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In this paper, a generalized Lyapunov function for the Liénard-type nonlinear system which is important
as a representative system expressing LRC electric circuits and mechanical spring-mass systems etc., is con-
structed using the Lagrange-Charpit method. The Lyapunov function includes particular nonlinear terms
as arbitrary functions, by which the quadratic term appearing in the Luré-type Lyapunov function can be
extended. The result yields all the conventional Lyapunov functions as special cases, changing the forms of
the arbitrary functions. To investigate the relation between the arbitrary function in the Lyapunov function
and the stability region obtained, the stability boundaries for various types of the arbitrary functions are
illustrated in the application to a simple system. In addition, numerical values of the time derivative of the
Lyapunov function along the stability boundary are calculated to study the relation between the stability

region and the values of the time derivative.
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1. Introduction

It is well known that the nonlinear system given by
Liénard’s equation is important as a general system ex-
pressing LRC electric circuits, spring-mass systems and
electric machinery. In the stability analysis of the sys-
tem, it is common to utilize the Lyapunov method, and
the energy-type Lyapunov function is widely used. The
Lyapunov method has two main uses, i.e., establishment
of the stability of a null solution of the system and de-
termination of a stability region for the system. The
latter is often important to system engineers, because a
lot of systems appearing in engineering have nonlineari-
ties in which only local stability is discussed. Moreover,
the Lyapunov method gives only sufficient conditions
for obtaining the stability. Hence, a Lyapunov function
which gives good approximation to the true stability
boundary is desired. Thus, several methods ¥~ ® for
constructing Lyapunov functions have been applied to
the nonlinear systems, aimed at obtaining better stabil-
ity estimations.

Yu et al. @ and DeSarkar et al. ®® have applied the
Zubov method to a synchronous machine system rep-
resented by Liénard’s equation. Although an approx-
imate solution with the truncated series form is used
in the method, a higher-order approximation does not
necessarily give a larger stability boundary. Also the
scalar function, as a clue to the solution of Zubov’s par-
tial differential equation, can not be easily established.
For the same system, another Lyapunov function has
been presented by Prabhakara et al. ®, using the gen-
eralized Zubov method. In that method, however, the
solution of any stability problem depends on the trans-
formation of the variables, while suitable transforma-
tion forms are not always available. Miyagi et al. ¢ pre-
sented the way of generalizing Lyapunov function, intro-
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ducing the particular term which contributes to the ex-
tension of the stability region. Stability theorems were
used to derive the Lyapunov function of the Liénard’s
equation with nonlinear damping. This was followed by
the improved Lyapunov function using a generalized en-
ergy function method ®. These papers, however, dealt
with the simple system given by Liénard’s equation.
Liénard-type nonlinear system given by a system of n
second-order differential equations, a generalization of
Liénard’s equation, has not been thoroughly discussed.
Stability of that type of system has been studied to
some level in the conventional literatures )~ ¢4,

This paper presents a generalized Lyapunov func-
tion for the Liénard- type nonlinear system, using the
Lagrange-Charpit method ‘Y © which is a well-known
technique for solving partial differential equations. The
stability of Liénard-type nonlinear systems has been dis-
cussed by Miyagi et al. 9 and this paper deals with
the system categorized as stable in that paper. First,
a generalized Lyapunov function for single Liénard’s
equation is constructed. The function includes an arbi-
trary function, by which the quadratic term appearing
in the Luré-type Lyapunov function ® is extended. All
Lyapunov functions presented so far are obtainable by
means of changing the form of the arbitrary function.
As the stability region obtained by the Lyapunov func-
tion varies with the shape of the arbitrary function, we
investigate the relation between the arbitrary function
and the stability region obtained. Further, we investi-
gate the relation between the obtained stability region
and the values of the time derivative of the Lyapunov
function along the stability boundary. After these inves-
tigations, we construct the generalized Lyapunov func-
tion for the Liénard-type nonlinear system given by a
system of n second-order differential equations. The
Lyapunov function includes extended terms which con-
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tribute to the extension of the obtained stability bound-
ary.

2. Liénard-type nonlinear system

The Liénard-type nonlinear system considered here is
of the form ¢

v+ G(y)y o+ ’)’(Y) =0 et (1)
where y is an n-dimensional vector, G(y)(> 0) is a
nonlinear damping defined by

G(y)

91(o1)
92(02) 0 "

0

D {diag|[gi(04)]} BT

Im(om)

D and B are n x m matrices, v(y) = Bf (), o = BTy
and £7(0) = [fi(01), fo(02), - *» fm(om)]-

The nonlinear functions g;(c;) and f;(o;) are assumed
to be continuous, differentiable and to satisfy the follow-
ing conditions:

I gl(al) > 0 for o; # 0

I oifi(o;) >0foro; #0, f(0) =0
1. |, (az)j — 00 as loi| — oo
where U;(03) =[5 gi(0:)do;

Makmg the change of variables: y = x;, ¥ = X,, we
can rewrite system (1) in the form of first-order simul-
taneous equations as

%X =h(x); (h(0)=0)
................... (2)
where x = [x¥,x]7, h(x) = [b{,h]]T, x, =
[x’ily iy, xin]T7 hz = [hilv hi2a Tty hin]Ta 1= 15 2

3. Lagrange-Charpit method ©®

The problem concerning the stability analysis of the
equilibrium state of the system (2) is formally taken up
by the search for a Lyapunov function V' = V(x) which
satisfies the partial differential equation

F(x,V,P) =PTh(x) + w(x)‘ =

where P = 8 [P ] , Pl = [Pilapi% e ',Pin}T
and ¥(x) is an arbltrary non-negative function whose
opposite sign may be the time derivative of the obtained
Lyapunov function. Separation of P into Py, Py sim-
plifies the application of the Lagrange-Charpit method
to second-order differential equations.

Then we determine the scalar functions V and 9. The
characteristic equation for (3) is given by
Ry 13

BEHC, 121845,
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dil?u o o d.’l?ln o diL‘zl N _ d.’L‘gn
oF — O8F T 8F — — OF
OP1y 22 9P 0Pz,
—dpy —dPi,
- 8F 8F SF aF
63?11 + PIIW Lin + Pan
—dP21 —dPQn
= — = — - (4)
8:321 21 31‘2n 2n
.. BF oF
Where 32011 ’ > 333'171 ? 3$21 o 323271.
include 5 . 83:1n , Bxgl ,# respectively.

Next, accordmg to Lagrang&Charplt method, we de-
rive 2n — 1 equations of P from (4) or the related equa-
tions given by multiplying both numerator and denom-
inator of (4) by some constants or variables.

Thus, if we can obtain 2n — 1 equations:

v.p, 2

Z]_(X, a ):0

Zy (X VP 6¢> =0

i
):o

Zon_1 (x, V,P, ‘9—¢
ox

containing at least one element of the variable P, then
the unknown functions —’L Oy oy . 0%

8215’ O ’ Ozon
and % are determined from tJhe follovvllng coZﬁdltlons

2 T T
dz; " 0Z; dz; " 9z;
i 2] = =t £ _ |Z221| 2
[Z ‘7] ;; <[dmk] (9Pk l:d:l)k] (9Pk>
=0
2 T T
dz;|® OF dF|" 98z,
12 F1 =2 [(m J ap, [d_J ap,
— k| OP zk| OP

O ox

where 4,5 =1,2,---,2n — 1,4 # j and
az; 07, 87;
d, = 52n _{_Pka_v_ ...................... (7)

Equation (6) is Jacobi’s brackets ® which imply the
necessary and sufficient conditions for both the cases
that functions Z1, Zs, ..., Zo,_1 and F have a common
solution, and the Pfaffian differential equation is inte-
grable independent of the gath of mtegratlon In this
stage, unknown functions 2% .. . 6—;&, 6—3%, e 5512[’—
and 7 can be expressed usmg the variable x. "

If (5) can be solved so as to give P as a function of x

and V, such that

...............................



the Pfaffian differential equation
PTdx = (VV)dX <vvereverrnneenieneiae. (9)

is integrable, because of the fact that P satisfies (6).
Hence, integrating (9) , a possible Lyapunov -function
V is given as

Vix)=

with
V(X)) = —h(X) covvvrrmnnemneeeeeas, (11)

When V i in (10) satisfies the followmg Lyapunov cri-
teria:
(i)V (x) is a continuous scalar function which has con-
tinuous first partial derivatives with respect to x.
(iiV(x) =0forx =0
(i) (x) > O for x #0
(Y (x) < |
(vIV (x) is not identically equal to zero along any tra-
jectory of the system other than the origin.
in a region R of x space, V is a Lyapunov function,
and system (2) is verified to be asymptotically stable
in the neighbourhood of the origin. In this construction
procedure, the integration constants appearing when in-
tegrating (4) and (9) may be neglected so that V(x)
satisfies Lyapunov’s criteria.

4. Lyapunov function for Liénard’s equation

In this section, a generalized Lyapunov function for
Liénard’s equation is constructed, using the Lagrange-
Charpit method described in the previous section.

4.1 Generalized Lyapunov function for
Liénard’s equation  Let us consider the Liénard’s
equation (n =1):

G+9Wy+fly) =

where y is the scalar unknown function. Making the
change of variables y = 21, § = x2, we can rewrite
system (12) in the form of (2) as

5= | st e

Then, using the Lagrange-Charpit method, the Lya-
punov function is obtained as a function which satisfies
the linear partial differential equation (3). The charac-

teristic equation becomes

dry dxo
@2 —g(w1)Ta — flz1)
s dP;
Ag @)z + f(21)} Po — %b;
_ dPs
g(z)P- P - 52

where f/(z1) = ﬂ”—lland g (z1) = ddfll)
From (14) , two equatlons can be derived containing

P, Py and gg—:ﬁ% as

1= 06(15(371) + ,6182 ~P,=0 ‘
= ag'(z1)z2 — B{g(z1)zs + f(21)}
oY

—g(z1)Py+ P, + 22 =0
g(z1) Py ' B

where o and 3 are arbitrary real constants, ¢(z;) is an
arbitrary function and ¢'(z;) = M An emphasis of
this paper is the introduction of the arb1trary nonlinear
function ¢.

Applying (6) to Z1, Zs and F gives

121, 2] = 2 {Bg(a1) - of'(22)} - % =0
[Zs, F| = {a¢" (21) — BY' (z1)} 3
8%y o

+(9£L‘18$2 2 —8?1
o {p(21) f' (1) + ¢/ (21) f(21)} = 0

where ¢"(z1) = %&T—ll. The condition [Z;, F} = 0 be-
comes identical with Zs = 0.
The unknown functions %% and 7 are determined

from (16). As the results, we have

8_¢ = 2{Bg(z1) — a¢'(z1)} 22 + B(z;)

= {Bg(z1) — a¢'(z1)} 23
+@(z1)z2 + (1) f(21)

where @ is an arbitrary function. Inequalities

Bg(z1) — ag'(z1) > 0,
ap(z1)f(z1) >0, =z1#0

must be satisfied. Then we choose @ as

— [\/K(xl)xz — Vag(z) f(z;

where K (1) = Bg(z1) — a¢’(z1) > 0.
Solving (15) for P; and Pe, we obtain
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Py = ag(z1)g(z1) + Bf(21) + ad' (22)
+2v/K (z1)og(21) f (1)

Py = ad(z1) + Bze

Here, replacements o = 1 and 8 = 1 will be of help
in inspecting the definiteness of the resultant V. Thus
the scalar function V' in (10) is given as

l{mg-i-qul} +/ f(z1)dzy

(o]

+/0 d(x1) K (21)dz1
+2 /0 VE(@)p(z1) f(z)dzy - (22)

with

V= ¢ = —[y/E(@)es — /@) f@1)]® - (23)

Now, the conditions in (18) result in

#(0) =0, z14(z1) >0 (21#0)
K(z1) = g(x1) — ¢'(z1) > 0

Next we inspect the definiteness of V in the neigh-
bourhood of the origin. According to Miyagi et al.®,
we rewrite the right-hand side of (22) except the ﬁrst
term, such that

H(zy) = ¢p(2z1) K (21) + f(21) \
+2/K(21)d(@1) f(@1) - oveeeeee (26)

Equation (26) can be rearranged in the forms

H($1) =
[ K(ﬂf}iﬂi? )
+ xl ? xl Z .........
-V K(z)dlar )
- —f(ml)]g, 1 <0
Hence
le(ml) o 1 (28)

Then, Vy is the positive function in the condition
given by the inequality(28) . Therefore, V in (22) is
a positive definite function, and satisfies conditions (i),
(1) and (7it). On the other hand, we can see that the

BEFHC, 121845, FRIZEF

system (13) has no singular points except the origin
x = 0. That implies V in (23) is not identically equal
to zero along any system trajectory other than the ori-
gin. Thus, V satisfies conditions (¢v) and (v). From the
above discussions, V' in (22) is a Lyapunov function, and
the given system is verified to be asymptotically stable.

If we keep ¢ = O(= 1), in the conditions given in
(24), (22) results in

1 @
V= §x§ + ; Flz1)dzy S Vg oeenenenens (29)

The above Lyapunov function is the well-known en-

ergy function. Next, ¢ = [3* g(21)dzr = F(l'l)( ¢2)
leads to

V= %{xg +T(21)} + / Y fe)dz = Vs (30)
0

which is equivalent to that obtained by the generalized
Zubov method ® . Also, ¢ = nI'(z1)((= ¢3)(n: con-
stant, 0 < n < 1) yields the result given in @, that
is

V= % {zo +10(21)}? + /Om1 fz1)dzy

1
+§77(1 -T2z,

+2y/n(1-n) /O:cl VT (z1g(z1) f(z1)day
S Vg e (31)

The generalized Lyapunov function derived in the lit-
erature ™ is also this type of function. The improved
Lyapunov function derived by Kawamoto et al. ® can
be obtained as

V= %{m + A\(@1)T (1)}

WL/O‘T1 flz1)dzy

+/0 )\($1)I‘(1‘1)K(,Z‘1)d$1

+2 -/m1 \/)\(ml)F(xl)K(mlf(xl)dxl
0
= ‘/:1 .......... R TR PIINPIN (32)

by setting ¢ = A(z1)T'(z1)(= ¢a)(A(z1) > 0).

In the above Lyapunov functions, ¢;(¢ = 1, ..., 4) have
been selected to satisfy the conditions given in (24) .
Another ¢ apart from the above types of ¢; can be
found as ¢ = g(z1)tanhzi(= ¢s5). This way, many
types of Lyapunov functions will be derived by chang-
ing the form of ¢. Hence, the Lyapunov function given
in (22) is regarded as a generalized Lyapunov function
for the system (12).



4.2 Arbitrary functions and asymptotic sta-
bility regions Under the conditions for f;(o;) and
g(0;), we may obtain a global stability result. For
many applications, however, condition IT for f;(o;) is
not satisfied globally. Then, Lyapunov function V is
used to estimate a region of asymptotic stability. In
fact, the generalized function given in (22) displays its
power in such cases. In order to show the superiority
of the generalized Lyapunov function, let us consider
a particular system given by g(z;) = D (D: a posi-
tive constant) and f(x;) = sin(x; + d) — sind, (6: a
constant). For this case, there exists z; f(z;) > 0 for
-1 — 20 < x; < 7~ 2§, and the system has asymp-
totic stability around the origin. First, in Fig. 1, we
show some previously selected ¢;(i = 1, ...,5) satisfying
inequalities given in (24). The parameters are given by
D = 0.3 and § = 0.412. Stability regions obtained from

Lyapunov functions V;(i = 1,...,5) corresponding to ¢;

respectively are shown in Fig.2, including the true sta-
bility region. From Figs.l and 2, we can see that the
obtained stability regions are fairly dependent on the
shapes of the arbitrary functions ¢;. Fig.3 shows the
numerical values of V along the boundaries of the var-
ious stability regions. Comparing these z; — V curves
with the asymptotic stability regions shown in Fig.2,
we may find that the value of V approaches zero as
the stability boundary gets closer to the true stability
boundary. This fact may present us a conjecture, i.e.,
“Lyapunov function V with V = 0, may give the inte-
gral surface of the given system”. In other words, “if we
can find the Lyapunov function V with V = 0, then the
function gives the true stability region of the system”.
If our conjecture is correct, then one may try to find a
suitable ¢ so that the value of V approaches zero. The
means of determining the optimal ¢ is a topic of future
discussion.

~— T T T
-400  -3.00  -2.00 -1.00 -
R —

- — = = g,

-0.50

-1.00

)

Arbitrary functions ¢(x;)

Fig.1.

— -
0.00_j~4~ x
—

3.00 |

[
~4. 00

-4.00 ]

Fig.2. Asymptotic stability regions

-4.00 -3.00 -2.00 - . . 3.00
[ I b ! . 1

-1.50 |

—_— ¥,

v
-2.00.

Fig.3. Values of V on the asymptotic stability
boundaries

5. Lyapunov function for Liénard-type nonlin-
ear systems

In this section, we derive the generalized Lyapunov
function for Liénard-type nonlinear systems. Stability
of these types of systems has not been discussed so far,
except by Miyagi et al. (¥ (19,

5.1 Generalized Lyapunov function for
Liénard-type nonlinear systems Stability of
Liénard-type nonlinear system (1), which is a gener-
alization of Liénard’s” equation, has been studied for
the case D =B and DTB = diag[\;] (\;: . positive
constants) *?. In this section, we construct a gener-
alized Lyapunov function which includes all Lyapunov
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functions presented so far, using the Lagrange-Charpit
method.
The characteristic equation (4) with gv = 0 becomes;

dxz11 L dzin
hll(X) hln(X)

_ den __ doon
 hai(x) hon(x)
—dP11 —dpln
TTeE T T TR

3{1711 azln
—dP21 —dP2n

= _ip_ F 5F

O2o1 Ozan

From equation (33) , 2n equations can be derived con-
taining Py, Py and % as

Z' = oD {diag [¢i(0)]} 1+ Bxa —P2=0
Z? = a®'(0)x2 — f{G(x,)x2 + Bf(0)}
+P; — G(x,)Ps + g_;é Y Y (34)
where Z! = [Z1,Zs,--+, Z ]T,
Z2 = [Zn+laZn+2a . ZQTL] ’
®'(0) =D{diag [¢{(04)]} B, ¢j(0s) = L),

o and B are arbitrary constants, ¢;(c;) are arbitrary
functions and 1 is a vector with all components 1.
Applying (6) to Z!,Z? and F gives

[Z',Z%] = 2 {BG(x,) — a®'(0)} |

2
oy _0o
- ox2
5%’ oG
Xg[aag{g; - x(z(f;]x
(22 x
e ) - | e AT

X2 [a 8;;.(10-) Bag;ln )]XQ
o %

6x1 8xQ 2 8}{1

O[> imy (o) filo)]

Ta axl

where [Z!, Z?] and [Z2, F] have been defined as follows:

[Zn-f-l, Zl] ot [Zn—i—l’ Zn]
(Z',2% =
[ZQ'n,a Zl] Tt [227% Zn]
[ZTH-lvF] -l
(2%, F] = N P (36)
[Z2TL7F] J
BFRC, 121545, P13 753

The condition [Z',F] =
Z?=0.

The unknown functions % and v are determined
from (36). As the results, we have

0 becomes identical with

o ~2{5G(x,) ~ a®/(0)} 2 + BOx)

¥ =x; {BG(x,) — a®'(0)} x
+ Q7 (x,)BTx,
+a Y Ade)h()
= &;z{ldiag[ﬁgi (03) — adi(os)]} &
+07(x,)6 + Zm: Aidi(03) fi(o2)

=1

where (x;) is the arbitrary vector function. In (37),
inequalities

Bgi(a:) — agi(os) > 0,

0bi(0) (o)) >0 e (38)
must be satisfied. Then we choose Q(x;) as
Q(Xl) =
—2/Ki(o1)adid1(01) fi(01)
—2v/Ka(02)araa(02) fo(02) . (39)

N Ca ey ey oy

in order for ¢ to be the sum of perfect square forms,
such that

Y= i [\/ Ki(o:)di —

i=1

2
a)\z'%(ai)fi(di)] (40

where, K;(o;) (i =
Bgi(o:) — agi(o:).
Solving (34) for Py and Ps, we obtain

1,...,m) are given as K;(o;) =

P; = aG(x,)D {diag[¢i(0:)]} 1
+ a®’(o)xz + FBf(0) — BQ(x1)
P; = aD { diag[¢i(0)]} 1 + BX2‘

Choosing a = 1 and 8 = 1, the scalar function V in
(10) is given as



V= % {x2 + D { diaggs(c)]} 1}7
* {x + D { diag[$s(0)]} 1}

m o A .
+;/0 Ki(ai))\i¢i(ai)dai+/0 £7(o)dor

+22/Ji \/K'L(U"L))\z¢z(0'z)fz(0'1)do'z . (42)
i=170"

The fime derivative of V is of the form

v

- _zm: [,/Ki(ai)di¥

i=1

2
N0 filon)|  (43)

Now, the conditions given in (38) result in

O'iqZSi(O'i) >0 (O’i 75 0)
Ki(0:) = gi(os) — i%f—z) >0

We can easily see that V in (43) satisfies Lyapunov’s
criteria (iv) and (v).

Next we inspect the definiteness of V' in a region
around the origin. According to the method in (25),
we rewrite the right-hand side of (42) except the first
term, such that

Vo = ;/Om Hi(o3)dog ~weeevvvness- B (45)

where

Hi(o;) = Aile'(Uz‘)@(Ui)
+ filos) + VAiKi(03)gi(os) filos) -+ (46)

As Hz(z =1,...,m) in (46) are arranged in the forms

Hi(o;) =
+ (o), 0: 20
‘ _[ _A1K1(01)¢1<01) ....... (47)
_W]Qa (oF] < O
we have
o Hi(o;) >0 (07 > 0) ................. (48)

Hence, Vj is verified to be a positive funetion. Thus,
the scalar function V in (42) satisfies Lyapunov’s crite-
ria (i)—(i44) as well, and is therefore a Lyapunov function
of the system (1).

If we choose

754

bi0) = o /0 Y g(odos,  (0<a’<1) (49)

(42) is equivalent to that obtained in the literature
(9 The Lyapunov function given in (42) is regarded
as a generalized Lyapunov function for the system (1)
satisfying D = B and DTB = diag[\;], (\:: positive
constants).

5.2 Example
nonlinear system <.

Let us consider a Liénard-type

i1+ {91(01) + g2(02)} i1 + {g1(01)
—g2(02)} 92 + fr(o1) — fa(o2) =0
B2 +{g1(01) — g2(02) } 91 + {g1(01)
+92(02)} 92 + fi(o1) + fa(o2) =0

where oy =41 +1p2, c2=12—U
We can rewrite the equation (50) in the form of (2)

as
210 ][0 i ]
e A
s ]-[5] e
where
D=B=[} _11],and
DTB_[g.g] ............... (52)

For the system (51), the generalized Lyapunov func-
tion (42) becomes

vzgum+@wo—@wm2
+ %[-’1322 + ¢1(o1) + ¢2(02)]?

+ 2/0U1 K1(0'1)¢)1(0'1)d0'1

o2

+2 A K2(0'2)¢2(02)d0'2

+ /Oal f1(0’1)d01 + /002 fg(ag)dag

+ 2/001 \/2K1(O’1)¢1(0’1)f1(0’1)d0’1

+ 2\/0\02 \/2K2(02)¢2(02)f2(02)d02
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with

V = —[v/Ki(o1)o1 — 2¢1(01)f1(01)]2
[V Ea2(02)d2 — \/2¢2(02) fa(02)]? -+ (54)

We can see that the Lyapunov function obtained is
an extension of (22).

6. Conclusions

This paper has given the generalized Lyapunov func-
tion for the Liénard-type nonlinear system which is im-
portant as the general system expressing LRC electric
circuits and spring-mass systems etc.. The Lagrange-
Charpit method which is a well known technique for
solving partial differential equations was applied to con-
struct the Lyapunov function. The proposed function
includes arbitrary functions, by which the Luré- type
Lyapunov function is extended. The result yields all
the conventional Lyapunov functions in the literature,
as special cases, selecting the arbitrary functions appro-
priately.

(Manuscript received April 25, 2000, revised Decem-
ber 6, 2000)
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