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This paper deals with modeling, uncertain structure and µ-synthesis of a magnetic suspension system. The
dynamics of magnetic suspension systems are characterized by their instability and complexity of electro-
magnets, and they should be robustly stabilized in spite of model uncertainties. First we derive a nominal
design model of the plant under some assumption, then we investigate the gap between the real physical
system and the obtained nominal design model. This gap has complex structure which is expressed by the
structured uncertainties that includes linearization error, parametric uncertainties, and neglected dynamics.
Then we set the interconnection structure which contains the above structurally represented uncertainties.
Next we design a robust controller which achieves robust performance using the structured singular value
µ. Finally, we evaluate the proposed interconnection structure and verify robustness and performance of the
designed µ controller by several experiments.
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1. Introduction

Active magnetic suspension systems allow contact-
free suspension. They do not suffer from friction nor
wear, and this is the most important advantage of these
systems. This technology is now used for various indus-
trial purposes, and has already been applied to magnet-
ically levitated vehicles, magnetic bearings, etc. (1) (2).
Recent overviews, advances and applications in this field
can be seen in (3)～(5).
Since an active controlled-type magnetic suspension

system is inherently unstable, feedback control is indis-
pensable to stabilize the system. A conventional PID
controller is often employed as a feedback compensator,
and this method often yields enough stability and per-
formance, but owing to model uncertainties and changes
of the operating points, the entire system sometimes be-
comes unstable.
To avoid this problem, the approach taken here is an

application of robust control methodologies. It is well
known this is one of the effective control techniques for
unstable systems. On the control of magnetic suspen-
sion technology field, one of the most critical problems
is a description of a complex behavior of the dynamics
of electromagnets and their forces.
The exact description of this behavior is almost hope-

less, and even if it should be achieved by infinite di-
mensional nonlinear differential equations, the result-
ing model is only effective for the simulations/analysis,
but can not be used for a control system design as it
is. Then some approximations and assumptions must
be employed, and consequently the gaps between the
real physical system and the design model cannot be

avoided.
There are so many results of robust control of mag-

netic suspension systems, but in these results, the above
uncertainties have been treated as exogenous distur-
bances and as unstructured uncertainties (6)～(8), how-
ever, both of the uncertainty descriptions lead to conser-
vative analytic results for robust stability/performance
tests. The goal of robust control theory is not only to
get robust controllers but also to know the quantitative
limitation of stability/performance of the controller.
In (9)～(11), parameter perturbations were considered,

and the model uncertainties were described structurally,
this result succeeded to reduce the conservativeness of
analysis. But the considered model perturbation is
imaginary and they assumed that all model parame-
ters have same several percent uncertainties, but this
assumption can not fit the real physical phenomenon.
Recently the state-space control theory of uncertain

system with Linear Fractional Transformation(LFT)
has almost been settled up for practical use (12). LFT
have come to play an important role in control system
design, and provide a uniform framework for realization,
analysis and synthesis for uncertain systems. Now its
practical evaluation is extremely expected.
In this paper, we present the model and uncertainty

description of a magnetic suspension system by using
LFT, which contains less conservativeness for robust
stability/performance analysis. Further we propose a
method to quantify the magnitude of uncertainties.
Uncertainties we consider in this paper are the lin-

earization error of the electromagnetic force, unmod-
eled dynamics of electromagnet, and parametric un-
certainties. We structurally describe these three types
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Fig. 1. Magnetic Suspension System

of uncertainties by using real/ complex bounded num-
bers/matrices. For robustness analysis, we employ the
mixed structured singular value(mixed µ) test (13) to re-
duce conservativeness.
Finally, based on an uncertainty model, we derived a

µ controller. At the end of our paper, we evaluate the
proposed model and uncertainty structure by several
experimental results concerned to the robust stability
and robust performance.

2. Magnetic Suspension System and its Model

In this section, we introduce the most basic magnetic
suspension system which has only one degree of free-
dom. Then we derive an ideal mathematical model of
the system based on physical laws and several assump-
tions.

2.1 Construction of the system Consider the
elecromagnetic suspension system shown schematically
in Fig.1. An electromagnet is located at the top of the
experimental system.
The control problem is to levitate the iron ball sta-

bly utilizing the electromagnetic force. The ball’s mass
M is 1.04kg, and steady state gap X is 5mm. Note
that this simple electromagnetic suspension system is
unstable without feedback control. A standard induc-
tion probe of eddy current type gap sensor is placed
below the ball to detect the distance between the iron
ball and the electromagnet.

2.2 Mathematical Model First, we introduce
following assumptions (1) (2) (6) in order to derive a nom-
inal model of this system by physical laws.
[A1] Magnetic flux density and magnetic field do not

have any hysteresis, and they are not saturated.
[A2] There is no leakage of flux in the magnetic cir-

cuit.
[A3] Magnetic permeability of the electromagnet is

infinite.
[A4] Eddy currents in the magnetic pole can be ne-

glected.
[A5] Coil inductance is constant around the operating

point, and any electromotive force due to a motion
of the iron ball can be neglected.

Fig. 2. Nominal linear model for M.S.S.

These assumptions are not very strong and suitable
around the steady state.
Under these assumptions, we derive the following

three equations, which show an equation of the motion
of the iron ball, electromagnetic force and equation of
an electric circuit of the electromagnet, respectively.

M
d2x(t)
dt2

=Mg − f(t), · · · · · · · · · · · · · · · · · · · · (1)

f(t) = k
(

I + i(t)
X + x(t) + x0

)2

, · · · · · · · · · · · · · · · (2)

L
di(t)
dt

+R(I + i(t)) = E + e(t), · · · · · · · · · · · · (3)

where M is the mass of the iron ball, X is the steady
gap between the electromagnet(EM) and the iron ball,
x(t) is the deviation fromX, I is the steady current, i(t)
is the deviation from I, E is the steady voltage, e(t) is
the deviation from E, f(t) is the electromagnetic force,
k and x0 are coefficients of f(t) which are determined
by experiments, L is an inductance of the EM, and R
is a resistance of the EM.
In the case we apply the linear control theory with

respect to this system, the problem is that the equation
of the electromagnetic force (2) is nonlinear concerning
x(t) and i(t). Here we utilize the standard linearization
approach based on the Taylor series expansion around
the operating point.

f(t) := k
(

I

X + x0

)2

−Kxx(t) +Kii(t),

Kx :=
2kI2

(X + x0)3
, Ki :=

2kI
(X + x0)2

. · · · · · (4)

Moreover, the steady state equations are given by

Mg = k
(

I
X+x0

)2

and RI = E, then according to equa-

tions (1), (3), (4) and these two steady state equations,
the nominal transfer function of the magnetic suspen-
sion system is easily derived as

Gnom(s) :=
−Ki

(Ms2 −Kx)(Ls+R)
. · · · · · · · · · (5)

This equation shows the system is unstable and oscil-
latory. Further, in Fig.2 the nominal block diagram of
the magnetic suspension system is shown, and it shows
the structure of the plant. The positive feedback from
x to ẍ through Kx makes the system unstable.
The nominal model parameters are given in Table 1.
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Table 1. Model Parameters

Parameter Nominal Value Unit

M 1.04 [kg]

X 5.00 ×10−3 [m]

I 0.789 [A]

k 1.71 ×10−4 [Nm2/A2]

x0 -1.80 ×10−3 [m]

Kx 6.27 ×103 [N/m]

Ki 25.7 [N/A]

L 0.859 [H]

R 24.76 [Ω]

3. Structured Uncertainties

The derived nominal model (5) and/or Fig. 2 with
nominal model parameters works fairly well around the
steady state operational point. However, if the state of
the system deviates from the nominal operating point,
the model no longer suitably describes the physical sys-
tem.
We treat this gap as a model uncertainty, and we

make a new extended model, which is a set of plant
models, that is constructed with the nominal model and
model uncertainties. This set of models can cover the
relatively wider behaviors of the real plant, but still not
globally. This set is an extension of the nominal model.
The following three items are well known to be the most
general and serious uncertainties (14):

• Linearization Error
• Parametric Uncertainty
•Unmodeled Dynamics
We discuss these uncertainties in the following sec-

tions, and include them into the set.
3.1 Linearization Error There should be model

uncertainties caused by linearization of the electromag-
netic force, which was generated by the approximation
from equation (2) to (4).
In Fig.3, Current-Force (i− f) curve for a gap width

X=5.0mm is plotted in the upper figure, and Gap-Force
(x−f) curve at current I=1.15A is depicted in the lower
figure, where a symbol “◦” denotes measured experi-
mental data at each point, and solid curved lines show
the determined Current-Force and Gap-Force curve, re-
spectively. These curves are determined from the least
squares approximation laid on the equation (2). Two
dashed straight lines indicate tangents of each curve
at the operating points. These inclinations of tangents
are employed as Ki and Kx from equation (4), respec-
tively. The four dash-dot straight lines are sectors of
the linearization errors, which we will use them as sec-
tor bounds in the following.
Fig.3 shows that the perturbations between tangents

and curves become bigger if the operating points move
from the original points. These errors were caused by
linearization. Here we employ sector bounds to account
for the linearization error, and describe Ki and Kx as

Ki := Ki0 + kiδi, |δi| ≤ 1, · · · · · · · · · · · · · · · · (6)
Kx := Kx0 + kxδx, |δx| ≤ 1, · · · · · · · · · · · · · · (7)

Fig. 3. Current-Force Curve and Gap-Force Curve

where Ki0 and Kx0 are nominal values, ki and kx

are uncertainty weights determined from slopes of the
dash-dotted lines.

3.2 Parametric Uncertainty The first request
for the system is robust stability against unexpected
exogenous force disturbances. Another general demand
in practical use of the magnetic suspension system is a
flexible change of the mass of suspended objects. These
two specifications can be described by a parametric per-
turbation of a mass of the iron ball M . We describe it
as

1
M

=
1

M0 + kMδM
, |δM | ≤ 1, · · · · · · · · · · · · · (8)

where M0 is the nominal value, and kM is an uncer-
tainty weight.

3.3 Unmodeled Dynamics In this section, we
discuss the dynamics of electromagnets. Nominally it is
expressed by a transfer function GEM (s) := 1

Ls+R . It is
well known that an inductance L and a resistance R of
the electromagnet have frequency varying and gap(x)-
dependent characteristics. Further, these parameters
are very sensitive to be measured. Nominal values of L
and R are determined as averages of five measurements
under the condition f = 10Hz and X = 5mm. Figure
4 shows the experimental data of GEM (s), where the
solid curved line indicates the nominal frequency re-
sponse which is located in the center of a band, dashed
lines show upper and lower bounds.
The transfer functions of the electromagnet are dis-

tributed in a frequency dependent belt. Furthermore, if
the frequency of the input signal changes, this belt be-
comes broad. We describe this belt as an unstructured
uncertainty of the following:

GEM (s) :=
1

L0s+R0
+ wi(s)∆i(s),

|∆i(jw)| ≤ 1. · · · · · · · · · · · · · · · · (9)

Where L0 and R0, are the nominal values of L and
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Fig. 4. Frequency responses of GEM (s)

Fig. 5. Set of Plant Models with Uncertainties:

G̃(s)

R, respectively, and wi(s) is an uncertainty weight. The
magnitude of the weight wi(s) is determined as half of
the width of the belt in Fig.4.

3.4 Set of Plant Models: G̃(s) Up to now,
three types of uncertainties have been considered. Now
in this section, we use them to construct a model of
this plant. Actually, we make a set of plant models
G̃(s) in LFT form (12) which includes the above nomi-
nal model, linearization error, parametric uncertainties,
and unmodeled dynamics. Using the LFT representa-
tion, then the block diagram model of the system is
replaced from Fig.2 to Fig.5. The state space repre-
sentation of G̃(s) is easily derived, so in this paper it
is omitted. Now we have extended the nominal model
and obtained a set of plant models by LFT represen-
tation which is expected to express the relatively wider
behaviors of the real plant.

4. µ-Analysis and Synthesis

In this section, we design a robust controller for the
set of models G̃(s)

4.1 Quantification of Uncertainties The ob-
tained set of models G̃(s) gives only a structure of the
uncertainties, not a quantity of each uncertainty.
In the previous research, tuning of the design param-

eters was depended on experimental/ simulated trial
and error. Development of a systematic tuning method
for the design parameters is now expected. Further,
the physical limit of allowable perturbations for robust
stability/performance was not clear. We quantify the
amount of uncertainty based on a change of the oper-
ating point.

4.1.1 Change of the Operating Point Our
approach taken here is to determine the set of the plant
models based on the change of the operating point.
The operating point of this system is characterized by
a steady state gap {X | Xmin ≤ X ≤ Xmax}. As
a design specification for real applications, the range
{X | Xmin ≤ X ≤ Xmax} is expected to be wider, but
this change of the operating point X causes perturba-
tions of Ki and Kx, hence the allowable range of the
operating point {X | Xmin ≤ X ≤ Xmax} is limited.
After the several iterations of controller design and

control experiments, we have finally chosen the allow-
able range of the operation point as follows, where µ-
synthesis based on D − K iteration and the mixed µ-
analysis were employed[13,15].

{X | 3.8 mm ≤ X ≤ 6.2 mm} · · · · · · · · · · · · · (10)

4.1.2 Perturbation of Ki and Kx Any change
of the operating point X also causes the perturbations
of the parameters Ki and Kx. We utilize Fig.3 to deter-
mine the bound of the perturbations of Ki and Kx. A
magnetic force f and a gapX and a current I are related
each other, and are written in (2). This equation (2) is
transformed to (4) using the standard linearization ap-
proach based on the Taylor series expansion around the
operating point.
The experimental data corresponding to (2) is Fig.3.

A symbol “◦” denotes measured experimental data at
each point, and solid curved lines show the deter-
mined Current-Force and Gap-Force curve, respectively.
These curves are determined from the least squares ap-
proximation laid on the equation (2). In Fig.3, Current-
Force (i−f) curve for a gap width X=5.0mm is plotted
in the upper figure, and Gap-Force (x−f) curve at cur-
rent I=1.15A is depicted in the lower figure.
The following is a procedure to determine the bounds

of perturbations of Ki and Kx.
( 1 ) First, decide the operating point X, which has

a one-to-one correspondence to I, hence the I is
fixed. The operating point in the horizontal axes
in Figs 3 (upper and lower) have been fixed.

( 2 ) Calculate tangents of each curve at the oper-
ating points. These inclinations of tangents are
employed as Ki and Kx from equation (4), re-
spectively. In Fig. 3, two dashed straight lines
indicate tangents.

( 3 ) Change the operating point, and continue
step(1) and step(2).
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In this case, parameters Ki and Kx perturb as 14.1 ≤
Ki ≤ 37.3 and 5.38×103 ≤ Kx ≤ 7.16×103 (3.8 ≤ X ≤
6.2). Then we describe Ki and Kx as below.

Ki = 25.7 + 11.6 · δi, |δi| ≤ 1, · · · · · · · · · · · (11)
Kx = 6.27× 103 + 8.90× 102 · δx,

|δx| ≤ 1. · · · · · · · · · · · · · · · · · · · · · · · (12)

4.1.3 Dynamical Uncertainties Uncertainties
in the dynamics of electromagnet wi(s) is also consid-
ered in this section. wi(s) is not only an uncertainty
of the dynamics of electromagnet but an important de-
sign parameter. After several design iterations, the final
bound of wi(s) and GEM (s) has been chosen to obtain
an appropriate robustness as below.

GEM (s) :=
1

0.859s+ 24.8

+
1.28× 10−3(s+ 3.20)(s+ 900)

(s+ 25.8)(s+ 31.4)
∆i(s),

|∆i(jw)| ≤ 1. · · · · · · · · · · · · (13)

In this wi(s), the parametric uncertainty of L and R
as 0.782 ≤ L ≤ 0.936 (9% perturbation) and 24.5 ≤
R ≤ 25.0 (1% perturbation) are involved. In addition
to these parametric perturbation, unmodeled dynamics
in the high frequency range is also included in wi(s).
Frequency response of the final set of electromagnetic
dynamics is shown in Fig. 6.

Fig. 6. Final transfer function GEM (s) with un-
certainty wi(s)

From the above discussion in these three subsections,
the final quantity of uncertainties are selected in Table
2, where 7% perturbation of a mass M is considered.
Final frequency response of wi(s) is shown in Fig.7.

4.2 Control System Design Utilizing the struc-
tured singular value µ (13) (15) (16), we design the con-
troller which achieves robust performance against vari-
ous types of uncertainties.

Table 2. Quantity of uncertainties

Value Value

ki 11.6 kx 8.90× 102

kM 7.25× 10−2 wi(s)
1.28×10−3(s+3.20)(s+900)

(s+25.8)(s+31.4)

Fig. 7. Frequency response of the weight wi(s)

Fig. 8. Interconnection Structure

4.2.1 Interconnection structure We construct
an interconnection structure by LFT representation
in Fig.8, where Wperf is a performance specification
and also is a weight for a sensitivity function S :
= (I +GnomK)−1.
For the disturbance attenuation and the tracking for

reference signal, the controller is expected to have in-
tegral property. In order to achieve this specification,
Wperf was chosen as the following function.

Wperf (s) =
100

1 + s/0.1
. · · · · · · · · · · · · · · · · · · · · (14)

4.2.2 Control Problem Next, for the robust
performance synthesis, we define the block structure ∆

1084 T.IEE Japan, Vol. 121-C, No.6, 2001



磁気浮上システムの構造的な不確かさとμ-設計

as follows.

∆ := {diag[δi, δx, δM ,∆i,∆perf ] : δi, δx, δM ∈ R,
∆i,∆perf ∈ C}. · · · · · · · · · · · · · · · · · · · · · (15)

It is well known that the structured singular value
µ∆(M) is defined for matrices M ∈ Cn×n with the
block structure ∆ as

µ∆(M)

:=
1

min{−σ (∆) : ∆ ∈ ∆, det(I −M∆) = 0}
(16)

unless no ∆ ∈ ∆ makes (I −M∆) singular, in which
case µ∆(M) := 0. Then, the control problem is to find
the controller K(s) which achieves the following robust
performance condition, where P (s) is the generalized
plant which is expressed by the gray rectangle box in
Fig.8.

sup
ω∈R

µ∆[Fl(P (jω), K(jω))(jω)] < 1. · · · · · · · (17)

We apply the standard D − K iteration (16) to find
the sub-optimal µ controller for the system. We thus
iteratively solve the following problem:

sup
ω∈R

inf
D(ω)

{σ̄(D(jω)Fl(P,K)D−1(jω))} < 1. (18)

The block structure (15) is used to calculate the
mixed µ value (17), but the real-valued blocks in (15)
are replaced to complex-valued ones in the calculating
and fitting process of the scaling matrix D.

4.2.3 Robust µ Controller After the 3rd iter-
ation, we obtained a controller K(s), where the supre-
mum of µ∆[Fl(P,K)] is 0.9766. Final scaling matrix
D(s) has 12 states, then K(s) has 30 states. We em-
ployed the Hankel norm approximation technique to cal-
culate the reduced order system ofK(s). Final balanced
controller K̂(s) is as follows, and its bode diagram is
shown in Fig.9. The supremum of the µ∆[Fl(P, K̂)] is
also 0.9766.

K̂(s) =
3.27× 1010 × (s+ 486± 885i)
(s+ 1740)(s+ 949± 1320i)

× (s+ 389± 626i)(s+ 335)(s+ 79.1)
(s+ 472± 794i)(s+ 391± 599i)

× (s+ 29.5)(s+ 14.7)(s+ 4.86)
(s+ 348)(s+ 8.16)(s+ 2.66)

× (s+ 2.63)(s+ 0.175)(s+ 0.114)
(s+ 0.210)(s+ 0.127)(s+ 0.0778)

(19)

Calculated upper and lower bounds of µ∆[Fl(P, K̂)]
with the controller K̂(s) are shown in Fig.10, where
the two solid lines respectively show upper and lower
bounds of µ and the dashed line shows the maximum
singular value of (D(jω)Fl(P (jω), K̂(jω))(jω)D−1(jω)).
Since the peak value of the upper bound of µ is

Fig. 9. Final Controller K̂(s)

less than 1, the closed-loop system with uncertainties
achieves the robust performance condition.
This result shows K̂(s) guarantees robust perfor-

mance against uncertainties caused by a change of op-
erating point { X | 3.8 ≤ X ≤ 6.2}(10).

Fig. 10. µ∆[Fl(P, K̂)] and σ̄[DFl(P, K̂)D−1]

5. Experimental Evaluation

In order to evaluate the proposed set of plant models
G̃(s), we implement the obtained controller K̂(s) via
a digital control system, and carried out experiments.
The sampling period of the controller is 95µs, and a well
known Tustin transform was employed for discretiza-
tion. All experimental results of time response of the
iron ball position are shown in Fig.11, 12, 13.

5.1 Evaluation of Nominal Performance Step
response of the position x of the iron ball at X =5mm
(nominal steady gap) is shown in Fig.11, which indi-
cates the stable levitation with the controller K̂(s) at
the nominal steady gap X = 5.0 mm. The magnitude
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of the step-type disturbance is 22 N, which is twice as
much as steady state force. Since it is difficult to give
disturbance forces to the iron ball directly and repeat-
edly, we add pseudo-disturbance by applying voltage
signal to the control input signal. This figure shows the
nominal performance.

5.2 Evaluation of Robust Stability Next our
interest is robust stability of the closed-loop system.
Time responses of the controllers K̂(s) are shown in
Fig.12, which indicate the stable levitation at the steady
state gaps X = 1.3, 5.0, 8.7 mm.

•The robust stability against the perturbation
{ X | 1.3mm ≤ X ≤ 8.7mm} is achieved.

If we change the steady state gap X to less than
X = 1.3, or greater than X = 8.7, however, the sys-
tem disappointingly becomes unstable.

5.3 Evaluation of Robust Performance The
final evaluative item is our main control problem, “ro-
bust performance”. For the sake of verification of the ro-
bust performance, we measured time responses against
a step-type external disturbance (22 N) at the steady
state gaps X = 3.8, 6.2 mm. Results are shown in
Fig.13. Apparently, the controller K̂(s) shows enough
performance comparing the response in Fig11. We have
confirmed that

• K̂(s) achieves the robust performance against
model perturbations caused by a change of oper-
ating point { X | 3.8mm ≤ X ≤ 6.2mm} (10).

When we change the steady state gap X to
{ X | 2.8mm ≤ X ≤ 7.2mm}, the system keep up the
almost same response, but if the steady state gap X
would be less than X = 2.8, or greater than X = 7.2,
the response suddenly deteriorates.

6. Conclusion

In this paper, we proposed the novel model and uncer-
tainty structure of magnetic suspension systems by us-
ing LFT, which contains less conservativeness for robust
stability/performance analysis. Further we proposed
one method to quantify the magnitude of uncertain-
ties. Uncertainties we considered in this paper are the
linearization error of the electromagnetic force, unmod-
eled dynamics of the electromagnet, and parametric un-
certainties. We structurally described these three types
of uncertainties by using real/ complex bounded num-
bers/matrices. Next, we designed a robust controller by
µ-analysis and synthesis which achieves robust perfor-
mance by using the structured singular value µ. Here,
we employ the mixed µ test to reduce conservativeness.
Finally, we evaluate the proposed model and uncer-

tainty structure by several experimental results con-
cerned to the nominal performance, robust stability and
robust performance.
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Gerhard Schweitzer with ETH for helpful discussions
and suggestions.
(Manuscript received July 3, 2000, revised December

Fig. 11. Step Response at X = 5mm

Fig. 12. Time Response at X = 1.3, 5.0, 8.7mm

Fig. 13. Step Response at X = 3.8, 6.2mm
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