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Abstract

This paper aims at showing the benefits of a statistical analysis applied to DC-DC converters. A boost converter
under current-mode control operating chaotically was being used as an example. Theoretical results are verified
by measurements. Parallels to results other researchers are drawn. New simple expressions for the DC value
of the boost’s input current and the AC power are proposed. The statistical approach covers the periodic and
aperiodic behavior quite naturally. It reveals that almost all AC power is contained in the chaotic part of the
input current. Impacts on meeting electromagnetic interference regulations are suggested.
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1 Introduction

Recently, statistical analysis has attracted some at-
tention in power electronics [3], [6], [9]. Randomized
or chaotic modulation schemes are able to reduce the
peaks of the switching harmonics. This is important
since all electrical and electronic devices in the Euro-
pean Community have to meet certain electromagnetic
interference (EMI) requirements. The specified EMI
regulations actually favour a broadband spectra over a
narrow one. The idea of operating DC-DC converter
chaotically was proposed in order to ameliorate power
supply interference since spectral spreading comes nat-
urally with chaos [3], [4]. The advantage with respect
to size and cost is evident.

In Section 2 the boost converter used throughout this
paper and its embedded map is introduced very briefly.
Section 3 analyzes the map statistically and highlights
the straightforward determination of the Lyapunov
exponent. Section 4 calculates the DC value of the
input current and the AC power based on the moments
of the map and compares the values with experimental
results. Section 5 analyzes the AC power associated
with the input current ripple.

2 Chaotic Boost Converter

Fig. 1 shows the current programmed PWM boost
converter used to verify the analytical results. The
primary control variable is the reference current I,.
By changing this parameter while keeping the load
resistance constant, i. e. changing the conversion voltage
ratio, the converter may operate chaotically. Chaotic
behavior is typical for DC-DC converters under current-
mode control\“i‘f operated with a duty cycle larger than
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Figure 1. Boost converter. [T = 100 us, [L] = 1 mH,
[C] =0.16mF, [R] =929, [Vi]]=10V.

one half. Traditionally, this behavior has been regarded
as unstable. It was consequently prevented by a
stabilizing ramp in the inner current loop. This paper
omits the ramp in the analysis and in the practical
design.

Practically, the reference variable is adjusted by a
voltage feedback loop. As the dynamics of this feedback
is slow compared to the frequency of the switching
process, I, will be assumed constant throughout this
paper. The converter is peak current controlled. As
long as the switch is closed the input (inductor) current
i(t) increases linearly until it reaches I,. All clock
impulses 7' are ignored during this time. The switch
opens and the current decreases until the next clock
pulse causes the switch to close. .

If the voltage feedback loop perfectly accomplishs its
goal a constant output voltage V, may be assumed.



Then the input or inductor current of the boost
converter is given by

’L(t) — I'n, + &1 (t - 7—27’1,) Ton <t< T2n+17 (1) .
I+ e (t — Tont1)  Tonta <t < To(nga)
where the slopes ¢; and ¢z are defined by
ca=V;/L and ¢y =(V;-V,)/L (2)

for the on and off interval, respectively. The current
waveform is depicted in Fig. 2 indicating continuous-
conduction mode.

i(t)

Ton T2n+1 T2(n+1)

Figure 2. Chaotic waveform of boost’s input current in
continuous-conduction mode.

Using the relations illustrated in Fig. 2

tn =Txn, t,=T(1 -z, mod1) (3)

the one-dimensional discrete return map embedded in
the dynamical system may be derived as

(4)
The modulo function returns the fractional part of a
number. Thus, every number may be represented by

(5)
where the floor function |-| gives the greates integer
less than or equal to a number.

The map g defined by (4) is the Rényi Map. It
approximates the dynamics of the converter sufficiently.
This result has already been reported in [1], [2], [3]-
The parameter a characterizes the voltage ratio of the
converter

Zni1 =g (zn) =a(l —z, mod 1).

z =z mod 1+ |z

a=V,/V; — 1. (6)

Since V,, > V; holds for a boost, « is positive. For a
larger than one the map (4) is chaotic. This corresponds
to a duty cycle larger than one half. ‘
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3 Statistical Analysis

For this PWM boost converter under current-mode
control, the statistical analysis boils down to the
corresponding analysis of the embedded discrete return
map (4). The statistical analysis models the input
current as an impulse process y(t) by taking its second
derivative ‘
%

d
y(t) = FTo)

=S -, ()
n=0

This transforms the input current into a sequence of
delta functions of area Vo/r. This area is the difference
between the slopes ¢; and ¢y. For o larger than one the
sequence will be chaotic. The positive delta functions
occur at even 7,, i.e. they coincide with the multiples
of the clock impulses that cause the switch to close.

These occurrences are generated by the map (4). The
scenario is illustrated in Fig. 3.
Vo/L
1 73
To T2 T4 ot
Vo/L
T:E1 . /
T(1+[xz1))
T+ =]+ T2)
T+ o] + 1+ [22])
Figure 3. Chaotic impulse process.
The chaotic impulse process is ergodic. Therefore,

time averages may be replaced by ensemble averages
with respect to the invariant density of the Rényi Map
that governs the chaotic impulse process. The Rényi
Map possess an invariant density p(z) that is absolutely
continuous with respect to the Lebesgue measure on
the interval [0,«). This density is ergodic, unique and
asymptotically stable [3]. The evolution of this density
is governed by the Frobenius-Perron-Operator (FPO),
generally defined by

P () = / 51z — 9(#)pn () d3. (®)

The FPO of the Rényi Map is denoted by the symbol
P and explicitely given by

n(x)

Pola) =Y ~p(n-2),

n=1

)
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with
_ ) el if z<g(a),
nie) = {Laj +1 if z> g{a). (10)

The invariant density is the fixed point of the FPO and
may be obtained by iterated action of the FPO on any
initial density po(z)

lim P"pg(z).

p(z) = lim (11)
The initial density may be any nonnegative function
with integral one. The invariant density is piecewise
constant and determines the evolution of the inductor
current samples via the map. All relevant properties
of the current may be expressed with respect to the

embedded map.

Recent findings about border-collision bifurcations in
DC-DC converters suggest that the sudden onset of
chaos is typical for these systems [10]. The statistical
approach indicates the transition compactly through
the Lyapunov exponent

Va: A, =& (In|dg/dz|) =Ina. (12)
The operation £(-) stands for computing the mathemat-
ical expectation with respect to the invariant density.

At a glance

Va>1: A; >0, (13)
indicating chaos. This seems to be more accessible
than solving a system of nonlinear equations in order to
determine the critical value of the bifurcation parameter

based on the A-switching map as suggested by [5].

4 Moments of the Current

In [1], the first moments of the map have been
explicitly calculated for integer o

k .
E(ak) = =, k=1,2....

v) = P ; (14)

The DC value of the input current may be calculated

from these moments

. TV; ma(a)
I= )| =1, — : 1
E[z( )} ‘ 2L m () (15)
For integer o this expression simplifies to
I =1, —aTV;/(3L). (16)

Note that (16) is identical to a recently published
result’ [7], [8] repeated here for convenience

I, =(1+a)’-Vi/R+aTVi/(3L). (17)

LA charge balance approach was being used.
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In order to highlight the identity, substitute (6) appro-
priately into (1 + @)?V;/R yielding

(Vo/Vi)? - Vi/R = P,/ V;. (18)

In an ideal converter the output power P, is equal to
the input power P;. Therefore,

P/Vi=PJVi=1I =1. (19)

Accordingly, the DC value of the input current must be

I=(01+a)? Vi/R. (20)

Back-substituting (20) in (17) shows the identity to
(16).

In the periodic case (@ < 1) the concept of the duty
cycle d =t,/T may be invoked. The duty cycle is a
stable fixed point of the map (4). The input-output
voltage ratio is well-known in that case

V,/Vi=1/(1 - d). (21)

According to (6) the following relation between d and
a holds

1/(1-d)=1+a. (22)

Inserting (22) in (20) leads to the well-known equation
for the DC value of the input current in the periodic
case

I=1/(1-d)?*-V;/R. (23)

Thus, (20) is identical to a result long known from state-
space averaging in the periodic case. Note however,
that the duty cycle concept may not be extended to
aperiodic operation. This underlines the benefits of the
statistical approach.

Fig. 4 compares (20) with measurements. The
agreement is evidently satisfactory. The DC value of
the input current has been directly measured. To apply °
(20), (17) is solved for a and a given I,.. The control
variable I, is known from the experimental setup.

When comparing (16) and (20) one should bear in
mind that the feedback control introduces a dependence -
between a and T,.. This issue was alluded to in [7].

Although (16) and (20) are exact only for integer «
they reasonably estimate the periodic (o < 1) and the
aperiodic case (o > 1). A detailed comparison between
the integer and non-integer case for (16) was made
in [1]. The estimate is good up to a certain « as
parasitics (such as copper losses of the inductance) are
not considered. This becomes also apparent in Fig. 4.
The deviation grows as a increases.

~ Provided the output voltage has been measured,
there is the direct way of calculating a from (6). If a is
determined that way and then used in (16) the result is
slightly larger than the corresponding value in Fig. 4.
If the same « is inserted in (20) the result is slightly
less than the one in Fig. 4.
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Figure 4. Calculated DC value of inductor current

according to (20) and measurement.

The discrepancy may be relaxed by considering
parasitic effects. For example, taking the copper losses
of the incuctance Ry, into account, (6) becomes

14

1—&1—(1-}-(1)2

1 =2,
1+ a) 7 V.

(24)
The procedure mentioned above has been repeated with
Ry, =0.199. The disagreement reduces further. This
supports the conclusion that considering all parasitic
effects gives a consistent picture.

In order to consider design issues, EMI regulations
and hence filtering issues the AC power associated
with the ripple of the inductor current is crucial. An
analytical expression for the AC power that corresponds
to the variance of the input current has been derived in

[1]
Pac = E{[i(t) —1]2} ~ 11—8 (TLV a)z.

The approximation in (25) becomes exact for integer
a. Fig. 5 compares (25) and the measured AC power.
The agreement is remarkable, suggesting that (25) is
a sufficient approximation for all a. The deviation
apparently increases with growing a. Again, this is due
to the parasitic effects not considered in (25). If «
stems from (6) the AC power will be slightly less than
the one shown in Fig. 5.

(25)

‘"The rms value of the current through the output
capacitor has been measured. The squared rms value
corresponds to the power delivered to a one Ohm
resistance. This assumes that only AC current passes
through the capacitor.’
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Figure 5. Calculated AC power associated with ripple
of inductor current according to (25) and measurement.

5 AC Power Analysis

One of the major advantages of the statistical
approach is its ability to analyze the AC power via
the power density spectrum (PDS). The periodic part
of the PDS, i.e. the PDS at the clock frequency and
its harmonics, was calculated in [3]. Explicit analytical
expressions for the PDS at all frequencies were presented
in [1], facilitating the further investigation of the AC
power. The way to arrive at the PDS is summarized in
the following.

The PDS of the input current S(w) may be calculated
from the PDS of the chaotic impulse process S5(w)
because they are related to each other by linear time-
invariant operations [9]

. Yie (i) 2
s = o L e (- 6F) el )
where
.
Vi (ju) = / y(t)e it (27)
J |

is the Fourier transform of the impulse process in Fig. 3.
The upper limit 7* denotes the expectation value of
the total time Ty for a large number N of switching
cycles

Then
VT* 3N Tn(zy) <T* < Tyi1(zn) (29)
and
N
Tn(zn) =T Y 1+ |a). (30)
n=1
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Note the correspondence of (30) to Fig. 3. The
. expectation value of the i switching interval &(T%;)
may be calculated via the first moment of the Rényi
Map, ie. an ensemble based expectation

E(T) =T / (1 + |z ))p(z)dz
0 ' (31)
TN(H}”) '

lim
N—oo

=T(1+1/a)mi(a)

After some manipulation the PDS of the impulse
process may be written as

C Sw) = V—"z——z—{lm lim 2%32(—1)”
L E(Tsi) N—ooo oy (32)
(1= (n+1)/2/N) Re[6, ()]}
where
O, (w) =& (e™) (33)

are the characteristic functions, i.e. the Fourier trans-
forms of the densities p(7,) of the switching instants
Tn. Fig. 6 compares the numerical implementation of
(26) and (32) with measurements for o = 2.1. The

AN T ————T—

. S (w)[ldBm] .

T s 0 s a0 R
flkHz]
Figure 6. Calculated (straight line) and measured

(dashed line) power density spectrum of inductor
current for o = 2.1. ‘

agreement is acceptable, although the numerical code
does not predict the negative spike at about 13 kHz.

The PDS may be separated in a periodic (discrete)
and an aperiodic (continuous) part. The periodic part
of the AC power is calculated from the periodic part of
the PDS of the input current

BE¥HD, 121855, FRIZF

561

which for integer « is given by

TV:\?
7 .
The ratio P,/Pasc converges rapidly toward zero.
Almost all AC power must be in the chaotic part of the

input current at very low frequencies. This may impact
on the filter design of DC-DC converters.

1+«
P, =
P 3607

(35)

6 Conclusions

This paper applied a rigorous statistical approach to
analyze a boost converter. Theoretical results based
on this approach were validated by measurements and
compared with results other researchers. It has been
shown that statistical analysis may be a powerful tool
in power electronics. The analysis emphasizes that
chaotic operation does not need to be avoided. Simple
analytical expressions for the Lyapunov exponent, the
DC part of the input current and for the AC power
are presented. The latter compare favourably with our
measurements. The AC power can be split in a periodic
and a clearly dominating aperiodic part.

The analysis of the inductor current PDS reveals that
most of the power is being pushed to low frequencies if
the converter operates chaotically. Due to the nature
of the PWM control scheme the discrete part of the
spectrum does not vanish completely if a gets larger.
The power contained therein may be neglected for a
practical design, however. This is certainly beneficial
for meeting EMI regulations, since they are strict in the
radio frequency band but much more relaxed at lower
frequencies.

On the other hand, the power shift to lower frequen-
cies causes the inductor current and capacitor voltage
ripple to become larger. The power may even be
concentrated at frequencies that fall in the passband
of the boost converter’s output filter, possibly induc-
ing a not acceptable output voltage ripple. Clearly,
a careful trade-off between time-domain (ripple) and
frequency-domain (EMI) performance is required. The
fundamental advantage of chaotic operation of dc-
dc converters over “periodic operation is that such a
trade-off s at all a viable option. This is because pe-
riodi¢ ‘gperation aims at the best possible time-domain
performance but is forced to accept the worst frequency-
domain performance. The required compliance with
EMI standards then calls for expensive filtering efforts.
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