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This study proposes a new method for detecting characteristic points (CPs), the Q and S points, in elec-
trocardiogram (ECG) using a multichannel ART-based neural network (MART). The method integrates the
previous two methods: the slope detection techniques and neural networks. The slope detection techniques
are able to locate CPs exactly. However, it is not robust to noise. On the other hand, the method of neural
networks locates approximate locations of the CPs and self-organizes in response to newly input patterns.
This self-organizing ability makes the method robust. The MART integrates these two methods to implement
a reliable CPs detection. For the CPs detection, ECG is divided into cardiac cycles by preprocessor, and
each cardiac cycles is input to the channel one of the MART. A rectangle is made from each cardiac cycle
and input to channel two of the MART. Patterns of the two channels are transmitted to the F3 layer of the
MART, and then the winner node of the F'3 layer recalls template patterns to the channels in the F1 layer.
When the pattern recognition carried out by the MART, the template locates CPs in the ECG. The method
were evaluated using MIT/BIH arrhythmia database. The standards deviation between detected CPs and

CPs estimated by referee are within the limit of the SDs recommended by the CSE committee.
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1.

Introduction

Electrocardiogram (ECG) can be measured easily and
noninvasively by attaching small electrodes to our body,
and the ECG has been used as a standard tool to diag-
nose heart diseases ¥ @, A typical ECG is illustrated in
Fig. 1. For precise diagnosis, the ECG is recorded for
a whole day with a Holter device which records ECGs
of 100,000 cardiac cycles per subject. A physician in-
terprets this large amount of ECGs to search for a few
abnormal cardiac cycles. This is tedious routine for a
physician and overlook would be induced by mental fa-
tigue. From this background, computerized analyzer to
interpret the ECG has been developed.

The most popular computerized ECG analyzer is a
beat-to-beat analyzer ®~™. It locates QRS complex in
the ECG, and calculates their duration. The QRS com-
plex is located by detecting signal of the ECG between
the onset and offset of the QRS complex. Moreover,
studies on locating P and T waves have been carried
out to calculate interwave segment. These are studies
to locate waves in the ECG. However, it is necessary"
to analyze patterns of waves in the ECG to realize ad-
~ vanced computerized analyzer. To analyze waves in the
ECG, we have to segment a piece of wave in ECG. For
the segmentation, it is required to detect characteristic
points (CPs) that are onset and offset of the waves. In
the computerized ECG analyzer, an erroneous diagno-
sis happen from both measurement error of the ECG
and detection error of its CPs. Since detection error
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of the CPs causes the most erroneous diagnosis, precise
detection of CPs is necessary to make a computerized
ECG analyzer more reliable. The QRS wave is a refer-
ence wave used to detect other waves, therefore we will
propose the method for detecting the Q and S points to
pick up the QRS wave for the first step to implement a
reliable ECG analyzer in this paper.

The prevailing method to detect the Q and S points
are slope detection techniques in which the Q and S
points. are located to detect the QRS-wave by exam-
ining either a change in the sign of the slope of the
ECG, zero slope, or significant change in the slope
within the search region . The search region is deter-
mined based on physiological knowledge. This method
is not robust to noise. Another method of detecting the
QRS-wave is the syntactic method ©® @ This method
based on the assumption that the ECG is composed
of peaks and segments, which are primitives to con-
stitute the ECG. Primitive selection is both problem-
and pattern-dependent and there is no general solu-
tion to this problem. Sahambi and other researchers
proposed a method detecting the CPs using Wavelet
transform (WT) "9 2 Basically, the WT comprises a
convolution of the input signal with a modulated pulsa-
tion to provide a time-frequency distribution. Since the
amount of the computation needed to implement these
techniques, it is not able to detect the CPs within real
time processing. Therefore, this method is not useful for
real-time monitor of patients in the coronary care unit
and to monitor patients living in their homes. Moreover,
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Fig.1. A cardiac cycle of an ECG. The ECG are

divided into waves and complexes by the CPs such
as the Q point, the R point, the S point, the T
point, and the U point.

this method cannot distinguish normal ECG from the
abnormal ECG which is largely different from normal
ECGs by irregular thythm and/or measurement error.
The CPs detection for the abnormal ECGs should be
excluded and the abnormal ECG should be classified
into the other categories.

We developed a new method for detecting the CPs,
the Q and S points, using multichannel ART-based neu-
ral network (MART) in this paper *®. The ART is neu-
ral networks model that materializes self-organization
of stable category recognition codes for analog input
patterns. The ART neural network has learning and
self-organizing abilities . These abilities are appro-
priate and make the method robust, because the ECG
will change its shape according to the patient’s con-
dition *® 9 The method with ART neural network
locates approximate locations of the CPs. On the other
hand, the slope detection techniques locates the CPs
~exactly, but it is not robust to noise. Therefore, we
integrate two methods, the slope detection techniques
and neural network method, using the MART to im-
plement a reliable CPs detection. This method enable
self-organization in response to newly input ECG and
locates CPs exactly. The self-organizing ability can
classify the abnormal ECG into the new category, if
the abnormal ECG is largely different from the normal
ECG, which should be excluded for the CPs detection.
Moreover, since the amount of the computation of the
method is negligible for personal computer, the method
enables real-time processing and it is applicable to real-
time monitor of patients in the coronary care unit and
to monitor patients living in their homes.

This paper is organized as follows. Section 2 describes
the method to detect the CPs using the MART'. Section
3 illustrates the experiments to evaluate the proposed
method using MIT/BIH arrhythmia database. In ad-
dition, we will report results and provide discussion on
the experiments. Finally, the paper will be concluded
in section 4.
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Bloack diagram of the MART.

2. Method to detect CPs

21 MART MART is a multichannel neural net-
work and each channel of it consists of ART neural net-
work. Fig. 2 shows a block diagram of the MART. Pat-
tern recognition with MART is divided into two parts;
computing global similarity and computing global dif-
ference. In computing global similarity, a set of patterns
is input to the corresponding channels and associates
template patterns stored in each ART network. The
template patterns generates signals and they are sent
to F3 layer of the MART. A competitive interaction
among nodes in F3 layer activates one winner node and
the other nodes are inhibited to be inactive. The winner
node represents a global similarity to classify the set of
input patterns to a specific category.

In computing the global difference d, the winner node
that is activated by the set of input patterns associates a
set of template patterns to the corresponding difference
channels. The template patterns are compared with the
set of input patterns. In this sense, d is computed as a
difference between a set of input and template patterns.
When d is smaller than a global vigilance parameter pg,
the current set of input pattern is assigned to the cat-
egory. Moreover, when d is also smaller than similar
criterion p,, the template patterns are modified to get
new information of the set of input patterns. This is
a self-organization in response to newly input patterns.
Both parameter p, and p, are given in advance. The
parameter pg is used for pattern recognition, and the
parameter p, is used to determine whether learning car-
ried out or not. On the other hand, if d is larger than
pg, a Teset signal is sent to the I3 layer and the active
node is inhibited and new pattern recognition cycle is
initiated. The cycle is repeated until either a category
is found for which d is smaller than p, or the set of
current patterns is assigned to new created category as
a set of novel patterns. For the CPs detection, we em-
ployed MART with two channels. There are 36 nodes
in each channel of F1 and F2 layer, respectively. The
number of nodes in F3 layer is the same as the number
of nodes in F2 layer.
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Fig.3. The principle of pattern recognition with
ART network. The solid curve shows a ECG includ-
ing the QRS-wave. The dotted line is a right-angled
triangle pattern to approximate the part of the
ECG. The closest right-angled triangle pattern to
the part of the ECG will be associated by the ART
- network.
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Fig.4. A slope-sensitive rectangle. The solid
curve shows a part of the ECG including the
QRS-wave. The dotted line is the slope-sensitive
rectangle which is input to the MART.

2.2 Detection of the CPs with MART We
assume that both the parts of the ECG from the R
point to the Q point and from the R point to the S
point can be approximated by a straight line. We select
a well-fitted right-angled triangle for approximating the
part of the ECG as shown in Fig. 3, which is employed
as a template pattern for the detection of CPs. For the
channel one of the MART, 36 right-angled triangle are
stored as template patterns in the ART network. The
length of the base of each triangle is different.

Before the detection of CPs, the R points of the
ECG are detected using the algorithm by Hamilton and
‘Tompkins . The ECG is divided into each cardiac cy-
cle that is a interval of the ECG between R points. For
the Q point detection, the part of the ECG 100 ms in
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length from the R point in the direction towards the
P point (QR part) is input to the channel one. Then
the F1 layer of the ART network receives the part of the
ECG and sends it to the F2 layer. Each node in F2 layer
is activated in proportion to the similarity between the
input ECG and the right-angle triangle which is stored
between the node in the F2 layer and nodes in the F1
layer. The activated nodes in F2 layer send signals to
F'3 layer of the MART. For the S point detection, the
part of the ECG 100 ms in length from the R point in
the direction towards the T point (RS part) is input to
the channel one of the MART.

For the channel two of the MART, a slope-sensitive
rectangle is input to it as shown in Fig. 4. The height of
the rectangle is 1.0 because the amplitude of the ECG
was normalized between 0.0 and 1.0. The length of the
width is determined from a slope of the ECG. There are
two kinds of slope-sensitive rectangles: one is for the Q
point detection and the other is for the S point detec-
tion. The QR part is extracted to make a slope-sensitive
rectangle for the Q point detection. We compute a slope
of the ECG from the R point towards the P point. The
left end of the bottom side of the rectangle is the loca-
tion where the condition

|[ECG(n) — ECG(n —1)| < 0.05
and ECG(n) < 0.3

is satisfied. ECG(n) is ECG at the sample location n.
The width of the slope-sensitive rectangle is from the R
point to the sample location where (1) is satisfied. The
slope-sensitive rectangle for the S point detection is de-
termined as the same manner.

In channel two, 36 rectangles are stored in the ART
nefwork as template patterns. The length of the bot-
tom side is different and the heights of all them are 1.0.

-When the slope-sensitive rectangle made from the ECG

is input to the channel two, the F1 layer of the ART net-
work of the channel 2 receives the rectangle and nodes
in the F'1 layer sends signals to the F2 layer. The each
node in the F2 layer is activated in proportion to the
similarity between the input rectangle and the rectangle
being stored in the ART network. The activated nodes
in F2 layer send signals to the F3 layer of the MART.
The CPs detéction is performed as follows. In the F3
layer, the signals both from the F2 layer of the channel
one and the the channel two are integrated to compute
the global similarity for the set of input patterns. As in
Fig. 2, the activated node associates right-angled trian-
gle to the difference channel one and it also associates
a rectangle to the difference channel two. The each as-
sociated pattern is compared with each corresponding
input pattern, and the difference is summed to compute
d. If d is'smaller than pg, the set of patterns is classi-
fied into a specific category. In this case, the left end of
the bottom side of the associated rectangle locates the
Q point when the QR part is input to the MART. On
the other hand, the right end of the bottom side of the
rectangle locates the S point, when the RS part is input
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to the ART.

If d is larger than pg, a reset signal is sent to the F3
layer and the pattern recognition does not take place. In
this case, the input ECG might be largely different from
the previously input ECG by irregular rhythm and/or
measuring error. This ECG is classified into different
category as an abnormal ECG. By this classification,
we can monitor the abnormal ECG.

After the CPs are detected, template pattern z;-(n)
stored in the channel one are updated by (2). The up-
date is performed when following two conditions are
satisfled; d < p, and d1 < pg, where d; is difference
between template pattern and input ECG in channel
one '3, ‘

{AZij* (n) + Al.[j (n)] — M=
Mk‘* — Mip* )
1,2,..,36; k=1,2,..,36)

Zje(n+1) = (2)

(=

mis = mliH[Azsz* (n) + A1;(n)] (3)

My = mLaX[AZZlk* (n) + AL (n)]
(1

In (2), k* is the index of the winner node in the F3
layer. I;(n) is the input signal to the jth node in the
F1layer. A, and A; are parameters of the MART. The
parameters for CPs detection are p, = 0.4, p, = 0.1,
Ay =075, and A, = 0.25.

1,2, ...,36)

3. Results and discussion

We proposed a new method to detect the CPs, the Q
and S points, in the ECG using the MART in this pa-
per. The QRS wave is a reference wave to detect other
waves, therefore this is the first step to implement a
reliable ECG analyzer. In the method, slope detection
techniques and method with neural networks are inte-
grated to bring out advantage points for two methods.
However, this method is not a general purpose. It is a
specific method to detect CPs. In the slope detection
techniques, the ECG signal is transformed to empha-
size the QRS wave. Then, the location of the R point is
detected to divide the ECG into cardiac cycles. Since
the techniques are not robust to noise, the cardiac cy-
cles are stacked one over another to reduce noises. Af-
ter that, the CPs are detected in the established region
that is determined based on the physiological knowl-
edge. The detected CPs are an average of all CPs of
cardiac cycles before stacking. The techniques detect
exact location of the CP, but they cannot detect the
CPs of each cardiac cycle. In the proposed method, we
employed a self-organizing neural networks. Learning
and self-organizing abilities might be essential to im-
plement a reliable ECG analyzer because shape of the
ECG varies with patients slightly and also change with
time passage. However, method of neural networks lo-
cates approximate locations of the CPs. We bring out
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advantage points of the slope detection techniques and
neural networks using the MART in this paper.

We evaluated the method to detect the CPs using
MIT/BIH arrhythmia database. For precise evaluation,
we chose the ECG record number in which we can visu-
ally locate the CPs clearly. The ECG record numbers
are 100, 101, 103, 105, 109, 111, 112, 113, 115, 116,
117, 119, 122, 123, and 124. Two hundreds cardiac cy-
cles were selected in each record number, and therefore
a total of 3000 cardiac cycles were used for the evalu-
ation. For the evaluation, the Q point is define as the
first inflection point in the part of ECG from the R point
towards.the P .point “”. The S point is also defined as
the first inflection point in the part of the ECG from
the R point toward the T point. However, since the
ECG is contaminated by noise, these definitions might
not be effective for the ECG in practical measurement.
To evaluate detected CPs correctly, a part of ECG in-
cluding the QRS wave was expanded and drawn on a
display of a personal computer. A referee found out
the locations of the Q and S points visually. This was
carried out by examining the slope change of the ECG
and the wave form of the ECG before and after the vi-
sually found Q and S points. For precise evaluation,
if the referee could visually locate the CPs clearly, we
calculated the detection error. We considered that the
Q and S points located by the referee were the true Q
and S points. Examples of detected CPs are illustrated
in Fig. 5.

Detection error was computed as

Serro’r‘ = N —

where 7. is the location of the ECG where the CPs
is detected by the method and n, is the location of the
ECG where the CPs is located by the referee. This eval-
uation is more rigorous than evaluation of the method
for the previous CPs detection because we performed
sampling basis evaluation ** . Fig. 6 summarizes re-
sults of the evaluation. For the Q point detection, the
rate of accuracy with |Serror| < 2 is 86.5% and the rate
of accuracy with |Serror| < 3 is 92.3%. For the S point
detection, rate of accuracy with |Serror| < 2 is 93.1%
and rate of accuracy with |Sepror| < 3 is 94.2%.

Table 1 shows the standard deviation (SD) between
detected CPs and the true CPs, in which the CPs de-
tection with the MART is compared with that with the
ART network. Table 1 also shows the limit of the SD
recommended by the CSE committee, which was de-
termined using CSE ECG library ®®. The SDs of the
MART are within the limit of the SDs for both the Q
and S points, however the SD of the ART network falls
outside of the limit. Above results justify the potential
of our method for detecting the QQ and S points.

In pattern recognition, we first make template pat-
terns and then classify input patterns into one of them
that is the closest to the input pattern. Robustness of
pattern recognition depends on how the template pat-
terns extract the features of the incoming patterns ¢,
The features of the incoming patterns, however, may
change with time and environmental changes surround-
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Fig.5. Examples of the ECGs in which CPs are
detected.
Table 1. The standard deviation between detected
CPs and the true CPs.
standard
“deviation Q point S point
. MART 5.3 4.3
ART 7.6 5.5
slope detection 7.0 6.5
Limit of CSE committee 6.5 11.6
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Fig.7. An example of the stored pattern in the
ART network after processing the ECG from record
number 109. Upper two line of panels are patterns
stored for the Q point detection. Lower line of the
panels are patterns stored for the S point detection.

ing the measuring system. Therefore, it is difficult to
make template patterns that have all essential features
of the patterns incoming in the feature. Especially,
a heart changes its cardiac rhythm according to the.
body’s condition, so that the shape of the ECG varies
with each patient slightly and changes with time. For
these reasons, a self-organizing pattern recognition is
needed for CPs detection.

The MART obtains new information from the incom-
ing ECG and self-organizes in response to it. In the ini-
tial stage, all the stored patterns in the channel one are
right-angled triangle patterns. The right-angled trian-
gle patterns are updated by self-organization as shown
in Fig. 7. These patterns are speculated as the dom-
inant feature patterns of the ECGs for a subject. As
the process goes on, the channel one of the' MART
stores many dominant feature patterns, and these pat-
terns are used for more correct pattern recognition. In
this manner, the template patterns are updated by the
self-organization of the MART in response to the input
patterns.

4. Conclusion

We proposed a new method to detect the CPs, the )
and S points, in ECG using MART. The slope detec-
tion techniques and self-organizing method by neural
networks are integrated to implement a reliable ECG
analyzer. Experimental results showed the potential of
our method of detecting the CPs in ECG.

(Manuscript received March 21, 2000, rivised Oct. 10, 2000)
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