the system will be guided to satisfy the task in
an expedient and coordinated manner. In conventional
controlled mechanical systems, the energy will change
in accordance with the convergence to the desired veloc-
ity signals which are not normally constant. In PVFC,
the mechanical system is augmented with a fly-wheel
system virtually so that the virtual system satisfies the
passivity as follows.

Let assume that dynamics of an n degree of freedom
(D.O.F) mechanical system is represented in a coordi-
nate system as

M(q)q̈ + C(q, q̇)q̇ = T + Fe · · · · · · · · · · · · · · · · · (1)

where q ∈ Rn stands for coordinates of the system, T
and Fe are control input and external force, respectively.
M , C are an inertia matrix and Coriolis, centrifugal
force terms, respectively. In that equation we assume
that gravity term is completely compensated for by a
local feedback.

Then, the system is augmented with a fly-wheel sys-
tem as(

M 0
0 Mfw

)
︸ ︷︷ ︸

Ma

ẍa +
(
C 0
0 0

)
︸ ︷︷ ︸

D

ẋa = T a +F a
e (2)

where

xa
d=

(
q
xfw

)
, F a

e
d=

(
Fe

0

)
, T a d=

(
T
Tfw

)
In the following this system is referred to an augmented
system, and the terms are suffixed with a.

It should be noted that in eq.(2), D.O.F. of the system
is increased from n to n+ 1 and its additional freedom
can be considered to be a flywheel which stores and dis-
charge the energy. If we consider the flywheel as a part
of the system, we can control the energy of the flywheel
so that the whole energy does not change or the whole
system becomes passive even if the original mechani-
cal system alters the velocity due to a desired velocity.
Actually, a desired velocity field for the flywheel is spec-
ified based on the desired velocity field for the original
system so that the energy of a whole system becomes
constant. The original PVFC can be represented in a
coordinate free language by

Fig. 1. Passive Velocity Field Control

T a = ẋa�
{
Q ∧

(
1

2Ē
∇ẋa

Q− γp

)}
· · · · · · · · · (3)

where p, Q and Ē are momentum, desired momentum
of the augmented system and desired energy level, re-
spectively, and ∧ is the wedge product for differential
forms, and � is the contraction operator, and γ is a con-
trol constant coefficient. For the details see (1) (2) (3). A
block diagram of the PVFC is shown in Fig.1.

Since the augmented system is passive with respect to
a energy function Ha, it satisfies the following equation:

d

dt
Ha =< F a

e , ẋa >=< Fe, ẋ > · · · · · · · · · · · · · (4)

where Ha = 1
2v

T
a M

ava (va = ẋa, i.e., v is used for ẋ
alternatively.) is a kinematic energy of the augmented
system, and < ·, · > is an ordinary inner product. Note
that the resultant velocity of the system is a multiple
of the desired velocity vector Va depending on the total
energy, that is

va → βVa · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (5)

where β is given by

β =
√ � va, va 	a

� Va, Va 	a
=:

√
vT

a Mava

V T
a MaVa

. · · · · · · · · (6)

In the basic PVFC the desired velocity field is time in-
variant, however, complex trajectories which has inter-
sections can not be realized. ’Self-pacing’ which is a
energy depending pseudo time was introduced. (1) Since
extensions of the PVFC to multiple coordinated system
is not considered in the original work by Li, we dis-
cussed an extension including internal force control and
coordinations of self-pacings for a system in (4) (5) (7).

3. Modeling of the System

3.1 Modeling of a three-wheeled mobile robot
In order to derive a dynamic equation of the consid-
ered cooperative mobile robotic system, a basic model-
ing of a single three wheeled mobile robot moving in a
horizontal plain is summarized. Please, see for the de-
tails in (8) (9). Let consider a three wheeled mobile robot
shown in Fig.2. In the figure O − I1I2 is a base coor-
dinate system and Q − X1X2 is a moving coordinate
frame with the mobile robot. R is a radius of the wheel
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PVFC Mobile Robot

Fig. 2. Single three wheeled mobile robot

and φ1, φ2, φ3 are rotational angles of the wheels. L is
a length between a reference point Q and wheels and a
steering point, and d is a length between the steering
point and the wheel attached to the steering rod. θ is
an angle between X1 and I1 and β is the steering angle.
In the system we assume that φ2 and φ3 are driven by
actuators and steering angle φ1 are free.

The motion of the body of the mobile robot is com-
pletely specified in terms of position of the reference
point Q, (x, y), and the rotation of the body, θ, so we
introduce a vector ξ :

ξ = [x y θ]T · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (7)

to indicate the motion of the body.
Furthermore, we introduce generalized coordinate

vector to describe a whole motion of the system as

q = [x y θ β φ1 φ2 φ3]T . · · · · · · · · · · · · · · · (8)

Using this generalized coordinates and the following
constraints:

( 1 ) Pure rolling condition : the fact that the com-
ponent of the velocity of the contact point of the
wheel with the ground in the plane of the wheel
is zero(i.e., there is no slip between φ and floor).

( 2 ) Non slipping condition : the fact that the com-
ponent of the velocity of the contact point, or-
thogonal to the plane of the wheel is zero(i.e.,
there is no slip of the steering wheel).

we can obtain the dynamic equation as

PTM
(β)P ζ̇ + PT f
(θ, β, ζ) = PTG(β)u, · · (9)

and it is easily shown that these constraints are non-
holonomic constraints for the system since two vec-
tor fields which satisfy the conditions are not involu-
tive. (8) (9)

If we assume the conditions and use the following co-
ordinate change:

ζ1 = −ẋ sin θ + ẏ cos θ · · · · · · · · · · · · · · · · · · · · (10)

ζ2 = θ̇ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (11)

and input transformation, we have the following simpli-
fied dynamic equation:

Fig. 3. Coordinated Mobile Robots

d
dt




ψ
θ
x
y
β
ζ1
ζ2




=




ζ1
ζ2

−ζ1 sin θ
ζ1 cos θ

− 1
dζ1 sinβ − 1

dζ2(d+ L cosβ)
ν1
ν2




(12)

where ν = [ν1, ν2]T is a new input, and the constraints
are represented by

ẋ cos θ + ẏ sin θ = 0 · · · · · · · · · · · · · · · · · · · · · (13)
−ẋ sin θ + ẏ cos θ = ζ1. · · · · · · · · · · · · · · · · · · · · (14)

(See (8) (9) for the details.)
3.2 Modeling of the considered system In

this section we consider a dynamic equation of the sys-
tem shown in Fig. 3. In the system an object denoted
by a rod whose length is 2l is connected to each mo-
bile robot by a free joint without friction. In this paper
we consider a case where two mobile robots convey a
rod for simplicity, however, the similar discussion can
be applied for cases where more mobile robots carrying
a general planer rigid object.

If we assume that mass and inertia of the object are m
and Io, and a position of the mass center and rotational
angle of the object from O − I1 in clockwise direction
are (xc, yc) and ϕ, we have free dynamic equations of
the object as :

Moẍo = 0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (15)
Ioϕ̈ = 0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (16)

where

Mo :=
[
m 0
0 m

]
· · · · · · · · · · · · · · · · · · · · · · · · (17)

xo :=
[
xc

yc

]
. · · · · · · · · · · · · · · · · · · · · · · · · · · · (18)

On the other hand, dynamic equations of two mobile
robot can be expressed in an augmented dynamic equa-
tion as

PTM
P η̇(t) + PT f
(θ, β, η) = PTG(β)u · · (19)

電学論 C，120巻 10号，平成 12年 1487



where

P :=
[
P1 0
0 P2

]
, M
 :=

[
M


1 (β1) 0
0 M


2 (β2)

]

η :=
[
η1
η2

]
, u :=

[
u1

u2

]
, f
 :=

[
f

1

f

2

]

G(β) :=
[
G1(β1) 0

0 G2(β2)

]
and ηi(t) := [ζ1, ζ2]T for each mobile robot where ζi ∈ R
is defined in the previous subsection(That is, each sub-
script number indicates a number of mobile robot ex-
cept ζi. As ζi is not appeared alone in the following,
there should be no confusion.). Therefore, the dynamic
equation of the whole system without constraints intro-
duced by the passive joints is given by


 PTM
P

Mo

Io


 ẍs +


 PT f


0
0




=


 PTG(β)

0
0


u (20)

This equation is simply re-expressed as

Msẍs + f

s = Gsu · · · · · · · · · · · · · · · · · · · · · · · · · (21)

where

Ms :=


 PTM
P

Mo

Io


 , ẋs :=



η1
η2
ẋo

ϕ̇


 (22)

Gs :=


 PTG(β)

0
0


 , f


s :=


 PT f


0
0


 . · · · · · (23)

From the kinematic constraints by the passive joints,
holonomic constraints between the generalized coordi-
nates are given by

x1 + h sin θ1 = xc − l cosϕ · · · · · · · · · · · · · · · (24)
y1 − h cos θ1 = yc − l sinϕ · · · · · · · · · · · · · · · (25)
x2 + h sin θ2 = xc + l cosϕ · · · · · · · · · · · · · · · (26)
y2 − h cos θ2 = yc + l sinϕ. · · · · · · · · · · · · · · · (27)

Using this equations and the definition of ηi we can de-
rive velocity constraint of xs as

Jsẋs = 0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (28)

where

Js :=




− sin θ1 h cos θ1 0 0
cos θ1 h sin θ1 0 0

0 0 − sin θ2 h cos θ2
0 0 cos θ2 h sin θ2

−1 0 −l sinϕ
0 −1 l cosϕ
−1 0 l sinϕ
0 −1 −l cosϕ


 . (29)

Therefore an actual dynamic equation of the whole sys-
tem is given by

Msẍs + f

s = Gsu− JT

s λ · · · · · · · · · · · · · · · · · · (30)

where λ ∈ R4 is a constraint force vector. If we define
λ, λi as

λT :=
[
λ1 λ2 λ3 λ4

] · · · · · · · · · · · · · · · (31)

λT
1 :=

[
λ1 λ2

] · · · · · · · · · · · · · · · · · · · · · · · · (32)

λT
2 :=

[
λ3 λ4

]
, · · · · · · · · · · · · · · · · · · · · · · · (33)

the dynamic equation can be decomposed into

PT
i M



i Piη̇i(t) + PT

i f


i = PT

i Gi(β)ui

− JT
xiλi(i = 1, 2) · · · · · · · (34)

Moẍ = −JT
xoλ · · · · · · · · · · · · · · · · · · · · (35)

Ioϕ̈ = −JT
ϕ λ. · · · · · · · · · · · · · · · · · · · · (36)

where

JT
xi :=

[ − sin θi cos θi

h cos θi h sin θi

]
(i = 1, 2) · · · · · · (37)

JT
ϕ :=

[ −l sinϕ −l cosϕ l sinϕ l cosϕ
]
. (38)

4. Proposed Control Algorithm

In this section we propose a control method for the
system, which satisfies the specification given in the in-
troduction. In order to make a PVFC computationally
simple, we consider a minor loop compensation first.

4.1 Minor loop compensation Let consider
about eq.(34). Since we assume that the constraint
forces λi are observed by each force sensor in our control
method, then we can define a local control input given
by

ui = (P T
i Gi)−1((P T

i M


i Pi)vi + PT

i f
∗
i + JT

xiλi)
−(Pi

TGi)−1(P T
i M



i Pi)JT

xiλi. (i = 1, 2) · (39)

where vi is a new input. If we inject the control input
to the system, the closed loop system becomes

η̇i = vi − JT
xiλi (i = 1, 2). · · · · · · · · · · · · · · · · (40)

Therefore a whole dynamic equation becomes

η̇i = vi − JT
xiλi (i = 1, 2) · · · · · · · · · · · · · (41)

Moẍo = −JT
xoλ · · · · · · · · · · · · · · · · · · · · · · · · · · · (42)

Ioϕ̈ = −JT
ϕ λ, · · · · · · · · · · · · · · · · · · · · · · · · · · (43)

and the matrix form of the equations is given by

M̄sẍs = Ḡsv − JT
s λ · · · · · · · · · · · · · · · · · · · · · · · (44)

where

M̄s :=


 I4×4

Mo

Io


 · · · · · · · · · · · · · · · (45)

Ḡs :=
[
I4×4

03×4

]
· · · · · · · · · · · · · · · · · · · · · · · · · · (46)

v := [vT
1 , v

T
2 ]T . · · · · · · · · · · · · · · · · · · · · · · · · · · (47)
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PVFC Mobile Robot

(Please note here that the minor loop compensation is
not necessary for the design of PVFC,however, the com-
putation for the PVFC would become very complex.)

Since the motions of xo and ϕ should be controlled
in our problem and direct control input for ϕ does not
exist, the distributed control method proposed in (4) (5)

can not be applied for directly. The dynamic equation
is first transformed by a coordinate transformation and
input change so that the dynamics of ϕ disappears in
the equation. Control input for ϕ is realized as an in-
ternal force for the motion of xo.

Let define ˙̄xi as

˙̄xi := Jxiηi(t), (i = 1, 2) · · · · · · · · · · · · · · · · · (48)

and using the new coordinate x̄i the dynamic equation
can be rewritten as


J−1

x1

J−1
x2

Mo

Io


 ¨̄xs +




−J−1
x1 J̇x1J

−1
x1

˙̄x1

−J−1
x2 J̇x2J

−1
x2

˙̄x2

0
0




=



v1
v2
0
0


 − JT

s λ, · · · · · · · · · · · · · · · · · · · · · · · · · · · (49)

Js



J−1

x1

J−1
x2

I2×2

1


 ˙̄xs = 0, · · · · · · · · · (50)

where

˙̄xs :=




˙̄x1

˙̄x2

ẋo

ϕ̇


 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (51)

Pre-multiplying a matrix

J−T

x1

J−T
x2

I2×2

1


 · · · · · · · · · · · · · · · · (52)

to both hand-sides of eq.(49) and defining a matrix

Jc :=


 I2×2 −I2×2

Jϕ

I2×2 −I2×2


 , · · · · · · (53)

we have a new dynamic equation given by

J−T

x1 J−1
x1

J−T
x2 J−1

x2

Mo

Io


 ¨̄xs +




−J−T
x1 J−1

x1 J̇x1J
−1
x1

˙̄x1

−J−T
x2 J−1

x2 J̇x2J
−1
x2

˙̄x2

0
0


 =



J−T

x1 v1
J−T

x2 v2
0
0


 − JT

c λ, (54)

Jc ˙̄xs = 0. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (55)

Furthermore, if we define vi as

vi = J−1
xi (νi − J̇xiJ

−1
xi

˙̄xi) +
(
JT

xi − J−1
xi

)
λi, · (56)

finally the dynamic equation becomes

M̄s ¨̄xs = [νT
1 νT

2 0 0]T − JT
c λ · · · · · · · · · · · (57)

Jc ˙̄xs = 0, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (58)

which implies

¨̄xi = νi − λi · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (59)
Moẍo = λ1 + λ2. · · · · · · · · · · · · · · · · · · · · · · · · (60)

From the relationship between xo to eq.(24) - eq.(27)
and x̄i of eq.(48), we have

ẋo = ˙̄x1 + [I2×2 02×2]Jϕϕ̇ · · · · · · · · · · · · · · (61)
ẋo = ˙̄x2 + [02×2 I2×2]Jϕϕ̇ · · · · · · · · · · · · · · (62)

and

ẍo − [I2×2 02×2](Jϕϕ̈+ J̇ϕϕ̇) = ν1 − λ1 · (63)

ẍo − [02×2 I2×2](Jϕϕ̈+ J̇ϕϕ̇) = ν2 − λ2. (64)

In order to design a decentralized PVFC, we assume
that ϕ̈ is measurable for each subsystem, which is a
crucial step to derive a decentralized PVFC since ϕ̈ is
determined based on both λ1 and λ2, and both signals
can not be used for each subsystem in the decentralized
formulation, i.e., λ1 can be used only in the subsystem
1 so on. Of course, it is difficult to measure the signal in
practice, we will estimate the signal from the angle and
angular velocity using an observer. The validity of the
assumption will be demonstrated in the experiments. If
νi is defined as

ν1 = ν′1 − [I2×2 02×2](Jϕϕ̈+ J̇ϕϕ̇) · · · · · · · (65)

ν2 = ν′1 − [02×2 I2×2](Jϕϕ̈+ J̇ϕϕ̇), · · · · · · (66)

then we have

ẍo = ν′i − λi. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (67)

From the dynamic equation of xo and the above equa-
tions, the motion of xo is governed by

(I2×2 +Mo + I2×2)ẍo = ν′1 + ν′2. · · · · · · · · · · (68)

From this equation it can be seen that the dynamics
of xo is the same as that of connected three mass,
I2×2,Mo, I2×2, and the side masses are controlled by
ν′1 and ν′2 respectively. So we can apply a decentralized
PVFC proposed in (4) (5) to design ν′i. Basically, the pro-
cedure is that an individual PVFC is designed using the
following virtual dynamic equation:

(I2×2 + ρ1Mo)ẍo = ν′1 · · · · · · · · · · · · · · · · · · · (69)
(I2×2 + ρ2Mo)ẍo = ν′2, ρ1 + ρ2 = 1 · · · · · (70)

where ρi is a load sharing coefficient. It has been shown
that if ν′i is defined as

ν′i = ν′pvfci + ν′Ii · · · · · · · · · · · · · · · · · · · · · · · · · · (71)

where ν′pvfci is an original PVFC for eq.(69) or (70),
and ν′Ii is desired internal forces satisfying
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∑
ν′Ii = 0, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (72)

then the constraint force λi converges to

βρiMo
∂V

∂xo
V + ν′Ii · · · · · · · · · · · · · · · · · · · · · · · · (73)

where β is a scalar number and V is a desired velocity
field. So if we set[

ν′I1

ν′I2

]
=: ν′I = Jϕ/‖Jϕ‖2vϕ + J⊥

ϕ vI · · · · · · (74)

where vϕ is a control input for ϕ and vI is control for
an internal force which does not affect the linear nor
angular motion of the object, and

J⊥
ϕ :=




cosϕ
sinϕ

− cosϕ
− sinϕ


 , · · · · · · · · · · · · · · · · · · · · · · (75)

and if ∂V
∂xo

V is designed to be perpendicular to Jϕ, it is
easily shown that we have

Ioϕ̈ = −vϕ, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (76)

λI := J⊥
ϕ

T
λ/2 = vI . · · · · · · · · · · · · · · · · · · · · · (77)

So we can control the linear motion of the object by
PVFC, and ϕ and λI can be controlled to desired val-
ues.

5. Experimental Results

In this section some experimental results are shown
to demonstrate the validity of the proposed control
method.

5.1 Experimental conditions As in Fig. 4 the
experimental system consists of two Nomad Scouts and
an object which is a wooden plate. In the experiment
the control period was set to 2 [msec] and the constraint
force λi was measured through a filter whose transfer
function is 10/(s + 10) for each subsystem. The posi-
tion and the orientation of the robot was estimated by
dead reckoning. The dynamic parameters of the robot
were identified off-line.

The desired velocity field is defined such that if a point
moves along the desired velocity, the point converges to
a circle whose center and radius are the origin and 1
[m] at a constant speed in a anti-clockwise direction.
For the control of ϕ, desired angle and desired angular
velocity, ϕd and ϕ̇d, are defined by

ϕd := − tan−1(yc/xc) · · · · · · · · · · · · · · · · · · · · · (78)

ϕ̇d :=
d

dt
(ϕd)

∣∣∣∣ ẋc = ẋcd

ẏc = ẏcd

· · · · · · · · · · · · · · · · · (79)

where ẋcd, ẏcd are the desired velocity specified by a
desired velocity field in PVFC. Control input vϕ is de-
termined by

vϕ = −Kv(ϕd − ϕ) −Kp(ϕ̇d − ϕ̇), · · · · · · · · · (80)

and vI was set to 0. Those control were used for both
robot, and the load sharing parameter ρi was set to 0.5
since we assumed that each mobile robot has the same
capability. For the observation of ϕ̈, we used a minimal
order observer was designed based on a triple integra-
tor model where the pole of the observer was chosen to
−50.

In Fig. 5 desired trajectory and the actual trajecto-
ries of the robots and the object are shown. From the
figure it can be seen that the center of the object follows
the desired trajectory though some tracking error exists
due to uncertainties of the parameters and the effects
of the dead reckoning. In Fig 7 tracking performance of
the angles for the desired signals is shown. It shows also
good tracking performance. Finally, in fig. 6 changes of
the virtual energy are plotted. It is seen from the figure
that each virtual energy decrease slightly due to energy
loss caused by incomplete cancellation of the friction
effects.

Fig. 4. Constructed experimental system.

Fig. 5. Trajectories of mobile robots and object.

6. Concluding Remarks

In this paper we have proposed to apply PVFC for co-
operative mobile robots conveying an rigid object, and
a decentralized control algorithm was given. Though
the validity of the proposed method was demonstrated
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Fig. 6. Tracking of the angle of the object ϕ.

Fig. 7. A virtual energy of each subsystem.

by experiments, the validity should be analyzed theo-
retically. In this paper we considered time invariant
velocity field, the proposed method can be applied for
pseudo-time variant cases as in (4) (5).

Since we assumed that there exists no uncertainties
about all parameters in our experiments, the robustness
of the proposed method should be checked by further
experiments.

This work was partially supported by the Scientific
and Research Foundation of the Ministry of Education
under Grant COE #104723.
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