
Paper

Learning Cellular Automata for Function Optimization Problems

Member Fei Qian (Hiroshima Kokusai Gakuin University)

Member Yue Zhao (Hiroshima Kokusai Gakuin University)

Member Hironori Hirata (Chiba University)

We present a model of learning cellular automata (LCA) as an emergent system having some collective
behaviors. LCA is an extended version of the traditional cellular automaton. Especially, we adopt the LCA
with some self-improving functions, called self-improving learning cellular automata (SILCA) and develop its
optimization capability. Each self-improving learning cellular automaton, i.e. a member of SILCA, consists
of two parts: main body and a universal constructor. Through the use of a constructing arm, a learning
cellular automaton is capable of constructing any configuration whose description can be stored on its input
tape. As an example of combinatorial optimization problems, we consider function optimization problems
and show the SILCA’s emergent capability for optimization.

Keywords: learning automata, cellular automata, function optimization problems

1. Introduction

In the complex adaptive systems, interesting global
behaviors emerge from many local interactions. When
such emergent behavior is a computation, we refer to
it as an emergent computation. The emergent com-
putation should be constructed by exploiting interac-
tions among primitive components. The research on
self-improving or self-reproducing behavior may play an
important role in the emergent computation.
In the self-reproducing cellular automata of von Neu-

mann (1), the copy is created by interpreting the coded
description on the tape as a sequence of instructions
that cause the construction, cell by cell, of a new ma-
chine in an unoccupied part of cellular space. The copy-
ing actually occurs at the moment when the state of
some previously quiescent cells immediately adjacent to
the tip of the constructing arm is changed to the desired
new state. To evaluate the copy, the free energy must
be supplied to the system to enable it to change states.
The force that causes the change of state corresponds
to the free energy of the system.
In particular, von Neumann demonstrated the possi-

bility of self-replicatability of a computational structure
by actually designing a self-reproducing automaton con-
sisting of a two-dimensional cellular arrangement with
a large number of individual 29-state cells. The next
state of the 29-state automaton is a function of its own
current state and the state of its four neighbors in the
two-dimensional cellular space. Within this framework,
von Neumann was able to conceive a self-reproducing
automaton endowed with the properties of both compu-
tational and constructional universality. Unfortunately,
the automaton was of such complexity that notwith-
standing further simplifications, even today’s state-of-
the-art computers lack the power to simulate it in its
entirety.
Here, we present a model learning cellular automata

(LCA) that is an extended version of the traditional
cellular automata, with some self-improving functions,
called SILCA. We aim at using this model to solve
some combinatorial optimization problems in some en-
vironments with non-complete prior information (e.g. a
traverling selseman problem (TSP) with no size infor-
mation, etc.).
The remainder of this paper is organized as follows.

Section 2 describes the definitions of learning cellular
automata. This is followed by Section 3, that deals
with the element presentation and the reinforcement
schemes. In Section 4 the structure of the SILCA is
shown. In the Section 5, the design of main body of
SILCA for some function optimization problems is pre-
sented.

2. Definitions of learning cellular automata

Traditional stochastic cellular automata are just as
computationally capable as the production system that
underlies a classifier system. Therefore one would ex-
pect the stochastic cellular automata to be just as hard
to find the global optimum as the classifier systems in
that: 1) the former relies almost entirely on a large num-
ber of extremely simple local rules to perform powerful
computations collectively, whereas the latter typically
re-quires much more complex rules to execute the same
tasks; 2) even though the stochastic cellular auto-mata
and production systems employ discrete set of rules,
the stochastic nature of the state transitions and input-
output relations allows the stochastic cellular automata
to be trained using continuous optimization techniques
in addition to discrete ones. Both of these promise a
drastic reduction of learning complexity.
The approach we take in implementing the reinforce-

ment learning in stochastic cellular automata with ran-
dom environment is closely parallel to that of stochas-
tic learning automata (2) (3). The basic idea of our ap-
proach is to modify either the state transition probabil-

電学論 C，121 巻 1 号，平成 13 年 261

ities or the probabilities of the learning automaton in
order to appropriately reflect the random environmental
response, such as rewards or penalties which represent
successable or unsuccessable reactions of the environ-
ment to the system response.
A stochastic learning automaton is an abstract ma-

chine consisting of a stochastic automaton and its en-
vironment together in a feedback loop. Typically, it is
assumed that there are finitely many possible actions for
the automaton. In this case, let Y = {y1, · · · ,yn} be
the set of possible actions of the automaton. A probabil-
ity distribution over these actions is then a set of num-
bers p = {p1, · · · , pn}, where pj represents the probabil-
ity of choosing actions yj . Furthermore,

∑n
j=1 pj = 1

and pj ≥ 0 for all j. Thus such a distribution can
be identified with a (n − 1)-dimensional simplex. The
state of the learning automaton at any time can thus
be thought of as a point in the simplex of appropriate
dimension. The coordinates of p are called the action
probabilities.
The evaluative feedback provided by the environment

is called the reinforcement signal. It is often assumed
that the reinforcement has just two possible values, suc-
cess or failure. In this case the probability distribution
of reinforcement corresponding to action yj is specified
by a number cj , which represents the probability that
reinforcement is success when the automaton has cho-
sen action yj . The numbers {c1, · · · , cn} are called the
penalty probabilities.

Definition 1 A learning cellular automata (LCA) A
and its environment E are defined as follows.

A = {U,X, Y,Q,N, ξ, F,O, T} · · · · · · · · · · · · · · (1)

E = {Y,C, r} · (2)

where,
U : The cellular space.U = {uj , j = 1, 2, . . . , n}
X : The set of inputs.X = {xj , 0 ≤ j <∞}
Y : The set of outputs.Y = {yj , 0 ≤ j <∞}
N : The list of neighborhood relations.

N = {n1, · · · , n|N|}
Q : The set of internal states. Q = {qj , 0 ≤ j <∞}
ξ : The neighborhood state configuration function.

ξ : U → Ω,Ω ⊆ U
F : The stochastic state transition function.

F : Q×X × r → Q
O : The stochastic output function.O : Q→ Y
T : The reinforcement scheme.Q(t+ 1) = T (Q(t))
C : The penalty probability distribution.

C = {cj , 0 ≤ j <∞}
r : The reinforcement signal.r = {rj , 0 ≤ j <∞}
Remark 1 For all ni ∈ N , ni determines the relative
positions of the neighboring sites from any given site
i. Call ni as nearest neighbors of i , if the Hamming
distance is one between nij (nij ∈ ni) and i.

Remark 2 The neighborhood state configuration func-
tion ξ maps any given site i as specified by the neigh-
borhood relationship defined by N .

ξ : Q→
⊗

ni∈N

qni , qni
∆=

(
qni,1, · · · , qni,|ni|

)
(3)

Remark 3 The stochastic state transition function F
maps the current input xi and neighborhood configu-
ration ni into the next state q at any given site with a
probability η(xi, n

i, q).

∀xi ∈ X, ∀ni ∈ N :
∑
q∈Q

η(xi, n
i, q) = 1 · · · · (4)

Remark 4 The stochastic output function O maps the
neighborhood configuration ni into the output yi at any
given site i with a probability ζ(ni, yi).

∀ni ∈ N :
∑
yi∈Y

ζ(ni, yi) = 1 · · · · · · · · · · · · · · · (5)

Here, the O is assumed as a deterministic mapping, and

for all y ∈ Y, y(t) ∆= ζ(Q(T)) mapped as one to one.

Remark 5 The reinforcement scheme T is usually given
as an algorithm which updates the current ζ(t) to
ζ(t+ 1)

Remark 6 The random environment E is assumed sta-
tionary and is characterized by the penalty probability
distribution C. For all ci ∈ C, ci is a set of probabilities
with its elements:

cij = prob
[
r = −1|yi = yi

j , x
i
] · · · · · · · · · · · · · · (6)

for j = 1, 2, · · · , |ni|
where reinforcement signal r = −1 is associated with
penalty and r = +1 with reward, and cij is the proba-
bility that a given input-output pair will receive penalty
from the environment.

3. The representation of elements and the re-
inforcement schemes

There are two directions to generate the notion of
learning automata for the purpose of studying their be-
havior as units in connectionist networks. Certain spe-
cial cases of these generalizations are already implicit
in the work of Williams (4) and Barto (5). Here we make
them explicit and reduce them to the elements of the
stochastic learning cellular automata.
For a learning automaton having n + 1 actions, its

state space Q can be represented as the n-dimensional
simplex∆n. One natural generation is to allow Q to be
arbitrary and assume a given mapping η : Q→ ∆n. For
a two-action automaton, the state is obtained by letting
Q be the real space and letting η : Q → ∆1 be deter-
mined by some one to one mapping from Q to the (0, 1),
we let mapping p1 = η(q) represent the probability of
selecting action y1 when the automaton is in the state
q. The state variable q is defined as a pair of input and
neighborhood configuration to the automaton.
For an n-action automaton, an example of such a

mapping is obtained as follows. Consider a random
variable with parameters p̃ and n. The idea is to let

262 T.IEE Japan, Vol. 121-C, No.1, 2001

the probability that yi is selected equal the probabil-
ity η(p̃). We can set η(p̃) to the binomial probabilities
Cn

i p̃(1− p̃i)n−i, where the parameter p̃i depends on the
state of automaton j(j ∈ ni) and the synaptic strengths
from ni to i.
For such an automaton, let us consider the following

dynamics:

E
[
∆wij |w

]
= κ

∂E[r|w]
∂wij

, j ∈ ni · · · · · · · · · · · (7)

where wij are often called synaptic weights between
site i and j, and w called the weight space.
Equation (7) meaning that we want to control the

gradient of E[r|w] in weight space of the expected rein-
forcement, and to find a learning algorithm for updating
the state transition probabilities by updating the weight
strength.
From some simple computations, the following results

can be obtained.

∆wij = κr(t)f ′(µ(t))qj(t)
∂

∂pi
logh(pi) · · · · · · (8)

where κ > 0 is a learning parameter, µ(t) =∑
j∈ni wij(t)qj(t). According to simplex constraint con-

dition, f(·) is a squashing function increasing in (0, 1)
continuously. For an example, we can set it as

f(µ) = (1 + exp(µ/T0))−1 · · · · · · · · · · · · · · · · · · (9)
where T0 is a smoothing parameter.
There is a large number of possible learning algo-

rithms for such stochastic state transition function. If
we restrict attention to the reward/penalty reinforce-
ment, the idea is to reward actions leading to success
and to penalize actions leading to failure. Here, we con-
sider a parameterized-state method and presented η as
a binomial probability distribution. In such case, the
qi(t) can be considered as a Bernoulli random variable
with a parameter p̃i = f(µ).
For such site i, we construct the local rule which up-

dates the state transition probability pi as follows.

Binomial type local rule Tb:
Parameters κ : the learning parameter.
Method

Initialize pi
j(0) = 0.5, j = 1, 2

Do

pi(t+ 1) =
(
1− η(p̃i(t)), η(p̃i(t))

)T

wij(t+ 1) = wij(t) + κr(t)
(
qi(t)− p̃i(t)

)
qj(t)

EndDo
EndMethod

Theorem 1 The Binomial type local rule Tb is an ab-
solutely expedient scheme.

There are two important ways to implement the rule
space: parallel and sequential. For the former we have
the following iteration scheme:

qi(t+ 1) = ηi

(n∑
j=1

wijqj(t)
)

· · · · · · · · · · · · · · · (10)

and for the sequential model:

qi(t+1) = ηi

(n∑
j<i

wijqj(t+1)+
n∑

j≥i

wijqj(t)
)
(11)

Definition 2 An LCA is called uniform if the neigh-
borhood relation and local state transition function are
the same for every site.

For this two models some convergence behaviors and
applications have presented (6) (7).

4. The structure of the self-improving learn-
ing cellular automata

A self-improving learning cellular automaton (Fig.1),
i.e., a member of SILCA, consists of two parts: the
main body and the universal constructor. The learning
cellular automaton is capable of constructing, through
the use of a constructing arm, any configuration whose
description can be stored on its input tape. Using this
constructing arm, the automaton is able to construct
a copy (an offspring) of itself. From the macroscopic
viewpoint, this consideration is the same as von Neu-
mann’s self-reproducing automaton, but from the mi-
croscopic viewpoint the structure and the function are
just self-improving.

Definition 3 The self-improving learning cellular au-
tomaton is defined as an stochastic cellular automaton
A containing an universal constructor W , with its own
random environment E. Here:

A = {U,X, Y,Q,N, ξ, F,O, T,W} · · · · · · · · · (12)
E = {Y,C, r} · (13)

where,
U : The cellular space.U = {uj , j = 1, 2, . . . , n}
X : The set of inputs.X = {xj , 0 ≤ j <∞}
Y : The set of outputs.Y = {yj , 0 ≤ j <∞}
N : The list of neighborhood relations.

N = {n1, · · · , n|N|}
Q : The set of internal states. Q = {qj , 0 ≤ j <∞}
ξ : The neighborhood state configuration function.

ξ : U → Ω,Ω ⊆ U
F : The stochastic state transition function.

F : Q×X × r → Q
O : The stochastic output function.O : Q→ Y
W : The constructor.W = {Wc,Wf}
T : The reinforcement scheme.Q(t+ 1) = T (Q(t))
C : The penalty probability distribution.

C = {cj , 0 ≤ j <∞}
r : The reinforcement signal.r = {rj , 0 ≤ j <∞}
Here, we will confine our attention to S-model learn-

ing automaton (2) (3), i.e. for the case r = {rj , 0 ≤ j <
∞} , where the rj represents the strength of the penalty
responses.
For constructorW ,Wc is the constructing state space

電学論 C，121 巻 1 号，平成 13 年 263

Fig. 1. The learning cellular automaton with
self-improving

Wc = {sij , i, j = 0, 1, . . .}, where the state sij is re-
spectively defined as 0 for quiescent state; 1, sheath
state; 2, activation state; 3, construction state; 4, de-
struction; d, date transmission state, and Wf is the
function control unit.
To make an account of the constructing state space

and the universal constructor, there are some represen-
tations have been provided by von Neumann (1), Codd
(8), Langton (9) and other researchers.
Langton’s ”periodic emitter” (9) is based on Codd’s

universal constructors (8). The constructor (automa-
ton) (Fig. 2) is essentially a duplicated square loop,
we call those as internal sheath and external sheath re-
spectively. The states necessary for the construction of
duplicate loop circulate counterclockwise. A reproduc-
tion is achieved by extending a constructing arm to the
left at regular intervals corresponding to the size of one
side of the loop. After such runs, the constructing arm
will have folded upon itself. When the new construct-
ing loop is closed, the constructing arm will be cut down
and the new offspring with new constructing loop will
be obtained. Finally, the parent loop will die when all
offspring of itself in another direction have reproduced.
The constructor will replicate itself to fill the available
constructing state space, when one gives it sufficient
time.
Here, our considerations are similar to those about

Langton’s loop. For each cell of constructor we use a
9-neighborhood (containing itself also) and use the in-
ternal sheath only. In our internal sheath, we have two
(Fig.3.) or four (Fig.4.) out-going cells at the two (left-
top and right-bottom) or four corners of the constructor.
Initially, these two or four cells are in the open state,
and will change to the closed state once the offspring is

Fig. 2. Langton’s periodic emitter

Fig. 3. The two out-going cells loop and its
generations.

Fig. 4. The four out-going cells loop and its
generations.

accomplished.
The initial configuration is in the form of a square

loop wrapped around a sheath. The size of the loop is
variable. We can use any size of loop, for example 8x8.
Near the out-going cells of the loop, the initial state is
in the sheath state 1. The automaton should attempt
to duplicate itself in all out-going directions with the
following rule.
Reproducing ruleR5,4 † :

(1) Once the constructor starts, operating the con-
structing date starts running around the loop.

(2) When the sheath state 2 (we call it as messenger),
reaches a out-going cell and finds it open, the mes-
senger splits into the same two cells. One cell whose
left neighbor is in destruction state continues turn-
ing around the loop, and another starts extending
the constructing arm.

(3) Once the constructing arm has start extending,
each messenger that arrives to out-going cells will
again split and one of the parent’s copies will send
though the arm.

(4) Once the first messenger reaches the tip of the con-
structing arm, the state of the tip changes to activa-
tion state (3). The constructing arm will start the
offspring’s sheath constructing.

(5) The next messengers will turn the tip of the con-
structing arm to the left, until the four corners have
completed. The last messenger will cause the sheath
to close and then change the state to activation state,
†The rule for 5-states and 4-out-going cells.

264 T.IEE Japan, Vol. 121-C, No.1, 2001

and turns back this state through the arm, as an re-
sponse signal, to responds the parent loop that the
offspring’s sheath is ready.

(6) When the response signal form the offspring arrives
the corner of parent’s loop, and the next messenger
from the parent’s loop have arrived, the messenger
will split itself again, one copy running along the con-
structing arm will carry a copy of the parent’s data
in the loop. We call this messenger a carrier.

(7) Once the copying of the parent’s data has finished,
the last carrier will change to destructor with de-
struction state (4). The destructor will run along the
constructing arm to the parent and break down the
constructing arm.

(8) When the destructor arrives at the corner of the
parent’s loop, the state of the loop will change to
quiescent state (0), the constructing function of the
parent will die.

5. Design of the main body for function opti-
mization problems

To show how the self-reproducing learning cellular au-
tomata work, we try to solve the following optimization
problems.
TASK 1: (Fig.5 (a))

min
x,y∈[−10,10]

{
f(x, y) =

4− cos(2πx+ 1) cos(2πy + 1)
0.25(1 + 0.2x2)(1 + 0.2y2)

}
(14)

TASK 2: : (Griewank function, Fig.5 (b))

min
x,y∈[−10,10]

{
f(x, y) =

x2 + y2

50
− cosx cos

y√
2
+ 1

}
· (15)

As shown in Fig. 5 (a),(b), these functions have so
many local minima in the solution space, and get the
global minimum 0 at x = y = 0. Because of being
trapped in the local minima, traditional downhill meth-
ods will not work well to solve these problems. There-
fore, we design a variable structure of hierarchical learn-
ing automata to implement the main body of SILCA.
To solve these problems we use the reinforced random

search method described as follows. The value areas of
x and y are represented by

L =

l

x
0 , l

x
1 , . . . , l

x
nx︸ ︷︷ ︸

for x

, ly0 , l
y
1 , . . . , l

y
ny︸ ︷︷ ︸

for y

 · · · · · · · (16)

lji ∈ {0, 1}, i = 0, 1, . . . , nj, j = x, y

Where, the lji is depending on the encoding method.
We use the gray code encoding method to en-
code the x and y to the vector L. Therefore,
GRAY −1(lx0 , lx1 , . . . , lxnx), GRAY −1(ly0 , l

y
1 , . . . , l

y
ny) ∈

Fig. 5. The shapes of the two test functions

[−10, 10],GRAY −1(l) is an gray decoding function that
decodes the vector L to a scalar value.
The variable structure of hierarchical learning au-

tomata (VSHLA) with three levels is shown as Fig. 6.
On the first level there is one stochastic automaton

with two actions y ∈ {y1, y2} . When the automata
on the first level selects the action yi(i = 1, 2) at the
time n, i.e. y(n) = yi, the ith automaton on the sec-
ond level will be fired corresponding to the selection of
the action. The automata on the second level have four
actions, which will fire the automata on the third level.
For the automata on the third level, the action corre-
sponds to the subset of a gray encoded vectors of x and

Fig. 6. The variable structure of hierarchical
learning automata for function optimization
problems.

電学論 C，121 巻 1 号，平成 13 年 265

Fig. 7. Reinforced random search area for each
automaton.

Table 1. The meaning of each action

The symbol ”-” in Table 1 means don’t fire or change any

automata or bits in lower levels.

y (Fig.7).
First level:

A = {y, r, φ, p, o, T}, where y ∈ {y1, . . . , y4} is the
action (output), r is the input, φ is the state set,
p = {p1, · · · , p4} is the probability distribution on the
action set.

Second level:
Ai = {yi, r, φi, pi, oi, T i}, i = 1, 2, where yi ∈

{yi
1, . . . , y

i
16}, pi = {pi

1, · · · , pi
16}

Third level:
Aij = {yij , r, φij , pij , oij , T ij}, i = 1, 2; j = 0, · · · 3,

where yij ∈ {yij
1 , . . . , y

ij
16}, pij = {pij

1 , · · · , pij
16}

In our simulations we encode the x and y as 16-bit
0-1 vectors, i.e. in the eq. (16) nx = 15,ny = 15, and
split the each vector into four pieces (Fig.7). Therefore
the random search is implemented as Table 1.
Each bit on the L is turn around 0 and 1 with the

probability:

mijk = λ · πi · πij · πijk · (17)

i = 1, 2 , j = 1, 2, 3, 4 , k = 1, 2, 3, 4

where 0 < λ < 1 is a learning parameter. From Table
1, we can calculate the πi,πij ,πijk as follows.
Let

π′ = [π1 π2]
T · (18)

π′′ =
[
π11 · · ·π14
π21 · · ·π24

]
· (19)

π′′′ =

π111 · · · π114
...

...
...

π141 · · · π144
π211 · · · π214
...

...
...

π241 · · · π244

· · · · · · · · · · · · · · · · · (20)

P ′ =
[
p2 + p4 0

0 p3 + p4

]
· · · · · · · · · · · · · · · · · (21)

P ′′ =
[
p11 · · · p116
p21 · · · p216

]
· (22)

P ′′′ =

p101 · · · p1016
... · · · ...
p131 · · · p1316
p201 · · · p2016
... · · · ...
p231 · · · p2316

· · · · · · · · · · · · · · · · · · (23)

U =

0101010101010101
0011001100110011
0000111100001111
0000000011111111

 · · · · · · · · · · · · · · · (24)

then,

π′ = P ′ , π′′ = P ′′UT , π′′′ = P ′′′UT · · · · · (25)
For each automaton we use the linear reward-penalty

scheme (2) (3) to update the action probabilities.
Our simulations start with one automaton that in-

cludes a universal constructor with two out-going cells
and a VSHLA. We set the searching area [a, b] ∈
[−10, 10] randomly. Once the state transition on the
constructing loop has visited an out-going cell, we can
get the following two processes.
・Sequential process: if the local searching on the par-
ent is finished, and a local minimum has been found,
then, the parent automaton begins to construct two
offspring on the other areas and plays the same things
on the offspring;
・Partially parallel process: the parent will construct
an offspring and carry out the local searching inde-
pendently.
Here, the simulation results for partially parallel pro-

cess method are shown in Figs. 8, 9 and 10. The simu-
lation starts on the area [−7,−5] with one SILCA. The
size of the inner sheath loop is set to 1/20 simulation
times for one offspring. After 40 and 32 generations,
the whole local minima have been found for TASK 1
and TASK 2 respectively. Fig.8 shows the evolution
of the stochastic automaton’s probabilities in level 1.
Fig.9 shows the evolution of the probabilities of the off-
spring that near the global minimum area. Fig.10(a)
shows the convergence corresponding to various learn-
ing parameters, and Fig.10(b) shows the local minima
found by each offspring. The results show that using
the SILCA we can search the full solution space to find
the optimum.

266 T.IEE Japan, Vol. 121-C, No.1, 2001

Fig. 8. Evolution of the stochastic automaton’s
probabilities in level 1.

6. Conclusions

We have presented the self-improving learning cellular
automata (SILCA), and we have shown that SILCA has
the emergent property for function optimization. The
SILCA consisting two parts: the main body that are
implemented by the variable structure of hierarchical
learning automata using the reinforced random search
method, and the universal constructor implemented by
the simplified Langton’s periodic emitter.
Because using the SILCA we can search the solution

Fig. 9. Evolution of the stochastic automaton’s
probabilities in level 3.

Fig. 10. Simulation results.

space carefully, and each offspring can carry out the lo-
cal searching parallel, we can use the parallel computer
to implement the SILCA and solve the practical func-

電学論 C，121 巻 1 号，平成 13 年 267

tion optimization problems quickly. The results of com-
puter simulations show the effectiveness of the SILCA.
(Manuscript received June 2, 2000)

References

(1) J. von Neumann: The Theory of Self-Reproducing Au-

tomata, A. W. Burks, ed, University of Illinois Press, Ur-

bana(1966).

(2) K.S. Narendera & M.A.L. Thathachar: Learning Automata -

An Introduction, Prentice-Hall International (1989).

(3) K.S. Narendera & M.A.L. Thathachar: Learning Automata

- A survey, IEEE Trans. on SMC, Vol.4, No.4, pp.323-334

(1974).

(4) R.J.Willianms: Toward a Theory of Reinforcement-Learning

Connectionist Systems, Technical Report NU-CCS-88-3,

Northeastern University (1988).

(5) A.G.Barto: Learning by Statistical Cooperation of Self-

interested Neuron-like Computing Elements, Human Neuro-

biology, Vol.4, pp.229-256 (1985).

(6) F.Qian and H.Hirata: Stochastic Learning Cellular Au-

tomata, Proc. of the 26th ISCIE International Symposium,

pp. 107-112,(1994).

(7) F.Qian and H.Hirata: A Parallel Learning Automata for

Combinatorial Optimization Problems, Proceedings of 1996

IEEE International Conference on Evolutionary Computa-

tion, pp.553-558 (1996)

(8) E. F. Codd: Cellular Automata, Academic Press, New York

(1968).

(9) C.G. Langton: Self-Reproduction in Cellular Automata,

Physics, Vol. 10D, pp. 135-144 (1984).

Fei Qian (Member) Fei Qian recived a Master’s degree from
Tokyo Institute of Technology, Japan in 1987
and Ph.D. in Systems Engineering from Chiba
University, Japan in 1991. From April 1991 to
April 1995, he served 　as a Lecturer in the
Department of Electronics Engineering and
then a Associate Professor in the Department
of Computer Science, Hiroshima Denki Insti-
tute of Technology. He is currently a Profes-
sor of Department of Computer Science at Hi-

roshima Kokusai Gakuin University. His current research inter-
ests include modeling and analyses of large-scale systems, and
fundamental theory of learning automata, parallel distributed sys-
tems, such as computer network computing systems and neuro-
computers. He is a member of IEEE, SICE, IEICE.

Yue Zhao (Member) Yue Zhao received the M.S. degree
in 1985, and the Ph.D degree in 1988, all
from the Tokyo Institute of Technology. Since
1993 he has been employed as a Lecturer in
the Department of Computer Science at Hi-
roshima Kokusai Gakuin University. His re-
search interests include combinatorial opti-
mization, and parallel computing. Dr. Zhao
is a member of IEICE, IPSJ, JSAI, JSCES.

Hironori Hirata (Member) Hironori Hirata received a
Master and a Doctor in Engineering from
Tokyo Institute Technology, Japan in 1973,1976
respectively . He is a professor of the Artifi-
cial Science Division, Graduate School of Sci-
ence and Technology, Chiba University, Japan.
His current research interests include model-
ing, analysis, and synthesis of large-scale sys-
tems, especially ecological systems and emer-
gent systems. He is also interested in opti-

mization and learning. He is a member of IEEE, ISEM, INNS,
IEICE, SICE, ISCIE, IPSI.

268 T.IEE Japan, Vol. 121-C, No.1, 2001

