
Paper

An Improvement of Genetic Algorithms by Search Space Reductions

in Solving Large-scale Flowshop Problems

Non-member Zhao Yong (Kyoto Institute of Technology)

Member Nobuo Sannomiya (Kyoto Institute of Technology)

While searching for suboptimal solutions for large-scale problems, it is critical to force search algorithms
on promising regions. This paper presents genetic algorithms with search space reductions (RGAs) and their
application to solving large-scale permutation flowshop problems. The reduced search spaces are defined by
adding precedence constraints generated by heuristic rules. To balance between the size of reduced spaces
and the risk of missing good solutions, a set of consecutively included search spaces is proposed. RGAs
are implemented and their performance is tested on a large-scale flowshop problem. Primary experiments
show that the RGAs outperform the standard genetic algorithms greatly. Moreover, we propose an improved
uniform crossover operator which preserves the precedence constraints to focus genetic search on the specified
search spaces. It is shown from computational experiments that the mechanism of search space reductions
works well with GAs and RGAs outperform standard genetic algorithms significantly.

Keywords: genetic algorithm, search space reductions, permutation flowshop scheduling problem

1. Introduction

Genetic algorithms (GAs) (1) have been widely used
in solving scheduling problems because of their robust
performance and easy implementation. For problems
which are difficult to solve by other optimization al-
gorithms, GAs are the algorithms on hand that really
work (2). GAs keep a good balance between exploration
and exploitation of the solution spaces. However, for
some large-scale problems with extremely complex so-
lution spaces, it has been suggested that the standard
GAs are not efficient in getting a suboptimal solution
in limited computational power (3).
Like many other evolutionary algorithms GAs start

from some specified spaces and will converge finally to
some good-like spaces over some generations. Some-
times these spaces may be far away from the global
optimum. In this case the genetic search can not start
the exploration again because of losing constantly the
diversity in the population during the searching pro-
cess. This is the phenomenon of premature convergence,
which becomes very serious in solving large-scale prob-
lem with complex solution spaces.
Thus, tremendous research efforts have been focused

on finding most promising regions from the original
large solution spaces. These works can be roughly clas-
sified into two groups: the problem decomposition (4)

and the search space reduction (3). This paper aims at
improving genetic algorithms with search space reduc-
tion (RGAs). The search space reductions intend to
confine the original solution space to promising regions
with additional constraints. For some problems hard
to decompose, a heuristic-based reduction method has
shown its high performance (5).

A reduced search space may not contain the optimal
solution and in some bad cases the space may be far
away from good solutions. If the reduced search spaces
are too small, we have a risk of missing good results.
On the contrary, if they are too large, the reduction
mechanism does not really work. It becomes very im-
portant how the search space should be reduced. For
GAs which can explore the search space, we usually
choose a reasonably large reduced search spaces and let
the evolutionary algorithms do the exploration. In our
early paper (6), a method of choosing the size of reduced
search spaces was presented. In this paper, we propose
a set of consecutively included reduced search spaces
which have the broad space size and good concentra-
tion on the most promising spaces. This strategy is
more robust and better than the fixed reduced search
spaces.
Standard genetic operators are not designed well for

the reduction mechanism. That is to say, even if chro-
mosomes of a current generation are in the reduced
search spaces, those of the next generation may go far
away from the spaces. To focus the genetic search on
the reduced search space, special genetic operators are
needed to generate the chromosomes satisfying the orig-
inal constraints.
Flowshop problems viewed as sequence problems

(called permutation flowshop problems) are concerned
in this paper and the objective is to minimize the total
tardiness. The objective of this kind of flowshop prob-
lems is based on the job order, therefore the reduced
search spaces are generated by adding precedence con-
straints among jobs. In order to focus the genetic search
on the specified reduced spaces, we test the existing
crossover operators and propose an improved crossover

1010 T.IEE Japan, Vol. 121-C, No.6, 2001

Genetic algorithms with search space reductions

operator to preserve precedence constraints.
This paper is organized as follows. After a brief intro-

duction of the permutation flowshop problems, in sec-
tion 3 we generate precedence constraints by heuristic
rules and reduce the original solution space by those
constraints. In section 4, the design and components of
RGAs are shown and the crossover operators are dis-
cussed. An improved crossover operator and an algo-
rithm to generate the initial population are proposed.
In section 5, RGAs are tested for a series of permutation
flowshop problems and the results are reported. Finally,
the conclusion is presented in section 6.

2. Permutation Flowshop Scheduling Prob-
lem

Permutation flowshop scheduling problems were first
put forward in 1954 by Johnson and soon attracted the
researcher’s attention. Recently GAs have been applied
to solving permutation flowshop problems and the early
research has concentrated on the makespan problems.
With the high demands for modernization of manufac-
turing system, the tardiness becomes more and more
important as the objective. Reviews of applying GAs
to permutation flowshop problems are found in (2) (7).
In an n×m flowshop problem, n jobs need to be pro-

cessed on m machines in the same order. Each job i
consists of m operations oij(j = 1, ...,m) which must
be processed on machine mj with processing time pij .
Operation oij(j = 2, ...,m) can not start until oi,j−1

is completed. Assuming that all the job sequences
on the machines are the same, a permutation sched-
ule s can be represented by a sequence js

1 , ..., j
s
n, where

js
i ∈ {1, 2, · · ·n}.
Each job i has the release date ri and the due date

di. The objective is to minimize the total tardiness Cdue

given by

Cdue =
n∑

i=1

max(ci − di, 0) · · · · · · · · · · · · · · · · · · (1)

where ci is the completion time of job i. This problem
is an NP-hard problem since one machine problem with
the same criterion has been proved to be NP-hard (8).

3. Reduction of Search Space

3.1 Reduction Rules For a permutation flow-
shop problem with n jobs, all the n! alternative se-
quences can be mapped to schedules and all these sched-
ules compose the original solution space A. The size of
solution space explodes exponentially with the increase
of job number. But after analysis of the original data,
it is found that it is unreasonable for some jobs to be
processed before other jobs in a good solution. It gives
us a suggestion that only some parts of solution space
A is promising and the genetic search should be focused
on the search spaces reduced by restricting precedence
among jobs.
Defining the start time windows of jobs is a straight-

forward way to reduce the search space. For the first
operation of job i, we predict the earliest start time

headi and latest start time taili . As shown in Fig. 1,
the start time window of job i is defined as the interval
between headi and taili.
For the flowshop problems with release dates, the

headi is set as the release date of job i and the taili
is defined as a function f of ri, di and pi, where pi is
the total processing time of all operations of job i. Thus
we have

headi = ri · (2)
taili = f(ri, di, pi) · (3)

pi =
m∑

j=1

pij · (4)

Fig. 1. Start time window

The function f enables us to adjust the size of re-
duced search space. In Fig. 1, the latest start time taili
of job i is smaller than the earliest start time headj of
job j. It means that the job i should precede job j.
Consequently if taili < headj then we get a precedence
constraint such that job i should be processed before
job j noted as Jobi ≺ Jobj . Thus we define the follow-
ing expression for three possible precedence relations
between job i and job j.

wij =



1 if Jobi ≺ Jobj
−1 if Jobi � Jobj
0 otherwise

· · · · · · · · · · · · · · (5)

By comparing the start time windows between any
pair of jobs, we get the following precedence matrix W
which records all precedence constraints among jobs.

W =




0 w12 · · · w1n

w21 0 · · · w2n

...
...

. . .
...

wn1 · · · · · · 0


 · · · · · · · · · · · (6)

wij = −wji · (7)

A schedule is called a legal schedule if it satisfies
all precedence constraints in matrix W . The reduced
search space R is composed of all the legal schedules,
i.e.

R = {s|s ∈ A, s satisfies constraints in (6)} (8)

It is important to set the start time windows of jobs
by giving the function f. If we narrow the start time
windows by adjusting function f , more constraints can
be got and the search space is reduced. However it runs
the risk of missing good results. On the contrary, if
the constraints are too loose, the search space reduction

電学論 C，121巻 6号，平成 13年 1011

does not really work. Rational tails can be calculated
with the upper bound already known. In this paper,
two parameters α and β are introduced to adjust the
size of the reduced search space where 0 < α < 1 and
β > 0. The tail of job i is defined as follows:

taili = ri + α(di − ri − pi + βpi) · · · · · · · · · · · (9)
A recommendation of setting these two parameters

is shown in the following sections and the computa-
tion results also show that the algorithm works very
well. But whether the method can effectively reduce
the search space highly depends on the characteristic of
job data. This method does not work well in the worst
case which all jobs have the similar release or due dates.
However, for the real problem in which these dates are
well-distributed, the reduction method works very well.

3.2 Consecutively Included Search Space
There is no guarantee that the reduced search space con-
tains an optimal solution. As mentioned before, choos-
ing small search spaces may run the risk of missing good
results. On the contrary, the reduction method does
not work if the reduced search spaces are too large. It
is hard for reduced search spaces to balance their size
and the solution quality.
Therefore, in this paper a set of consecutively in-

cluded search spaces is proposed. Instead of using re-
duced search spaces with fixed size, we define k con-
secutively included search spaces Ri, i = 1, · · · , k where
Rk−1 ⊂ Rk. The small search spaces intend to get good
results in the early steps and the large search spaces pro-
vide opportunities to reach good solutions in the final
steps.

Fig. 2. Search space reduction

Fig. 2 shows the consecutively included search spaces
which are generated by continuous change of the pa-
rameter α in (9). A is the original solution space
which contains all the schedules. Reduced search spaces
Rαi, i = 0, · · · , k are the subset of A. If αi1 is smaller
than αi2 then Rαi1 is a subset of Rαi2 . Therefore the
set of consecutively included search spaces can be rep-
resented as SR = {Rα0, Rα1, · · · , Rαk; α0 = 0, αk =
1 and α0 < α1 < · · · < αk}
It is noted that the reduced search space Rα0 con-

tains only one schedule and the schedule is given by the

heuristic result of ERD (earliest release date).

4. Design of GA

4.1 Main Algorithm GAs in this paper follow
the frame of the standard GA (SGA) (1). A chromosome
is represented by a sequence of jobs as follows.

s = j1 j2 · · · jn, ji ∈ {1, 2, · · · , n} · · · · · · · · · (10)
We use 2-tournament selection (9) as a selection oper-

ator and the insertion operator (10) as a mutation oper-
ator. The proposed algorithm is described as follows:

Main Algorithm:

Step 1. Reduce the original search space.
Step 2. r := 0. Generate the initial population
with POPSIZE chromosomes in the reduced
search space.
Step 3. Select two chromosomes randomly and
perform crossover operation for them. Repeat
this procedure Pc ∗ POPSIZE times.
Step 4. Perform mutation operation with
probability Pm for all chromosomes.
Step 5. Evaluate all chromosomes.
Step 6. Construct the new generation with
POPSIZE chromosomes chosen from chromo-
somes pool by 2-tournament selection.
Step 7. r := r + 1. If r > GEN then stop.
Otherwise go to step 3.

The proposed RGAs start from the procedure for re-
duced search space (either fixed search spaces or consec-
utively included search spaces) and the genetic search
is carried out by being continuously focusing on space.
For this purpose, a crossover operator is proposed as
follows.

4.2 Proposition of Crossover Operators
Many crossover operators have been developed for se-
quence representation of chromosomes, e.g. one point
crossover (1X), two point crossover (2X) and uniformed
crossover (UX). For permutation flowshop problems,
UX has been suggested as the best one (11). It takes
order information from one parent and inherits the re-
mained position information from the other parent.
However, UX does not guarantee that the offsprings

generated from two legal parents are still legal. Another
set of crossover operators which preserve the prece-
dence constraints were proposed in the work of applying
the genetic algorithm to project scheduling problems (9).
These operators maintain the precedence constraints by
preserving the common precedence. The variant forms
of 1X, 2X and UX are included in that set of crossover
operators. It was reported in (9) that the variant 2X and
the variant UX work very well.
We consider two selected parents P1 and P2 from

which two offsprings O1 and O2 will be generated. One
offspring O1 is generated as follows:

Variant UX (9):

Step1. Generate randomly a binary sequence
pi ∈ {0, 1}, i = 1, ...n. j := 1.
Step2. If pj = 1 then jO1

j := jP1
k where k is the

1012 T.IEE Japan, Vol. 121-C, No.6, 2001

Genetic algorithms with search space reductions

lowest index such that jP1
k /∈ {jO1

1 , ..., jO1
j−1}.

Otherwise jO1
j := jP2

k where k is the lowest
index such that jP2

k /∈ {jO1
1 , ..., jO1

j−1}.
Step3. j := j + 1. If j > n then stop. Other-
wise go to step 2.

The other offspring O2 is generated in the similar way
by exchanging P1 and P2 in the above algorithm. The
common precedence is transparently translated from
the parents to the offsprings. It means that the off-
springs of two legal parents are also legal. More de-
tails and the proofs about the precedence preserving
crossover operators are found in (9).
After executing some preliminary experiments on

flowshop problems (6), it is found that the variant UX
sometimes performs much worse than standard UX al-
though standard UX may generate illegal chromosomes.
The reason is that the diversity among chromosomes is
continuously lost in the case of applying variant UX.
In this paper, a constraint maintained UX (CMUX) is
proposed in such a way that the merits of both UX
and precedence preservation method are gained. It
starts with offsprings of standard UX and has a re-
pair mechanism to make the offsprings legal with less
possible variation. In order to accelerate this process,
the sequence (UH1, ..., UHn) is defined where UHi =
max(headjo

1
, headjo

2
, ..., headjo

i
) (o is the offspring pro-

duced with standard UX). Starting from offspring o, the
CMUX works as follows :

CMUX Constraint Maintained UX:

Step 1. UH1 := headjo
1
and k := 2.

Step 2. If tailjo
k
> UHk−1 then UHk :=

max(headjo
k
, UHk−1) and go to step 6.

Step 3. Find the maximal j such that UHj <
tailjo

k
. If UH0 < tailjo

k
then j := 0.

Step 4. Insert jo
k at position j + 1.

Step 5. Rearrange (UHo
j ,...,UH

o
k).

Step 6. k := k+1. If k > n then stop. Other-
wise go to step 2.

Theorem 1 The result of CMUX is a legal schedule.
Proof: After applying CMUX, the schedule o and

sequence (UH1, ..., UHn) are obtained where UHi =
max(headjo

1
, ..., headjo

i
) and tailjo

k
> UHk−1.

Assuming there are two jobs jo
a and job jo

b with a < b
which do not satisfy the precedence constraint such that
jo
b should precede j

o
a, Then headjo

a
> tailjo

b
. Since a < b

we have tailjo
b
> UHk−1 > UHa > headjo

a
. This is con-

trary to the former equation.
Fig. 3 shows a result of the Standard UX, Variant UX

and CMUX for a simple permutation flowshop problem
with 10 jobs(n = 10) . In this figure, the generation
of one offspring is shown. In reducing search space, we
have the precedence constraint Job6 ≺ Job10. Two par-
ents P1 and P2 are legal solutions which satisfy that
constraint. For the Standard UX, their offspring is not
a legal solution. For the Variant UX, the offspring is le-
gal. For the CMUX, we get a legal offspring with small
variation from the UX result.

Fig. 3. Example of applying various crossover op-
erators to a problem with constraints such as job 6
precedes job 10 and job 9

4.3 Initial Population An initial population
with high quality can greatly improve the result of
the genetic algorithm. In (7) (12), the initial population
is composed of chromosomes created by dispatch rules
and randomly generated chromosomes. In this paper,
step 1 and step 2 of Main Algorithm are carried out to
generate the initial population from the reduced search
space. Corresponding to the procedure, we have two
GAs called RFGA and RCGA, where the RFGA is
based on the fixed search space and the RCGA uses
the consecutively included search spaces.
For both algorithms, β in (9) are manually set as con-

stants. In RFGA, all the initial chromosomes are chosen
from the same reduced search space where α is fixed as
1.
In RCGA, we generate a set of consecutively included

reduced search spaces SR. The number of search spaces
in SR is set as the population size of GAs. We choose
the first chromosome from Rα0, then choose the next
chromosome randomly from Rα1 and so on. The RCGA
generates the initial population as follows:

RCGA:

Step 1. i := 1.
Step 2. αi := (i− 1)/(POPSIZE − 1) in (9).
Step 3. Build the reduced search space Rαi.
Step 4. Choose chromosome i in the reduced
search space Rαi .
Step 5. If i > POPSIZE then stop; otherwise
i := i+ 1 and go to step 2.

4.4 Harmonization Algorithm The harmo-
nization algorithm aims at mapping an arbitrary sched-
ule into the reduced search space with small variations.
This procedure is carried out at step 2 and the muta-
tion operator in step 4 in Main Algorithm described in
section 4.1.
The procedure is executed by repeatedly checking all

precedence constraints. If the order of two jobs violates

電学論 C，121巻 6号，平成 13年 1013

the precedence constraints, then swap these two jobs.
The process stops until all the precedence constraints
are satisfied. Although this harmonization algorithm
is time consuming, it is still accepted because it is ex-
ecuted only for generating the initial population and
applying the mutation operation.

5. Computation Results

In our early paper (6), some preliminary experiments
on 200 × 3 permutation flowshop problems with uni-
formly distributed due-dates demonstrated that the re-
duction mechanism can improve the performance of
GAs significantly. In this paper, two sets of problems, a
set of 200× 3 problems with different data distribution
and another set of larger size problems with 500 × 10,
are generated and tested. For both sets of problems,
the processing times are uniformly distributed between
0 and 100. The release dates are uniformly distributed
between 0 and lower bound of makespan (LP) and the
due date of job i is uniformly distributed in the range
[ri + Pi, LP + Pi].
We test RCGA and RFGA by changing parameter β

to clarify the robustness of RCGA and RFGA. Some
experiments on crossover operators are also executed.

5.1 Parameters of GAs The settings of GAs
are shown as follows: The population size of GAs is set
to 500 and the algorithms stop after 5000 generations
unless a specific generation is described. Crossover rate
Pc is 1.0 and Mutation rate Pm is 0.05. For all GAs,
the heuristic solutions ERD and EDD are added into
the initial population.
Algorithms have been implemented inC language and

run on SUN ULTRA 60 workstation. One single run
of RCGA and RFGA with UX for 500 × 10 flowshop
problem usually takes 2.9 hours, a little slower than 2.7
hours taken by standard GA. RCGA and RFGA with
CMUX, which take time on crossover operator, cost 4.2
hours (β = 20)or more hours (β < 20). Considering
the longer computation time, all the computation re-
sults are based on the average of 5 runs on each of 5
randomly generated problems.

5.2 RCGA, RFGA vs. SGA Fig. 4 shows
the variation of suboptimal objective value with gener-
ation for RCGA, RFGA and SGA with UX for two sets
of problems. The generation is extented to 20000 in
solving the 500× 10 problems. For all problems includ-
ing problem in (6), RFGA outperforms SGA and RCGA
outperforms RFGA. RCGA converges very fast and the
final result is far better than RFGA and SGA. As an
example, for 200×3 problems, RCGA takes 22 minutes
to converge at 2000 generation and its result is almost
one third of the result obtained by RFGA at 5000 gen-
eration with 55 minutes.

5.3 Reducing search spaces As mentioned in
section 3, the parameter β which determines the size
of reduced search spaces is difficult to be set. This ex-
periment is carried out to investigate the effect of β on
RFGA and RCGA. In this experiment, we choose the
standard UX as the crossover operator.
Fig. 5 shows the variation of suboptimal objective

Fig. 4. Convergence curves for various GAs

Fig. 5. Variation of suboptimal objective value
with β

1014 T.IEE Japan, Vol. 121-C, No.6, 2001

Genetic algorithms with search space reductions

value with β for RCGA and RFGA. It is observed that
the result of RCGA is better than those of RFGA and
SGA for all β. RFGA makes only a little improvement
on SGA for 200 × 3 problem. It is also observed that
RCGA is robust for β while RFGA depends on β a lit-
tle. To conclude, the solution quality for all algorithms
is quite steady in wide range of β.

5.4 Comparison of Crossover Operators
Experiments are also carried out to test crossover op-

erators. The computation results show that for all β
and for both RCGA and RFGA, CMUX always out-
performs standard UX and works very well in several
cases although CMUX may need more computation
time. Fig.6 shows the average convergence curves for
various crossover operators when β = 20 for 200 × 3
problems.

Fig. 6. Convergence curves for various crossover
operators (β = 20, 200 × 3 problem)

5.5 Analysis The reduction mechanism perfor-
mance is different with data distribution and size. For
instance, the 200× 3 problems in this paper seem more
difficult for RFGA than 200× 3 problems in (6).
Despite of the different performances of RGAs

(RFGA and RCGA) on different sets of problems, they
have the following two common points:

1. The reduction mechanism improves the so-
lution quality and convergence speed.
2. RCGA is robust and good as compared with
RFGA.

6. Conclusion

GAs have been improved by a technique of reducing
the search space for solving large-scale flowshop schedul-
ing problems. The reduced search spaces are defined
by adding precedence constraints generated by heuris-
tic rules. In this paper, consecutively included search
spaces have been used more effectively than reduced
search spaces with fixed size.
GAs with search space reduction have been tested for

some sets of flowshop problems. The computation re-
sults show that the performances of GAs are improved
significantly and GAs with the consecutively included
search spaces are more robust and better .
Some genetic operators maintaining genetic search

on the reduced search spaces have been proposed and
tested. The experiment results show that genetic oper-
ators designed carefully can be helpful in obtaining high
quality solutions.

(Manuscript received October 24, 2000, revised
February 15, 2001)

References

(1) D.E.Goldberg, Genetic Algorithm in Search, Optimization,

and Machine learning, Addison-Wesley, 1989.

(2) M.Gen and R.Cheng, Genetic Algorithm & Engineer Design,

A Wiley-Interscience Publication, 1997.

(3) S.Chen and S.F.Smith, “Improving genetic algorithm by

search space reductions” , Proceedings of the Genetic and

Evolutionary Computation Conference, Vol. 1 pp. 135-140,

1999.

(4) N.Sannomiya, H.Iima, K.Ashizawa and Y.Kobayashi, “Ap-

plication of genetic algorithm to large-scale scheduling prob-

lem for a metal mold assembly process”, Proceedings of 38th

IEEE Conference on Decision and Control, pp. 2288-2293,

1999.

(5) N.Ascheuer, “Hamiltonian path problems in the on-line op-

timization of flexible manufacturing systems”, Ph.D.Thesis,

University of Technology Berlin, Germany, 1995.

(6) Y.Zhao and N.Sannomiya, “A method for solving large-scale

flowshop problems by reducing search space of genetic algo-

rithms”, Proceedings of IEEE International Conference on

System, Man and Cybernetics-2000, pp. 1176-1781, 2000.

(7) T.P.Bagchi, Multiobjective Scheduling by Genetic Algo-

rithm, Kluwer Academic Publishers, 1999.

(8) M.R.Garey and D.S.Johnson, Computers and Intractabil-

ity,W.H.Freeman and Company, 1996.

(9) S.Hartmann, “A competitive genetic algorithm for resource-

constrained project scheduling”, Naval Research Logistic,

Vol. 45 pp. 733-750, 1997.

(10) V.A. Armentano and D.P.Ronconi, “Tabu search for total tar-

diness minimization in flowshop scheduling problems”, Com-

puters & Operations Research, Vol. 26 pp. 219-235, 1999

(11) S.Rana, A.E. Howe, L.D. Whitley and K.Mathias , “Com-

paring heuristic, evolutionary and local search approaches to

scheduling”. Third Artificial Intelligence Planning Systems

Conference, 1996.

(12) C.Reeves, “A genetic algorithm for flowshop sequencing”,

Computers and Operations Research, Vol. 22 pp. 5-13, 1995.

Yong Zhao (Non-member) received the M.E.in Electron-
ics and Information Science from Xi’an Jiao-
tong University, China in 1997. Since 1999,
he has been a doctor-course student at Divi-
sion of Information and Production Science,
Graduate School of Kyoto Institute of Tech-
nology. His research interests include combi-
natorial problems, genetic algorithms and pro-
duction scheduling.

Nobuo Sannomiya (Member) received the B.E., M.E. and
D.E. degrees in Electrical Engineering all from
Kyoto University in 1962, 1964 and 1969, re-
spectively. Since 1986 he has been a Profes-
sor at Department of Electronics and Infor-
mation Science, Kyoto Institute of Technology.
His present research interests include modeling
and optimization techniques, and their appli-
cations. Especially his research works are di-
rected toward genetic algorithm approach to

the optimal scheduling of manufacturing systems.

電学論 C，121巻 6号，平成 13年 1015

