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In this paper, another interpretation for Subspace-based State Space System IDentification (4SID) meth-
ods by subspace extraction via Schur complement is presented. In the ordinary MIMO Output-Error State
space model identification (MOESP) algorithm, it is shown that the estimate of the extended observability
matrix is obtained from Schur complement matrix, which is derived from the matrix consisted of the Hankel
matrices of input-output data. The proposed method is applied similarly to Instrumental Variable (IV) based
45ID methods. A feature of our method is that the same procedure can be applicable to both cases, MOESP
and IV-based one. We also propose a recursive computation based on the subspace extraction via Schur
complement. Finally, a numerical example illustrates the proposed algorithm.
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1. Introduction

The 4SID methods have attracted much attention
because of being essentially suitable for the identifica-
tion of MIMO systems. The methods directly realize
system mafrix of state space model from input-output
data without intermediate expression such as impulse
response or difference equation. The methods are char-
acterized by the determination of the extended observ-
ability matrix from input-output data. The MOESP
algorithm ®, ® is known as the ordinary 4SID method.
The QR factorization and the singular value decompo-
sition (SVD) are the principal computational tools. We
consider the QR factorization in the MOESP algorithm,
and show alternative derivation of the estimate of the
extended observability matrix by subspace extraction
via Schur complement ®. Then we also propose the
above derivation for IV-based 4SID method. A relation-
ship between the least squares residual and the Schur
complement matrix obtained from input-output data is
shown, and we propose a recursive formula for the error
covariance matrix in the 4SID method.

The paper is organized as follows. In the next sec-
tion, we present the problem statement and the ordi-
nary MOESP algorithm. Section 3 provides another in-
terpretation of the 4SID method, for deterministic and
noisy cases. In section 4, we describe a recursive com-
putation by using the results obtained in section 3. A
brief discussion on the numerical example of the recur-
sive algorithm is presented in section 5. Finally section
6 concludes this paper.
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2. Preliminaries

2.1 System description We consider a discrete
time linear time-invariant system by the following state
space equation:

ZTpy1 = Azg + Buy
yr = Cxg + Dug

where xx € R™ is the state vector, u, € R™ is the input
and y; € R is the output, respectively. The unknown
system matrices A, B, C, and D have appropriate di-
mensions. It is assumed that the model is minimal, that
is, the system is completely reachable and observable.

The Hankel matrix Uy ; v of {ux} is defined as fol-
lows;

Ug Uk+41 Uk 4N -1
Uk 41 Uk+2 Ug+ N
Uk,i,N = . . . (3)
Uk4i—1 Uk Uk4+N4i-2

and Y% ; v is defined in a similar way. The index triplet
k,i, N of the Hankel matrix determines the dimensions
of this matrix, as well as which part of the data batch
is stored in the Hankel matrix. In relation to the order
of the system n the pair 7, N satisfy ¢ > n and N > n.
We define the state vector sequence as

Xk,N = [xk xk+1 Ce PLUAT ] e e
Then, we obtain the following relationship between the
data matrices Xi n, Uk ; v and Y i N:

Yein =i Xe v+ HiUk N
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where

D
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o

| CA~2B CB D

Then, I'; is called the extended observability matrix.

We will omit the subscripts for U and Y unless other-
wise mentioned.

" An estimated realization of the system matrices are

denoted by

[AT) BT; CT) DT] = [TAT_l,; TB, CT_I, D]

where T is a nonsingular matrix. Let the input ug be
such that the following condition is satisfied.

2.2 The ordinary 4SID algorithm  In this
section, we describe the ordinary 4SID algorithm. An
efficient implementation of the basic 4SID algorithm,

so-called MOESP algorithm @, is proposed by Verhae- - ‘

gen et al. The ordinary MOESP algorithm is described
as follows.

- MOESP algorithm:

stepl Construct the Hankel matrices U and Y defined
in (3), and achieve a data compression via the following

QR factorization:
HE A
Y Ry Q2
where Ri; and Rgy are lower triangular, and QlQ{ =
Imi; QZQ%’ = Iliy Qng’ = O

step2 Compute SVD of the matrix Rps given in (9),
re.,

0
Ry

I ot
T

(Fa)
The dimension of X,, is equal to the one of the system.

step3 Using the matrix E, given in (10), solve the set
of equations for Ay and Crp

Cr = E, (1, )
EWMAp = E?

3, O

Ryz = [En Ej] [ 0 %

] . (10)

where Ey, (1:1, :) denotes the first [ rows of Ej, E,(Ll) is
the submatrix composed of the first (¢ — 1)/ rows of the
matrix E, and E,(LZ) is constructed by the last rows in a
similar way. Equation (12) express the shift-invariance
property in the estimate F,, of I';.

step4 Solve the following equation for By and D.

EHWC, 121515, FHI13F
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&

where &;, 9;, and ¥ are defined by the following rela-
tions: '

[& & & | :=(By)"RuRy! - (14)

[¢1 Y 1;’):‘] :(E#)T ........... (15)
YioYr e %

o I IE
s 0

Thesize of §; (1 < j < i)and ¢; (1 <j<i)is (li —n)x
m and ({7 — n) x I, respectively.

3. Subspace extraction via Schur complement

We show a new interpretation of the 4SID method by
subspace extraction via Schur complement ®. In the
MOESP algorithm, the QR factorization and the SVD
are used for estimating of the extended observability
matrix. We present alternative derivation of the esti-
mate by using Schur complement of input-output data
matrix. It is shown that the proposed procedure can
treat IV-based 4SID algorithm as well as an elementary
4SID algorithm.

The Schur complement is defined as follows.

Definition:

Suppoée we partition A represented by
A —_ [ All A12 :| . (17)

Agr Asg
Assume that A;, is nonsingular. Then the matrix
S = Ay — AglAl“llAf2 is called the Schur complement
of All in A.
3.1 Noise-free case =~ We consider the following
matrix constructed from the Hankel matrices of input-
output data.

v R

The Schur complement denoted by S; of UUT in (18)
is represented by
S, =vyT —vuTwuhH)-tuyT
=YIjy?T

][UT YT ] [UUT uy”

YuT yy”T

where Iy = UT(UUT)~'U and Tl = I — [Iy. Using

the matrix given in (9), then S in (19) can be rewritten
by

51 = Rp2Q2Q% RY,
= RyyRL,.

From results of (19) and (20), we have



YH%,YT — RzzRgz ........................ (21)

It is clear that the eigenvalues of Ry RE, coincide with
the left singular vectors of YIIFYT, and we see that
the matrix E, in equation (10) is obtained by comput-
ing SVD of YIIFYT. For another variation, the Ob-
servability Range Space Extraction (ORSE) method ®
is presented by Liu. The ORSE method requires the
pretreatment of input-output data in order to obtain
the estimate of the extended observability matrix. It is
remarkable that the proposed method does not require
these treatment.

3.2 Noisy case It is assumed that the output
of the system is perturbed by the noise vy, where the
input uy and the noise vy are independent. Then the
output equation reads ‘

. 2 =Yk F Uk v (22)

Hankel matrices of {z;} and {vyx} is represented by Z
and V| then we have

Using a matrix Ras yielded by computing the QR fac-

torization of a matrix [UT ZT]T in a similar way as in
(9), the following relation is obtained from (21)

1

NYH(JjYT 4 Ryy +ovvnee (24)

. 1~ ~

i, ey =
where Ry, is a covariance matrix of v;. From equation
(24) the estimate of the extended observability matrix
1s not obtained by computing singular value decomposi-
tion of ZII§ ZT asymptotically. Therefore we introduce
an instrumental variable ®, satisfying the following con-
ditions:

i 1 T
Jim, 5oV =0, 29
rank[ g ] =mi+p

where the size of ® is p x N and p > n.
A MOESP algorithm with the instrumental variable
¢ (IV-MOESP) @ is described as follows.

IV-MOESP algorithm:

stepll Compute QR factorization of a matrix consisted
of input-output data U, Z and an instrumental variable
D ie.

U Eu _ 0 @1

Z | = 1}21 1322 _ Qz - (27)
e Rs1 Rz Ras Qs

step2' Apply SVD to Ezzﬁ@z given in (27) as follows

— T

8 5 i ] @

step3’ Using E,, ELX, Ry, and Ry yielded in stepl’
and step2', compute the quadruple of the system ma-
trices [A, B, C, D] in a similar way in MOESP al-
gorithm. We consider a matrix Z which is a linear
combination of U and ®. This is represented by

~

4 = LU+ Ly®
U
=[ L L] [ P ]
o R (29)

where L := [L; Ly] and Q := [UT <I>T]T. Since the con-
dition (26) is satisfied, L which minimize || Z — Z IFA
for  exists uniquely. The notation || - || denotes the
Frobenius norm. Then T is represented by

L=2T@Q0T)™ . . (30)

From the result of (30), we substitute L for I in (29) to
obtain

7 =207 (QaT)1q
= FT0g v (31)
where IIp = QT(QQT)~'Q. We consider a matrix

~m1T ~
[UT ZT] , then Z and V are uncorrelated on the as-

sumption. Therefore we have

Hm %V[ uT 7T ]=0 i (32)

N—oo

Suppose the following matrix as in (18)
| U rorl_ | U T T
[2][(1 Z]_[ZJHQ[U 77

vt uzT
[ 20T ZNG 27 } - (39)

where Ullg = U. Thus the Schur complement denoted
by Sz of UUT in (33) is represented by

Sy =Z(Mq - UT(UUT)"tU) 2”7
=ZIEZT. (34)
From the definition of the Q, IIg can be rewritten as
g = Oy + 57 (S5 e7)1emg. ... (35)
Then we have
Sy = Z " (@5 eT)temgzT. ... (36)

Using the result of (27), the equation (34) can be rewrit-
ten as

Sy = §22§§2A—1§32§2TE .................. (37)

where A = R3yRY, + RasRL,. From the results of (28)
and (37), we see that the estimate of the extended ob-
servability matrix is yielded by computing SVD of S,
in (36). Furthermore the S, converges, that is,
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1 -
Jim 555 = riﬁxnécﬂ(@nmf’) 1
« _QH[JJXT FZT ......................... (38)

From the above cases, we see that the same framework
can be applied by replacmg the Hankel matrix ¥ con-
sisted of the perturbed output by the matrix Z includ-
ing the instrumental variable.

4. Recursive computation

In this section, the practical implementation for the
proposed method is given. We. will show a relation-
ship between the least squares residual and the matrix
yielded by the Schur complement, and derive a recur-
sive formula for an error covariance matrix in the 4SID
method.

4.1 Noise-free case
lowing relation

We have obtained the fol-

YIEYT = Ry RE,,

therefore we consider a recursive algorithm of the left
hand side of (21). The matrix YII#Y7 can be rewritten
as ,

YIEYT = YIH(YIE)T oo (39)
We consider the matrix as follows
YIi =Y -YUT(vut)y~'u
=Y QN e (40)
where @N is defined as
Gy = YUT(OUT)™Y, oo (41)

and we denote an error Y — QNU by E.
We can regard the matrix £ as a least squares resid-
ual, then YIIHY7T a squared sum of residuals can be

denoted by an error covariance matrix EET. The nor-
mal equation can be represented by

(Y = GrUUT =0 oo (42)
Equation (39) can be rewritten as

EET = (Y = GnU)(Y — GyU)T

From the results of (42) and (43), the extended normal
equation can be represented by

0w | [V T3] = o Bz] o

The submatrix of the Hankel matrix Uy ; n41 is defined
as

ui(k+ N) = [ u£+N uZ+N+1

and y; is defined in a similar way. Then the Hankel
matrices Uk ; 41 and Yy ; v41 are partitioned such as

B¥RC, 1215815, PR I3F

T
ul{+N+i— 1 ]
(45)

UpinNg1 = [ Uk,in | ui(k—}—N) ] ..... (46)

Yiinei=[ Yein | w(k+N)] - o (47)
For brevity we denote Uk ; n, YN by Uy, Yn, and
ui(k + N), yi(k + N) by u;, y;, respectively. We con-
sider a matrix consisted of the Hankel matrix U4 and
Yn+1- The following relation is obtained from (47).

Unta _
[ Vo [T 0hn Y 1=

[ ver e[

" v ] (48)

Equation (48) is multiplied by a matrix [—@N I}, and
then the following is obtained

=~ U
S R I R AR

Yyt
[0 ExEL J+e{ul ol ] oo (49)
where
i = Ui — GNUG weve e (50)

We introduce the vectors ky41 and ¥;(k + N) which
satisfy the following equation;

¢

(K 01| 0 |10k i 1=
[ u}" @(k+N)T ] .................... (51)

Equations (49) and (51) multiplied by e; give the fol-
lowing:

A U
[ -Gy —eikyyy 1] [ Yz:i ] X
[ U11\;+1 Y£+1 ]:[ 0 E‘NEKT ]"’
[ 8] ei{yi_i}i(k-.f_N)}T ] ............ (52)

Comparlng equation (52) with (44), an error covariance

EN+1EN+1 and estimates GN+1 are obtained as
GN+1:GN+6ikN+1 ................ (53)
Eny1 By = ENES + e {yi — 0k + V)T (54)

From equation (51), kx4 and §;(k + N) are obtained
as follows

k’N+1 = Ul Pygy oo (55)
Gi(k+ N) = @N—Hui ..................... (56)
where the matrix Py is defined as
Pyy1 = (Un41Ufgr) ™"

Using the matrix inversion lemma, Pyy1 can be repre-
sented by

PN+1 = Py — PNUiU;IPN/a .............. (58)
where o 1s defined by
o= L Ul Prug. oo (59)



Using equations (55) and (58), the relation between Gy
and @N+1 can be represented by

@N + eiuZTPN/a.

@N+1 =
Therefore, a recursive formula is summarized as follows;
a=1+ul Pyy;
ei =y — Gnug
GN+1 = @N + e,-uZTPN/a
EN+1E'J,1\;+1 = .’E\'NEJQ\} + eie?/a
Pyy1 = Py — Pyuuf Py /o

Rovsr = Ry + — 558 (61)
N+l = N 1+ uZTPNu,-
where the error covariance Ry = E’\Nﬁ’ﬁ Using the

matrix obtained by QR factorization in (9), the matrix
Gy can be rewritten as follows.

Gy = YUT(UUT)?
= Ry Ry}

A recursive algorithm is described as follows.stepl
Store the initial value of the matrix Py, Gy and Ry.
step2 If the new data sets u; and y; are available, up-
date the matrix Ry4+1 and the required values by the
recursive formula (61).

step3 Compute SVD of the matrix RN+1 as proposed
in equation (10).

step4 Using the matrix E, and E;- given in step3, com-
pute the quadruple of the system matrices [4, B, C, D]
in a similar way in MOESP algorithm, except for
equation (14) which is rewritten such as:

[ & & & ] =(BHTG

step5 If the next data sets are given, .return to the
step2.

4.2 Noisy case
result

We have obtained the following
ZnEZT = Zus(Zng)T
= §22E§2A_1.§32Eg’2,

then we consider a recursive formula of the matix
ZHLZT The matrix ZHJ- can be rewritten as

20§ = ZNglE
=7 -GyU
=GN0 — GyU
=By — Bl v (65)
where
Gy =Yaor@ah)=t ... (66)
Bt =YV — @}‘VQ ........................... (67)

We denote Z\Hll, by EN, then EH(#?T is represented by
E‘NEK, From equation (65), the following equation is
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obtained.
ENEY = (En — E§)(En - E5)T
= EnEL — By BT

Therefore we see that ENE}C is yielded by computmg
ENEN and ENE*T The matrix £ is defined as

Q= [wilk) wi(k+1) wi(k+ N —1)] (69) |
where

wilk) := [u; (k)7 L]’

and ¢ is an element of the instrumental variable ®. EJ*V,

S i (70)

é}‘v and € are corresponded EN, GN and U, then a re-

cursive formula of the error covariance matrix EIQE}‘VT
is summarized as follows;

B=1+w] Qnuw;
e;‘ :y,;—G}"Vwi

Giy1 =Gy +etwTQn/B

Efn BNy = BN BT + 1T/
Qn+1=Qn — Qnwiwi Qn/B
e*e*T
Lo > L ST e A 71
Ryy1 =Ry + 1+ o7 Qron (71)
where Ry, = ENE*T, Qn = (QnQ%) L. Therefore a

recursive formula of 5T is obtained

RN41 = Ryg1 — R covvveerrrnneeeann.
where Ry = E‘Ng'ﬁ

A recursive algorithm for the noisy case is described
as follows.stepl Store the initial value of the matrix
PN, GN, RN, QN, GN and RN
step2’ If the new / data sets u; and y; are available, up-
date the matrix RN+1 using Ry+1, 'R,N+1 and the re-
qu1red values by the recursive formula (71)

step3 Compute SVD of the matrix ’R,N+1 as in equa-
tion (10). '
step4’ Using the matrix E, and E} given in
stepd, compute the quadruple of the system matrices
[A, B, C, D] in a similar way in recursive algorlthm
for n01se—free case. |
step5 If the next data sets are given, return to the!
step2. ‘
43 Numerical example In this section, we ap- !
plied the recursive algorithm presented in this paper to|
identify the following discrete time linear system;

0 |

0.8 ~0.4 02 0
Tep1=| 003 =05 2+ | 0 —0.6 | ux (73)
0 0 05 05 0

05 05 0 0.05
y’*-:[o 0 1}“"”[0.02] - (74)
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where uy is constructed by 2 inputs, yx by 2 outputs
and =z is 3 state vector, respectively. The experiment
was conducted with MATLAB package. In order to use
our recursive procedure, we generated 7500 samples of
input-output data and took the input ux equal to a zero-
mean white noise of unit variance, the noise v is as in
a similar way. We used the first 50 samples to produce
an estimate as initial value in off-line. Using the recur-
sive algorithm for noisy case, we estimated a sequence
of state space models. The instrumental variable is se-
lected as

B = Upg i N oo (75)

and an auxiliary order ¢ = 10. We used principal an-
gles ®) as the indicator of the similarity between the
column space of T'; and the estimate E,. Fig.l shows
that the estimate F, asymptotically tend to the true
values for increasing step number.

0.08

o
Q
@

pal angles(rad)
g

Princi
o
(=]
N

0 2500 5000 7500

step

Fig.1. Principal angles
5. Conclusion

In this paper, we have presented another interpre-
tation of the 4SID method by subspace extraction via
Schur complement, and showed that the estimate of the
extended observability matrix is obtained from Schur
complement matrix consisted of the Hankel matrices of
input-output data. It has been shown that the proposed
procedure can be applicable to both cases, MOESP and
IV-based one. We proposed a recursive formula for the
error covariance matrix in the 4SID method, and the
algorithm with an instrumental variable has been also
developed. The presented results are useful to analyze
the properties of subspace-based identification methods.

(Manuscript received june 2, 2000, revised Nov..2, 2000)

References

(1) M. Verhaegen and Dewilde, “Subspace Model Identification.
Partl. the Output-Error State-Space Model Identification
Class of Algorithms,” Int. J. Control, Vol.56-5, pp.1187-1210,
1992

(2) M. Verhaegen, “Subspace Model Identification. Part3. analy-
sis of the ordinary output-error state space model identifica-
tion algorithm,” Int. J. Control, Vol.58-3, pp.555-586, 1993

(3) G. H. Golub and C. F. Van Loan, “Matrix Computations,”
THE JOHNS HOPKINS UNIVERSITY PRESS, 1991

(4) Ketao Liu, “Identification of Multi-Input and Multi-Output
Systems by Observability Range Space Extraction,” In Proc.
31st IEEE Conf. on Decision and Control, Tucson, AZ,

EFEC, 121515, PRIBE 295

pp.915-920, 1992

(5) Peter Van Overshee and Bart De Moor, “Subspace Identi-
fication for Linear Systems,” Kluwer Academic Publishers,
Massachusetts, 1996

Yoshlnorl TAKEI (Non-member) Yoshinori Takei was
born on February, 14, 1974. Received the
B.S. and M.S. degrees in electrical engineer-
ing from Fukuoka University in 1994 and 1998,
respectively. He is currently working toward
the Ph.D. degree in system identification at
the department of electrical and electronic sys-
tems engineering, graduate school of informa-
tion science and electrical engineering, Kyushu
University. He is a member of The Society of
Instrument and Control Engineers.

Jun IMAI (Member) Jun Imai received B.S., M.S. and
; Ph.D degrees in Electrical Engmeermg all
from Kyushu University in 1987, 1989, and
1992, respectively. He served as a Research
Associate in Kyushu Institute of Technology
from 1992-1994, and then in Kyushu Univer-
sity to 2000, respectively. From 2000 he is
serving as an assistant professor in the depart-
ment of Electrical and Electronic Engineering,
Okayama University. His main interest is in
modeling and control of distributed parameter systems.

Klyoshl WADA (Member) Kiyoshi Wada was born in Shi-
i monoseki, Japan on November 24, 1947. He
received the B. E., M. E. and D. E. degrees
in electrical engineering from Kyushu Univer-
sity, Fukuoka, Japan in 1970, 1972 and 1978
respectively. He is currently a professor in
the department of electrical and electronic sys-
tems engineering, graduate school of informa-
tion science and electrical engineering, Kyushu
University. His research interests are in the ar-
eas of system identification, digital signal processing and adaptive
control, etc. He is a member of the Institue of Systems, Control
and Information Engineers; Society of Instrument and Control
Engineers; IEEE.



