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Least squares (LS) method is the most widely used method for the parameter estimation. However when
applying directly the LS method to estimate transfer function parameters in the presence of noise, the LS
method becomes an asymptotically biased estimator and is unable to be a consistent estimator. There
have been many studies to solve the problem of bias and one of them is bias-eliminated least-squares (BELS)
method. BELS method is one of consistent estimation methods for unknown parameters of transfer functions.
In this paper, we discuss the equivalence of BELS method and IV method under certain condition.
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1. Introduction

The least-squares (LS) method has been the dominant
algorithm for parameter estimation due to its simplic-
ity in concept and convenience in implementation. It is
easy to apply but has a substantial drawback: the pa-
rameter estimates are consistent only under restrictive
conditions (only white noise). When applying the least
squares method to estimate transfer function parame-
ters in presence of correlated noise, the LS method be-
comes an asymptotically biased estimator and is unable
to be a consistent estimator. Over the decades, much
effort has been devoted to this problem and many kinds
of modified least-squares methods in order to overcome
this drawback have been developed.
The authors have been proposed the bias compensated
LS (BCLS) method which can present consistent esti-
mator on the basis of compensating the noise-induced
bias in the LS estimators by applying the estimation of
asymptotic bias1). On the other hand, another method
named BELS method was proposed2) in which the dif-
ferent estimation method of asymptotic bias is used and
further developed to be an efficient method to treat
bias problem in system identification6),8). For exam-
ple, in the BELS method given in the literature2), a
designed filter is inserted into the identified system so
that the resulting system has some known zeros which
can, based on asymptotic analysis, be used for eliminat-
ing the noise-induced bias in the LS estimators.
Recently, literatures3)∼5),6),7), and so on, indicate

that the BELS method belongs to the class of the instru-
mental variables (IV) method under certain conditions.
In this paper, we discuss the relationship between

the BELS method and the instrumental variables (IV)
method in a more general setting. It is illustrated that
in the case that BELS method belongs to the class of
the instrument variable (IV) method, the estimation ac-

curacy is not affected by the matrices which are intro-
duced in order to estimate the asymptotic bias.
The paper is organized as follows. In the next section,
we present the problem statement and the ordinary LS
method and then it is shown that the LS estimator is
biased, even asymptotically. In section 3, the BELS
estimator is derived through introducing the auxiliary
vectors and matrices. In section 4, we examine the prop-
erty of BELS method, and then discuss the relationship
between the BELS method and the instrumental vari-
ables (IV) method in a more general setting. The simu-
lation results are presented in section 5. Finally section
6 concludes this paper.

2. Problem statement

Consider a linear, single-input single-output, discrete-
time system described as follows:

A(q−1)y(k) = B(q−1)u(k) + v(k) · · · · · · · · · · · (1)
where u(k) is the system input, y(k) is the system
output, and q−1 is the backward shift operator, i.e.
q−iu(k) = u(k − i). A(q−1), B(q−1) are polynomials
in q−1 of the form as follows

A(q−1) = 1 + a1q
−1 + · · ·+ anq

−n,
B(q−1) = b1q

−1 + · · ·+ bnq
−n.

Assume that u(k), v(k) are the zero mean stationary
random processes with finite variance, and are statisti-
cally independent of each other.
Let

θ = [ a1 a2 . . . an b1 b2 . . . bn ]T ,

y(k) = [ y(k − 1) y(k − 2) . . . y(k − n) ]T ,

u(k) = [u(k − 1)u(k − 2) . . .u(k − n) ]T ,

p(k)T = [−y(k)T u(k)T ].
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Then eqn.(1) can be rewritten compactly as

y(k) = p(k)Tθ + v(k). · · · · · · · · · · · · · · · · · · · · · · (2)

The least-squares estimate θ̂LS of the unknown param-
eter vector θ is obtained by

θ̂LS =

(
N∑
k=1

p(k)p(k)T
)−1 N∑

k=1

p(k)y(k). · · · · (3)

It is well known that the least-squares estimate θ̂LS is
not a consistent estimate and thus have an asymptotic
bias h unless v(k) is white noise:

h = plim
N→∞

θ̂LS − θ = −R−1
pp

[
In
O

]
m · · · · · · (4)

where

Rpp = plim
N→∞

1
N

N∑
k=1

p(k)p(k)T = E[p(k)p(k)T ],

m = plim
N→∞

1
N

N∑
k=1

y(k)v(k) = E[y(k)v(k)].

From eqn.(4) we can deduce that

plim
N→∞

m̂ =m.

Basis of the principle of bias compensation, if we can ob-
tain the estimate m̂ of m, then the bias-compensated
least-squares estimate1) θ̂BCLS can be defined as

θ̂BCLS = θ̂LS + R̂−1
pp

[
In
O

]
m̂ · · · · · · · · · · · · · (5)

would be a consistent estimate of θ ,where

R̂pp =
1
N

N∑
k=1

p(k)p(k)T .

In the following Section, we will derive the BELS
method which can give consistent parameter estimate
according to this principle of bias compensation.

3. BELS method

In order to obtain m̂, we firstly introduce an m di-
mensional vector ζ(k) as

plim
N→∞

1
N

N∑
k=1

ζ(k)v(k) = 0.

Secondly, let (2n+m) dimensional vectors p(k), θ and
ψ(k) be, respectively

p(k) =
[
p(k)
ζ(k)

]
,

ψ(k) = Mp(k), θ = M−T
[
θ
0

]
. · · · · · · · · (6)

Then, eqn.(2) can be rewritten as

y(k) = ψ(k)Tθ + v(k) · · · · · · · · · · · · · · · · · · · · · · (7)
where M is a (2n+m)× (2n+m) non-singular matrix.

Then, the least-squares estimate θ̂LS of θ is obtained
as follows:

θ̂LS = R̂−1
ψψ r̂ψy · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (8)

where

R̂ψψ =
1
N

N∑
k=1

ψ(k)ψ(k)T ,

r̂ψy =
1
N

N∑
k=1

ψ(k)y(k).

Substituting eqn.(7) into eqn.(8) and re-arranging the
result, we can get

θ̂LS = θ + R̂−1
ψψr̂ψv · · · · · · · · · · · · · · · · · · · · · · · · · (9)

where

r̂ψv =
1
N

N∑
k=1

ψ(k)v(k).

Now we begin to estimate the asympototic bias.
Let the matrix M be partitioned in the form

M =
[

M1 M2 Z
]
,

M1,M2 : (2n+m)× n,
Z : (2n+m)× m.

and let eqn.(6) be written in the following form

MTθ =
[
θ
0

]
,

so we can obtain

ZTθ = 0.

Therefore, according to the eqn.(9), we have

ZT θ̂LS = ZT R̂−1
ψψr̂ψv.

From definition of ψ(k), p(k) and assumption of u(k)
and ζ(k), we have

plim
N→∞

r̂ψv = plim
N→∞

1
N

N∑
k=1

ψ(k)v(k)

= Mplim
N→∞

1
N

N∑
k=1

[
p(k)
ζ(k)

]
v(k)

= M

 −plim
N→∞

1
N

N∑
k=1

y(k)v(k)
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= − [ M1 M2 Z
]  m





= −M1m,

so we can get the result as

ZT plim
N→∞

θ̂LS = −ZT
(
plim
N→∞

R̂−1
ψψ

)
M1m.

Hence a consistent estimate m̂ ofm can be determined
by, in the case of m ≥ n,

m̂ = −
(
D̂TWLSD̂

)−1

D̂TWLSZ
T θ̂LS , · · · (10)

where WLS is a positive definite weighting matrix, and
m × n matrix D̂ is

D̂ = ZT R̂−1
ψψM1.

Therefore, the BELS estimate θ̂BELS of θ can be ob-
tained as

θ̂BELS = θ̂LS + R̂−1
ψψM1m̂. · · · · · · · · · · · · · · · (11)

From eqn.(6), we have

θ̂BELS = (HTH)−1HT θ̂BELS · · · · · · · · · · · · · (12)
where (2n+m)× 2n matrix H is

H = M−T
[

I2n

O

]
.

In the next section, we will examine the BELS esti-
mate θ̂BELS .

4. Property of BELS estimate

We now analyze the properties of the BELS estimate.
Defining an n+m dimensional vector η(k) as

η(k) =
[
u(k)
ζ(k)

]
,

it follows from the definition of ψ(k) and p(k) that the

least-squares estimate θ̂LS in eqn.(8) can be written as

θ̂LS = −R̂−1
ψψM1r̂yy + R̂−1

ψψ

[
M2 Z

]
r̂ηy

where

r̂yy =
1
N

N∑
k=1

y(k)y(k), r̂ηy =
1
N

N∑
k=1

η(k)y(k).

On the other hand defining a matrix P as

P = D̂TWLSD̂,

the BELS estimate θ̂BELS can be written from eqn.(10)
and eqn.(11)

θ̂BELS =
[
I − R̂−1

ψψM1P
−1D̂TWLSZ

T
]
θ̂LS .

Noting that[
I − R̂−1

ψψM1P
−1D̂TWLSZ

T
]
R̂−1
ψψM1 = 0,

we have

θ̂BELS =
[
I − R̂−1

ψψM1P
−1D̂TWLSZ

T
]
R̂−1
ψψ

· [ M2 Z
]
r̂ηy.

Then defining a 2n × n matrix Ĉ and a 2n × (n + m)
matrix K̂ as respectively,[

Ĉ K̂
]
= (HTH)−1HT R̂−1

ψψM,

so θ̂BELS can be described by

θ̂BELS =
[
K̂ − ĈP−1D̂TWLSF̂

]
r̂ηy · · · · · · (13)

where m × (n+m) matrix F̂ is

F̂ = ZT R̂−1
ψψ

[
M2 Z

]
.

From the definition of Ĉ, K̂, D̂ and F̂ , we have[
Ĉ K̂

D̂ F̂

]
=
[
(HTH)−1HT

ZT

]
R̂−1
ψψM,

[
Ĉ K̂

D̂ F̂

]
M−1R̂ψψ =

[
(HTH)−1HT

ZT

]
.

Post-multiplying by H on both sides yields[
Ĉ K̂

D̂ F̂

]
M−1R̂ψψH =

[
I2n

O

]
.

Considering ψ(k) = Mp(k) in above equation gives[
Ĉ K̂

D̂ F̂

] [ −R̂yp

R̂ηp

]
=
[

I2n

O

]
,

and thus,[
K̂ − ĈP−1D̂TWLSF̂

]
R̂ηp = I2n · · · · · · · · · (14)

where

R̂yp =
1
N

N∑
k=1

y(k)p(k)T ,

R̂ηp =
1
N

N∑
k=1

η(k)p(k)T .

If the dimension m of the introduced vector ζ(k) is equal
to n, it follows from the definition of η(k) that the di-
mension of η(k) will become to 2n and be equal to the
dimension of the data vector p(k). That means the ma-
trix R̂ηp is square matrix.
Therefore, if matrix R̂ηp is non-singular, we can see from
eqn.(13) and (14) that the BELS estimate θ̂BELS be-
comes as follows:
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θ̂BELS = R̂−1
ηp r̂ηy

=

(
N∑
k=1

η(k)p(k)T
)−1 N∑

k=1

η(k)y(k). · · · · · · · (15)

From the assumption of u(k) and ζ(k), we have

plim
N→∞

1
N

N∑
k=1

η(k)v(k) = 0.

If

plim
N→∞

1
N

N∑
k=1

η(k)p(k)T

is non-singular, the variable η(k) can satisfy the condi-
tion of the instrumental variable.
Eqn.(15) indicates that the BELS estimate θ̂BELS be-

longs to the IV estimate when the dimension m of the
BELS auxiliary vector ζ(k) is equal to the system order
n. Furthermore, in this case the BELS estimate dose
not depend on the choices of M and WLS .
In the following, the matrix M in the BELS meth-

ods which have been proposed so far are shown(where
m = n):
(1) OBELS2):

M =

 In
[
0 0

]
0 LT

0
[
0 In

]
−1

where matrix L is made by the coefficients of the poly-
nomial F (q−1) = 1 + f1q

−1 + · · ·+ fnq
−n.

LT =


1 f1 f2 · · · fn

1 f1 f2 · · · fn
. . . . . . . . .

1 f1 f2 · · · fn

 ,

(2) W.X. Zheng’s BELS8):

M =
[

I2n −L
0 In

]
,

(3) Y. Zhangs’ BCLS5):

M =

 In 0 −L1

0 In 0
0 0 In

 ,

(4) DBELS6):

M = I3n,

For this choice, the BELS estimate can be expressed as:

θ̂DBELS = θ̂LS + R̂−1
pp

[
In
O

]
m̂,

m̂ = −
(

R̂T
pζR̂

−1
pp

[
In
O

])−1 (
r̂ζy − R̂T

pζ θ̂LS

)
.

5. Simulation

To illustrate the theoretical results we now present
simulation studies.

Simulation setting

Consider the following system:

y(t)− 1.5y(t − 1) + 0.7y(t − 2)
= 1.0u(t − 1) + 0.5u(t − 2) + v(t)

where

v(t) = e(t)− 1.5e(t − 1) + 0.7e(t − 2).

input u(t) is normal random variable with variance 1,
e(t) is a white noise and the variance of e(t) is deter-
mined by SNR (SNR=5).
Let us examine when the polynomials F (q−1) are de-

scribed as the following case respectively :
Case1: F (q−1) = (1.0− 0.6q−1)(1.0− 0.8q−1);
Case2: F (q−1) = (1.0−0.6q−1)(1.0−0.75q−1)(1.0−

0.9q−1).
That is, we will examine the case of m=n and m > n.

The simulation results are shown in Table.1, Fig.1
(Case 1: m = n) and Table.2, Fig.2 (Case 2: m > n).
The mean values of the parameter estimates obtained by
the LS method (eqn.(3)), the BELS method (eqn.(12))
and the IV method (eqn.(15)) for ten runs are listed in
Table.1 and Table.2. The estimation errors are shown
in Fig.1 and Fig.2.
Simulation results demonstrates that the LS method

is unable to give rise to consistent estimates, whereas
the BELS method and the IV method are able to esti-
mate parameters consistently.
Table.1 shows that the values obtained by the BELS

method coincides completely with those by the IV
method for the case of m = n. This observation con-
firms the validity of the theoretical conclusion that the
BELS method belongs to the class of the IV method
when the dimension m of the BELS auxiliary variable
vector is equal to the system order n.

Table 1. Simulation result in Case 1 (SNR=5)

N a1 a2 b1 b2
LS method 50 1.1414 -0.3626 0.9179 0.7827

500 1.1310 -0.3558 1.0038 0.8795

2000 1.1435 -0.3674 0.9849 0.8499

IV method 50 1.5498 -0.7427 0.9301 0.4655

500 1.4978 -0.6987 0.9835 0.5142

2000 1.5023 -0.7014 0.9910 0.4997

BELS method 50 1.5498 -0.7427 0.9301 0.4655

500 1.4978 -0.6987 0.9835 0.5142

2000 1.5023 -0.7014 0.9910 0.4997

True value 1.5 -0.7 1.0 0.5

6. Conclusion

In this paper, we focus on the analysis and discussion
of the BELS method. In order to examine some recently
proposed bias-correction based method in a unified fash-
ion, we derived the BELS estimate by introducing the
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Fig. 1. || θ̂ − θ ||2 vs N LS: * , IV: + , BELS: ·

Table 2. Simulation result in Case 2 (SNR=5)

N a1 a2 b1 b2
LS method 50 1.1414 -0.3626 0.9179 0.7827

500 1.1310 -0.3558 1.0038 0.8795

2000 1.1435 -0.3674 0.9849 0.8499

IV method 50 1.4937 -0.6973 0.8989 0.5650

500 1.5017 -0.7018 0.9849 0.5023

2000 1.4995 -0.6994 0.9909 0.5096

BELS method 50 1.5334 -0.7394 0.9409 0.4435

500 1.4980 -0.6976 0.9865 0.5156

2000 1.5031 -0.7030 0.9913 0.4982

True value 1.5 -0.7 1.0 0.5

Fig. 2. || θ̂ − θ ||2 vs N LS: * , IV: + , BELS: ·

auxiliary vector ζ(k) and matrix M .
The theoretical analysis indicates that when the di-

mension m of BELS auxiliary variable vector is equal
to the system order n, the BELS method belongs to the
class of the IV method and the estimation accuracy is
not affected by the matrix M which is introduced in
order to estimate the asymptotic bias.
Simulations are performed to validate the theoretical

discussions.
(Manuscript received June 2, 2000, revised December

5, 2000)
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