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A method of model matching control for continuous-time systems in the presence of arbitrarily bounded
disturbances is proposed. The proposed control system consists of two feedback loops: one performs the
model-matching control and the other includes an error feedback controller which could be fully utilized to
reduce the effect of external disturbances. In this paper, an explicit design procedure for achieving perfect
model matching control with minimal sensitivity will be proposed. Furthermore, we can assure that the sys-
tem input and output remain bounded at any time for continuous-time system in the presence of arbitrarily
bounded disturbances. Finally, the results of computer simulation are presented to illustrate the effectiveness

of the proposed method.
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1. Introduction

The ultimate goal of the model matching is to match
the transfer function of the closed loop system to some
desired transfer function(). Due to the fact that the
desired system model is usually characterized in terms
of a transfer function, it is natural to treat the design
of perfect model matching control in the frequency do-
main directly rather than in the time domain. Thus,
recent work concerning perfect model matching control
is mostly done in the frequency domain®~®, Fur-
thermore, it is now well known that H,-control prob-
lem including both sensitivity minimization and ro-
bust stabilization is reduced to a mathematical prob-
lem called the model matching problem in Hoo(®. In-
terpolation approach and approximation approach has
been proposed to solve the model-matching problem.
Both approaches are mathematically equivalent but
they are different in computational aspect. The inter-
polation approach is conceptually appealing(®-(? but
unsuccesstul in providing a powerful computational al-
gorithm. The approximation method has made remark-
able progress from computational point of view (8)~(10),
An extension of the interpolation technique called direc-
tional interpolation is a variation of the Nevanlinna-Pick
problem:(12) " This method can be used to design
minimal-order controller in the frequency domain(®.
State-space version of the classical interpolation the-
ory has been developed for the simplest nrlodel—rnatchmg>
problem. ~

In this paper we introduce a method to solve the per-
fect model matching problem for continuous-time sys-
tems in the presence of disturbances based upon the
pole-zero placement method. In this method, we in-
troduce the output loop compensator for the compen-
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sation of external disturbances. Furthermore, in this
paper, an explicit design procedure for achieving per-
fect model matching control with minimal sensitivity
will be proposed. Here, we adopt the polynomial ap-
proach for designing the controller(!3)~{16)  Section 2
states the problem. In section 3, we precisely state the
problem of minimal sensitivity perfect model matching
control and give a complete solution and an explicit de-
sign procedure. The results of computer SImulatlon are
presented in Section 4.

2. Problem Statement

Let the single-input single-output continuous-time
plant be given by

Y(t) = G()UE) 4 W(E) ++vrvvrmmrraneiennns 1)
where
G(s) = igi; .............................. )

n—1
A(s) =s"+ Z Qs
=1

B(S) = ibm_ism_i

i=0

A(s) and B(s) are stable coprime polynomials in s and

m < n. u(t) and y(t) are the plant input and output,

respectively. w(t) is the external arbitrarily bounded

disturbances. Moreover, the continuous-time plant is a.

minimum phase system ( B(s) is a stable polynomial ).
The reference model is described by

m(s)
An(s)

Ym(t) =



where

v—1
VA (s) = 8" + Z am(,j_i)s”*i
i=1

"
B, (5) = Z bm(u~i)SH—Z
=0

Am(s) is a stable polynomial and B,,(s) is a polyno-
mial, and v > p and v — p > n —m are satisfied. r(t)
is the reference input and y,,(¢) is the reference model
output. Furthermore, the polynomial A,,(s) and B, (s)
are relatively coprime polynomials. The objective of the
control is to design a controller such that the transfer
function of the closed-loop from the reference input r(t)
to the plant output y(t) becomes By, (s)/An(s) and the
system should be robustly stable. Thus, in steady state,
output y(t) of the plant will converge to the reference

model output yy, (¢).
3. Controller Design

Now, using the pole-zero placement method, it is pos-
sible to design a controller such that the closed-loop

transfer function of the system from the reference in- -

put r(t) to plant output y(t) matches some desired
transfer function. If Ty(s) is an asymptotically sta-
ble polynomial, then there exist unique polynomials
R(s) and S(s), which satisfy the following Diophantine
equation(13):(17) :

A(s)R(s) + B(s)S(s)

where, deglp(s) = (I > n — 1), degR(s) = v+1—n
and degS(s) = n — 1. Tp(s) is the part of the desired
closed-loop characteristic polynomial which should not
influence the reference tracking. It is interpreted as ob-
server polynomial. The polynomial A,,(s) is the desired
closed-loop characteristic polynomial. Here, it is the de-
nominator polynomial of the reference model.
We define the control input u(t) by

Am (8)To(s)

u(t) = To(s)[r(t) — e° ()] — Tu(s)y(t) ------- (5)
where ‘

T (3) = % ............................. (6)

To(s) = T%(:gﬁ%?if) ...................... )

(L) = A]\;((i))e(t) ......................... (8)

E(E) = Y(£) — Yo (£) - vveerreaannn, 9)

and M(s) and N(s) are polynomials. This perfect
model matching controller in eq. (5) could be thought
of as a combination of feedback having the transfer
function T (s), a feedforward with the transfer function
T3(s) and the output loop compensator N(s)/M(s).

The block diagram of the proposed system is shown
in Fig. 1.

From eqs. (1), (4), the following equation holds.
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)

e(®)

Plant ¥

N(s)
M(s)

Flg 1. Block diagram of the proposed system

_ B(s)R(s) " B(s)S(s)
A(s)R(s) _
m (t) ................ (10)

Using eqgs.(5) ~ (9), it is possible to write eq.(10) as

y(t) = mm(swm(s)r(t)
N(s)

M(s)
N(s)

M(S) y’m

Moreover, if the polynamial [Ay,(s)M(s) + By, (s)N(s)]

and M(s) are stable, by using eq. (11), the following

relation can be derived

__ Bm(s)

= Ate)

L M()R(AG)

To(8)(Am(s)M(s) + Bm(s)N(s))

From eq. (12), the sensitivity function relating the

disturbance w(t) to output y(¢) can be given by

_ M(S)R(s)A(s)
To(s)(Am(8)M (s) + Bm(s)N(s))

—To(s)Bm(s) y(t)

+To(s) Brm(s) (1) + A(s)R(s)w(t)] (11)

y(t)

w(t) - (12)

SS(s) =

(13)

which can be interpreted as a sensitivity function re-
lating output to disturbance. To have perfect model
matching control with minimal sensitivity to distur-
bance w(?), it is required to find the design parame-
ters M(s) and N(s) which not only satisfy the stabil-
ity of Am(s)M(s) 4+ B (s)N(s), but also minimize the
following meaningful measure of sensitivity in the low
frequency region.

M(s)R(s)A(s)V(s)
To()(Am(s)M(s) + B (s)N(s))

§ = Jw,

I

where W(s) is the Laplace transform of w(t), |
W(jw) || V(jw) |, and || + ||o is defined as

1G($)llos = sup |G (jw)]
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For a given any stable polynomial Ty(s), M(s)
and N(s) always exist, which satisfy the following
equation(18)

T3(s) = An(s)M(s) + Bm(s)N(s) (
where deg T3(s) = . The degrees of the polynomials
M (s) and N(s) can be fixed as deg M(s) = £ — v and
deg N(s) = v — 1, respectively.

Furthermore, we define two polynomials M(s) and
N(s) as

M(s) = M(s) = L(5) Bn(s)
N(s) = N(s) + L(s)Am(s)

In this paper, we introduce a new idea to design the
parameters of the controller. The parameters of the con-
troller are designed using polynomials M(s) and N(s),
obtained from the Diophantine equation (16). We can
obtain these polynomials such that the control input
obtained from eq. (5) robustly stabilizes the plant and
also the closed-loop transfer function from the reference
input r(¢) to output y(¢) matches some desired transfer
function, as in eq. (3). ‘

Using egs. (13), (16) ~ (18) the sensitivity function
relating output y(t) to the disturbance w(t) can be given
by

NI(s) — L(5) Bon(s)) R(s) A(s)
To(s)T5(s)

The effect of w(t) can be minimized by choosing a
suitable sensitivity transfer function || S(s)V(s) |lco-
Here, we define the following criterion

(M(s) — L(5)Bm(3)) R(s) A(5) V (s)
TO(S)TB(S) -
= 1SSV (S) o < 7> 5=jw, Yo -+

where « is a small constant v > 0.

Then, the problem becomes equivalent to finding the
rational function L(s) such that J given in eq. (20) can
be satisfy J < 7. In this way, the rational function L(s)
is independent of the disturbance and the plant, and the
model matching will not be destroyed. Furthermore,
the rational function L(s) can easily be implemented
by using following methods.

55(s) = ¢ e (19)

-

(20)

3.1 In case of stable polynomial A(s) @ When
A(s) is a stable polynomial, the transfer function L(s)
-can be obtained from the following relation

1(s) = MERSAEVa(s) — pTo(s)T5(3)Vals)
B (s)R(s)A(s) Vi (s)
where V(s) = V,,(s)/Va(s). p is an arbitrarily chosen

constant and p < . Now, using egs. (20) and (21), the
minimal value of J can be given by

Here J depends upon p and p can be selected arbitrarily.
Thus J can be minimized upto the desired level.

Furthermore, substituting eq. (21) into eqs. (17),
(18), it can be shown that N(s)/M(s) is stable.
BYWC, 12051158, PR 124
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3.2 In case of unstable polynomial A(s) In
the case when A(s) is an unstable polynomial, A(s) is
divided into a stable polynomial component A*(s) and
unstable polynomial component A~(s), where A(s) =
AT(s)A~(s). The degree of A*(s) is n; and the de-
gree of A™(s) is ng, and ny + ny = n. Since A7(—s) is
a stable polynomial, the transfer function L(s) can be
chosen as

M (s)R(s) AT (5) A~ (=8) Vo (s)
B (s)R(s) At (s) A~ (=5)Va(s)
PTo(s)T3(s)Va(s)

B (8)R(s) AT (s) A= (—8)Vy,(s)

L

(s) =

Now, using eq. (20) and eq. (23), the minimal value of
J can be given by

A= (s)
A=(=s)
and J can be minimized upto the desired level.

Furthermore, substituting eq. (23) into egs.
(18), it can be shown that N(s)/M(s) is stable.

Consequently, a simple and direct design algorithm
for achieving perfect model matching control with min-
imal sensitivity can be outlined as follows.

al

[o ]

17,

Design Algorithm:
Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:

Choose a stable polynomials Ty (s), T5(s).
Solve Diophantine equations (4), (16).
Choose V(s) and the small constant p.
Obtain L(s) from eq. (21) or eq. (23).
Obtain M(s) and N(s) from eqgs. (17), (18).
Then the controller takes the from eq. (5).

4. Simulation Results

In this section, the results of simulations are presented
to give an indication of the performance of the model
matching scheme.

Example 1: Let us consider the case when the poly-
nomial A(s) has stable poles, and the plant with exter-
nal disturbance described by the following equation

_ B
A(s)

24+ 7s+6

¢ T+
v(t) 52+ 55+ 6

r(t) +w(t) = r(t) + w(t)
where A(s) has two stable poles; at —2 and —3, and
B(s) has two stable zeros at —1 and —6. Furthermore,
the disturbance is w(t) = 0.5, t > 0.

The reference model G,,(s) is given by

s2 4125+ 35

Gnls) = o s 32

Choose stable polynomials Ty(s) = s? + 4s + 3,
Ts3(s) = s® + 652 + 115 + 6.

Furthermore, choose V'(s) = 2.011(s+1)/(
the small constant p = 0.01.

Form eq. (21), we obtain

540.1005),

—165% — 1845 — 504
s34+ 1952 + 119s + 245

L(s) =



)
vvvvvvvvv

—:y(t)(plant output); —:ym, (t)(reference output)

(b) u(t) (rpl;mr;t input)

(c) r(t)(reference input)

Mapiak )
LI A

10°
Fraauoncy (raeeuc)

(d) SS(s)(sensitivity function)

Fig. 2. Result of model matching control with step
disturbance (w(t) = 0.5, p = 0.01)

Solve Diophantine equation (16), and using eqgs. (17),
(18), then N(s)/M(s) is
N(s) _ 200.1s5 + 4799s% + 4.237 x 10%s®
M(s) s5+ 26.1s% + 254.653
*+1.650 X 10%s2 4 2.643 x 10%s + 1.378 x 10°
+1103s2 + 18235 + 172.4

Furthermore, substituting the result of Diophantine
equation (4) into eqs. (6), (7), we arrive at

3s+9
1) = Fget 7
st + 165 + 86s% + 1765 + 105
T(s) =

s 4 1583 1+ 6952 + 975 + 42

Fig. 2 (a) shows the output response of the pro-
posed model matching control for continuous-time sys-
tem with step disturbance (w(t) = 0.5 ), when p = 0.01.
Fig. 2 shows that the proposed method is applica-
ble to continuous-time system, and the plant output
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Time tnee)

(a) ——wy(t)(plant output); —:ym (t)(reference output)

..........

(b) u(t)(plant input)

)
Fino taoe)

(c) r(t)(reference input)

Fraquancy (rac

(d) SS(s)(sensitivity function)

Fig. 3. Result of model matching control with step
disturbance (w(t) = 0.5, p = 0.1)

can converge to the desired output y,(t) ( ym(t) =
Gm(s)r(t) ) quickly in the presence of disturbance. Fur-
thermore, when p 0.1, the model matching con-
trol for continuous-time system with step disturbance
(w(t) = 0.5 ) is shown in Fig. 3. From Fig. 2 and
Fig. 3, it is seen that when we choose small p, the ef-
fect of the disturbance can be decoupled from the plant
output.

Example 2: Let us consider the case when the poly-
nomial A(s) has unstable poles, and the plant with ex-
ternal disturbance described by the following equation

52
V) = Ger® + () = 55520 4 ugy

where A(s) has a stable pole at —3 and an unstable pole

at 2, and B(s) has two stable zeros at —1 and —5.
Furthermore, Fig. 4 shows the external disturbance.
The reference model G,,(s) is givén by

T.IEE Japan, Vol. 120-C, No. 11, 2000
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Fig.4. External disturbance

Penk ()

Froauancy

—:W(s); ;~:V(s)

towsoe

Fig.5. W(s) and V(s)
s?+7s+12

Cm(%) = T 705 1 16

Thus, we have AT (s) =s+3, A= (s) =s—2.

Choose the small constant p = 0.01, and stable poly-
nomials Tp(s) = s2 +4s+ 3, Ts(s) = 53+ 652+ 11s+ 6,
V(s) = 2.513(s + 1)/(s + 0.1005).

The norms of W(s) and V(s) are shown in Fig. 5.

From eq. (23), we obtain

L(s) - —0.746s — 4.714
T $2410.29s5 + 25.14

Solve Diophantine equation (16), and from egs. (17),
(18), N(s)/M(s) is

N(s)  —252.35% — 234452 — 52595 — 3161
M(s) s34 7.101s2+ 12.7s + 1.206

Furthermore, substituting the result obtained that
solve Diophantine equation (4) into egs (6), (7), we ar-
rive at

5.714s 4+ 17.14

T o
1(8) = 77 2565 7 6.286

s* 4 11s% 4 4352 4+ 69s + 36

T —
2(8) = 139953 T 5552 7 74145 1 3143

Fig.” 6 (a) shows the output response of the pro-
posed model matching control for continuous-time sys-
tem with periodic disturbance, when p = 0.01. Fig.
6 shows that the proposed method is applicable to
continuous-time system, and the plant output can con-
verge to the desired output y,,, () quickly in the presence
of disturbance. Furthermore, when p = 0.1, the model
matching control for continuous-time system with peri-
odic disturbance is shown in Fig. 7. From Fig. 6 and
Fig. 7, it is seen that when we choose small p, the ef-
fect of the disturbance can be decoupled from the plant
output. ’

BHFERC, 1205115, FER12E
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20 3

Timo teoos

(a) ——:y(t)(plant output); —:ym (t)(reference output)

)

(b) u(t) (pia.nt input)

=

3

(c) r(t)(reference input)

g &

¢ 0§

Hagetre )

2 8 08 & ¢

8

H
5

10
Froauancy (ra ue)

(d) SS(s)(sensitivity function)

Fig.6. Result of model matching control with dis-
turbance (p = 0.01)

Example 3: Let us consider the case when the plant
with external disturbance described by the following
equation

u(t) s+ 1

_ B(s) ) )
s24+s5—6

—A(s)

r(t) + w(t) (t) + w(?)
where A(s) has a stable pole at —3 and an unstable pole
at 2, and B(s) has a stable zeros at —1.

The reference model G,,(s) is given by

s+ 3

Gm(s) = 2 1057 16

Furthermore, Fig. 8 shows the external disturbance.

Choose the small constant p = 0.01, and stable poly-
nomials Ty(s) = s% + 3.65 + 3.15, T3(s) = s* + 180s2 +
10724s + 211200, V(s) = 1.508/(s + 0.1005).

The norms of W(s) and V(s) are shown in Fig. 9.

From eq. (27), we obtain

L(s) = 1.508 x 108s — 5.447 x 1012
T $24+1.508 x 108s + 4.524 x 108




(a) ——:y(t)(plant output); —:y.m, (t)(reference output)

95[
A

(b) u(t) (;l‘ar'lt input)

s 63

Fig. 7. Result of model matching control with dis-

(c) »(¢)(reference input)

ool

(d) S55(s)(sensitivity function)

turbance (p = 0.1)

Solve Diophantine equation (16), and from egs. ( 17),

Fig. 8. External disturbance

(18), N(s)/M(s) is
N(s) _ 1.508 x 10353 + 2.714 x 101052
M(s) s3 + 399552

Furthermore, substituting the result obtained that
solve Diophantine equation (4) into eqs (6), (7), we ar-

rive at

L, TL617 X 10125 + 3.185 x 1013
+6.353 x 10°s 4 3.061 x 108

1670

ool

e trusn

—W(s); ——:V(s)

Flg 9. W(s) and V(s)

° s e 8 o5 oo o

8§ ¢ &8 8 2 % 3 32 §
s:
&

.....

(a) ——:y(t)(plant output); —iy, (£)(reference output)

}

(b) u(t)(plant input)

mnE

) E: P S0 C 7o a0
.....

(c) r(t)(reference input)

Ve ()

Feomuoncy taaisusy

(d) SS(s)(sensitivity function)

Fig. 10. Result of model matching control with
disturbance (y = 0.01)

37.59s + 116.1
52 4+ 12.6s +10.96

5%+ 6.652 + 13.955 - 9.45
s3 + 13.652 4 23.565 + 10.96

Fig. 10 shows the output response of the pro-
posed model matching control for continuous-time sys-
tem with the periodic disturbance, when p = 0.01.
Fig. 10 shows that the proposed method is applicable
to continuous-time system, and the plant output can

T1 (S‘) =

Tz (S) =

T. IEE Japan, Vol. 120-C, No. 11, 2000
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oz
um(
0w

(a) ——:y(t)(plant output); ~—:y,, (t)(reference output)

(b) u(t)(plant iﬁput)

(c) r(¢)(reference input)

Hepa )

o
Fraquoney (aahos)

(d) $S(s)(sensitivity function)

Fig.11. Result of model matching control with
disturbance (y = 0.1)

converge to the desired output y,,(¢) in the presence
of periodic disturbance. Furthermore, when p = 0.1,
the model matching control for continuous-time system
with the periodic disturbance is shown in Fig. 11. From
Fig. 10 and Fig. 11, it is seen that when we choose small
p, the effect of the disturbance can be decoupled from
the plant output.

Furthermore, it can also be seen from simulation re-
sults that when we use the input u(¢) in eq. 5, we
can assure that the system input and output remain
bounded at any time for continuous-time system with
arbitrarily bounded disturbance.

5. Conclusion

We have proposed a new technique to design a con-
troller with two degree of freedom such that the stabil-
ity of the system can be assured in presence of distur-
bances. Furthermore, the transfer function of the sys-
tem from the reference input r(t) to plant output y(#)
can be made to match some reference model transfer

BHIC, 1208118, TR 12E
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W Z
G(s)
L.(s)

Fig.12. Hs control system

function. The system input and output remain bounded
at any time for continuous-time system with arbitrarily
bounded disturbance.

Appendix: The case of n >mandv—p>n—m
Let us define the following equation

A(s) = M(s)R(s)A(s)V(s)  Bi(s)

YIo(s)T5(s)  Au(s)
where V(s) = V,,(s)/Va(s), deg Vo (s) = 1, deg Va(s) =

ly, deg /L(f) =1+&+ 1y, deg Bi(s) =1 +1; + €. Fur-
thermore, B(s) is defined as

Bm(s)R(s)A(s)V(s)
Y1 (s)T3(s)

where deg By(s) = p+ v+ 1+ 1.
From egs. (25) and (26), it is possible to write

Bz(S)
B Ay (s)

B(s) =

A(s) = CF(sI — 4,)7'By
B(s) = CF(sI — A1) "' By
where, Ay is a (I + &4 1) x (14 & +13) matrix, By, Cy,

By and Cy are (I + & +l3) x 1 vectors. Furthermore,
using egs. (20), (25), (26), we obtain

| A(s) = B(s)L(s) |< 1, = jw,¥w ------ (29)
Equation (29) can be rewritten as
A(s) — B(s)L(s)
= A(s) = B(s)L(s)({ = 0~ L(s)) ™1 - (30)

Let the state space controller be L(s), then the block
diagram of the system can be given as in Fig. 12.

G(s) = [ Ags) ‘%(5) J ................. (31)
Using egs. (27), (28), and (31), we obtain
Ay 0 |By O
Gls) = 691 —ACIZ 8 132 .......... (32)
0 0 I 0

The state feedback H, controller L(s) can be obtained
by solving the He, problem given in Fig. 12(5):(19),(20)

(Manuscript received March 31, 1999, revised April
10, 2000)
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