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Optical flow, a two-dimensional(2D) motion field on image plane, is essential for such tasks as the visual
guidance of locomotion through the environment, the manipulation and recognition of objects. However,
recovering three-dimensional(3D) motion information from optical flow, is a difficult problem because the
relationship between the optical flow field and 3D motion parameters of the observer along with the depth of
the environment, is nonlinear. In this paper, we propose a new method for estimating 3D motion informa-
tion from optical flow. Considering an observer moving through a static environment, we intend to recover
observer’s 3D motion parameters and environment’s relative depth map. Based on motion perspective, the
estimation is carried out in three steps using three sets of equations derived from the nonlinear equation
of motion perspective. First, direction of the translation components is recovered by searching a candidate
over a discrete sampled space to minimize a residual function. Once the translation has been recovered, the
rotation components of observer’s 3D motion can be resolved from the second set of equations by using least
square optimization. Finally, the estimation of relative depth map of the environment is straightforward
using the third set of equations, given the recovered 3D motion parameters.
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1. Introduction

With the advent of advances in computer hardware,
it is not only possible to carry out electronic processing
on such simple data as characters or symbols, but also
to build complex systems interacting with real world
environments. These computer systems, which are gen-
erally known as robots, have a wide range of applica-
tions such as autonomous navigation or working under
special environments (e.g., heights, underground, un-
derwater, volcanoes, space, reactors). A fundamental
issue for such systems is how to enable the robot to un-
derstand the 3D environment around. For a robot that
only performs fixed operations under a fixed situation,
a pre-inputed 3D map will be enough. However, this
is just a simple mechanical instrument. A real robot
should have flexibility that enables it to work under
various situation. Therefore, it is necessary for a robot
to discern objects and obstacles in the environment as
well as its own 3D motion.

There are several ways for robots to measure 3D en-
vironment. Range finders measure distance by project-
ing ultrasound, laser, or pattern lights (e.g., slit, chess
pattern, etc.) onto objects; tactile sensors measure
positions and shapes by touching the objects. Espe-
cially, there is a widely applied method that measures
3D environment by analyzing image sequences obtained
through video cameras. The method, which provides
vision to robots, is called as computer vision or robot
vision.

The main issue of motion image analysis, an impor-
tant field of computer vision, is to estimate 3D motion
information, such as motion parameters of objects and
depth map of the environment, from a series of 2D mo-
tion image sequence. Such estimated 3D information
can be further exploited for 3D shape recovery and 3D
object recognition.

A typical approach for the above purpose is generally
consisted of two main stages. The first stage is the mea-
surement of 2D image motion field, which is also known
as optical flow. The second stage is the recovery of 3D
motion information in the real world from optical flow.
As an observer moves with respect to a static environ-
ment, the 3D motion information need to be recovered
includes 3D translation parameters of the observer, 3D
rotation parameters of the observer, and distance from
the observer to each point in the environment.

In this paper, we focused on the second stage and
proposed a new method for estimating 3D motion in-
formation from optical flow. Considering a moving ob-
server in a static environment, we intended to estimate
3D motion parameters of the observer and depth map
of the environment. As will be explained later in this
paper, it is impossible to determine translation compo-
nents and depth in terms of absolute value, therefore,
only the direction of translation and a relative depth
map can be estimated.

Based on motion perspective, which projects 3D mo-
tion and structure to 2D optical flow, our method de-
composed the nonlinear equation of motion perspective
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into three sets of equations. The first set is a residual
function in terms of only the direction of translation,
image location on the image plane and optical flow, the
direction of translation velocity can be solved for inde-
pendently by searching a candidate, which can minimize
the residual function, over a discretely sampled space of
directions of translation. Once the direction of transla-
tion has been estimated, a large number of the second
sets can be used to compute the rotation combining with
least-square optimization. Finally, the relative depth of
the environment can be estimated straightforward us-
ing the third set of equations, given the computed 3D
motion parameters.

The rest parts of this paper are organized as follows.
In section 2, we will review the relationship between
3D motion and optical flow, and derive equation of mo-
tion perspective that relates optical flow to 3D motion
parameters and layout of the environment. In section
4, we present a method based on subspace theory to
recover the translation without other unknowns being
estimated. Once the translation has been determined,
rotation and the environment’s layout are estimated in
section 5. Several experiments will be carried out in
section 6 to verify the validity of the presented method.
Finally, conclusion will be drawn in section 7.

2. 3D Motion and Optical Flow

Motion perspective, first termed by Gibson (2),
projects 3D motion and structure of the environment
onto 2D image plane. The result of this is optical flow,
a 2D image velocity field. There are many examples of
motion perspective in everyday life. For an instance,
when a man looks out of the window of a running train.
Objects close to the train will have high apparent ve-
locities while objects far away will have low apparent
velocities. The optical flow that results will consist of
velocities of which the magnitudes are proportional to
the distance from the train.

The usual approach based on motion perspective
solves the reconstruction problem in two phases. At
the first phase, 2D motion field, which is generally ap-
proximated by optical flow, is computed from an image
sequence; At the second phase, 3D motion information,
such as the motion parameters of moving observer and
the depth map of the environment, is estimated using
computed 2D motion field (1). In the paper, we will focus
on the problem of estimating 3D motion the observer.

The remainder of this section consists of two subsec-
tions. In section 2.1, we review the basic and well-
known equation of the perspective transformation in
3D. In subsection 2.2, we explain the induction of the
equation of motion perspective, which describes the re-
lation between the 3D motion and structure and the
corresponding optical flow, assuming a perspective pro-
jection.

2.1 Perspective Projection in 3D Suppose
the optic axis of our camera lens is along a line parallel
to the z-axis. To obtain the image frame coordinates for
a given point in 3D space, we first translate this point to
a 3D coordinate system centered at the lens of the cam-

era. Then we translate along the z-axis by a distance
f to the desired location of the projection image plane,
and finally we take the perspective transformation.

We do this by using a homogeneous coordinate sys-
tem that assumes an arbitrary position of the lens. Let
(X, Y, Z) be the original coordinates of a point in 3D
space. Let (X0, Y0, Z0) be the position of the lens (called
the center of perspective), and let (x, y) be the coordi-
nates of the perspective projection of (X, Y, Z) on the
image projection plane. Then x = X ′/t′ and y = Y ′/t′,
where


 X ′

Y ′

t′


 =


 1 0 0 0

0 1 0 0
0 0 1/f 1







1 0 0 0
0 1 0 0
0 0 1 −f
0 0 0 1







1 0 0 −X0

0 1 0 −Y0
0 0 1 −Z0
0 0 0 1






X
Y
Z
1




=


 X − X0

Y − Y0
(Z − Z0)/f


 · · · · · · · · · · · · · · (1)

Thus

x = f
X − X0

Z − Z0
and y = f

Y − Y0
Z − Z0

· · · · · · · (2)

Fig. 1. A coordinate system (X, Y, Z) attached to
the observer, and the corresponding image coordi-
nates (x, y). The image position p is the perspec-
tive projection of the point P in the environment.
	T = (Tx, Ty, TZ) and 	Ω = (Ωx,Ωy,Ωz) represent
the translation and rotation of the observer.

2.2 motion perspective Let (X, Y, Z) repre-
sent a Cartesian coordinate system which is fixed with
respect to the observer (Fig. 1), and let (x, y) represent
a corresponding coordinate system of a planar image.
The focal length, f , is assumed to be known. The ob-
server’s 3D coordinates (X0, Y0, Z0) are X0 = 0, Y0 =
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0, Z0 = 0, thus the perspective projection (x, y) on the
image of a point (X, Y, Z) in the environment is

x =
fX

Z

y =
fY

Z
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (3)

The observer’s 3D motion can be decomposed into
two components: translation �T = (Tx, Ty, Tz) and ro-
tation �Ω = (Ωx,Ωy,Ωz). Due to the motion of the
observer, the relative motion of a surface point P =
(X, Y, Z) is:

�V = (
dX

dt
,
dY

dt
,
dZ

dt
)
t

= −(�Ω× �P + �T )
t · · · · · · (4)

Image velocity, �θ, at the perspective projection �p =
(x, y) is defined as the derivatives of the x and y com-
ponents with the respect to time. Taking derivatives
of equation (3) with respect to time. and substituting
from equation (4) gives:

�θ(x, y) = ρ(x, y)A(x, y)�T + B(x, y)�Ω · · · · · · · (5)

where ρ(x, y) = 1
Z is the inverse depth, and where:

A(x, y) =
[ −f 0 x

0 −f y

]

B(x, y) =
[

(xy)/f −(f + x2/f) y
f + y2/f −(xy)/f −x

]
.

Matrices A(x, y) and B(x, y) depend only on the image
location, not on any of the unknowns.

Equation (5) describes the image velocity at each im-
age location as a function of 3D motion and the inverse
depth. An important observation about equation (5) is
that it is bilinear; for a fixed ρ �θ is a linear function of
�T and �ω, for a fixed �v it is a linear function of ρ and �Ω.

Since both ρ(x, y)(the inverse depth) and �T (the trans-
lation component of motion) are unknowns and since
they are multiplied together in equation (5), they can
each be determined only up to a scale factor; that is,
only the direction of translation and the relative depth,
not the absolute translation nor the absolute depth, can
be solved for. For the rest of the paper, �T denotes a unit
vector translation direction(‖ �T ‖2= 1) and ρ(x, y) de-
notes the relative inverse depth.

3. Problem Statement

It is impossible to recover the 3D motion parameters,
given the image velocity at only a single image loca-
tion; there are six unknowns on the right-hand side of
equation (5) and only two measurements (the two com-
ponents of �θ(x, y) on the left-hand side. Generally, given
the image velocity at N image locations, we have 2N
equations for N + 5 unknowns, so image velocity mea-
surements at 5 or more image locations are necessary to
solve the problem.

For each of five image velocity vectors, a separate
equation can be written in the form of equation (5).
Following Heeger and Jepson (5), we collect these five
equations into one matrix equation:

�Θ = C(�T )�q, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (6)

where �Θ (a 10-vector) is the image velocity at each of the
five image locations, C(�T ) (a 10× 8 matrix) is in terms
of only the translational components of the observer’s
3D motion, and �q embodies the unknown inverse depths
and the rotational components.

4. Estimating the Direction of Translation

We now present a method for estimating the ob-
server’s 3D translational velocity, �T . The depths and
rotational velocity need not be known or estimated prior
to solving for �T . We define a residual function, R(�T ),
over the discretely sampled space of all candidate trans-
lation directions.

We use the residual function to assess how well each
candidate translation accounts for the motion field. A
residual value of zero for a particular candidate trans-
lation indicates that the motion field is consistent with
that 3D motion.

The residual function, R(�T ), is defined to yield a
least-squares estimate for translation, such that R(�T0)
is minimized for (�T0) equal to the actual translation. In
the following parts of this section, we will show that the
residual function can be defined as

R(�T ) = ‖ �ΘtC⊥(�T ) ‖2. · · · · · · · · · · · · · · · · · · · · · (7)
C⊥(�T )is a 10x2 matrix that is computed from C(�T ).

In equation (6) the matrix, C(�T ), divides �θ-space
into two subspace; the 8-dimensional subspace that is
spanned by the columns of C(�T ), and the left over or-
thogonal 2-dimensional subspace. The columns of C(�T )
are guaranteed to span the full 8-dimensions for almost
all choices of five sample locations and almost any (�T ).
The 8-dimensional subspace is called the range of C(�T ),
and the 2-dimensional subspace is called the orthogonal
complement of C(�T ).

Let C⊥(�T ) be an orthonormal basis for the 2-
dimensional orthogonal complement of C(�T ). It is
straightforward, using techniques of numerical linear
algebra(Strang (8)), to choose a C⊥(�T ) matrix given
C(�T ). The residual function, equation (7), is defined
in terms of this basis for the orthogonal complement.

Given the image velocity, �θ, and the correct trans-
lational velocity, �T0, the following statement can be of
validity:

R( �T0) = ‖ �ΘtC⊥( �T0) ‖
2
= 0.

Since �Θ is in the column space of C( �T0) (�Θ = C( �T0)�q,
for some �q), and since C⊥( �T0) is orthogonal to C( �T0),
it is clear that R( �T0) = 0.

The residual function can be computed in parallel for
each candidate �T , and residual surfaces can be com-
puted in parallel for different sets of velocity vectors
from different patches of the motion field. The result-
ing residual surfaces are then summed, to give a global
least-squares estimate for �T .
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5. Estimating the Rotation and Depth

Once �T has been computed, we can solve for the ro-
tational velocity as well. We now proceed to eliminate
the depth, ρ(x, y), from equation (5), leaving us with a
linear constraint for �Ω. To this end, we define a unit
vector, �d(x, y), perpendicular to the direction of trans-
lation.

�dt(x, y)A(x, y)�T = 0

‖ �d(x, y) ‖2 = 1.

Multiplying by �dt(x, y) on the both side of the equa-
tion (5):

�dt(x, y)�θ(x, y) = �dt(x, y)B(x, y)�Ω. · · · · · · · · · · (8)

equation (8) is a linear constraint on the rotation, �Ω,
given the translation, �T , and a velocity vector, �θ(x, y).
However, it is impossible to solve for the rotation given
just one velocity vector, since �Ω has three unknown
components and equation (8) provides only one con-
straint.

Several flow vector may be utilized in concert to solve
for the rotation. If there is no error in the input motion
field then two velocity vectors are sufficient. Using a
large number of velocity vectors yields a least-squares
estimate for �Ω. For each velocity vector, we write an
equation in the form of equation (8) (dropping the ar-
guments x and y for simplicity):

�dt
i
�θi = �dt

iBi
�Ω,

where i indexes over the velocity vectors at different
image locations. The least squares solution for �Ω is ob-
tained by minimizing:∑

i

‖ �dt
iBi

�Ω − �dt
i
�θi ‖

2
.

The estimate is given by:

�Ω =

(∑
i

Bt
i
�di

�dt
iBi

)−1(∑
i

Bt
i
�di

�dt
i
�θ

)
· · · · · (9)

The first factor on the right-hand side of equation (9)
is a 3×3 matrix that does not depend on the input mo-
tion field, but it does depend on the recovered value of
�T . The second factor on the right-hand side of equation
(9) is a linear combination (a weighted sum) of the input
image velocities. The coefficients in the weighted sum
depend on the recovered value of �T . As new motion field
measurements (and new estimates of �T ) become avail-
able from incoming images, �Ω is computed as a linear
combination of the image velocities.

Finally, once the direction of translation and rotation
are both known, equation (5) provides two linear con-
straints to solve for the unknown relative distance at
each image point:

ρ(x, y) = (�θ(x, y)− B(x, y)�Ω)(A(x, y)�T )
−1

. (10)

6. Experimental Results

In this section, we present several experiments for ex-
amining the efficacy of our proposed method.

6.1 various translation direction Optical flows
were synthesized from a random depth map, given var-
ious translation directions. Error (E) between the esti-
mated direction (�T ) and the true direction ( �T0) is de-
fined as:

E = arccos

(
|�T || �T0|
�T · �T0

)
. · · · · · · · · · · · · · · · · · · · (11)

Figure 2 shows the error in the estimate of the trans-
lation direction as the function of the true translation
direction. It can be seen from the figure that the pro-
posed method is able to recover different direction of
translation with relatively low error level.

Fig. 2. Error level of estimated direction of trans-
lation. Focal length was 96 (in unit pixels). Depth
from point to point varied randomly from 128 to
256 (in unit pixels). Entire image was 64 × 64.
The translation direction varied from sideways,
	T = (1, 0, 0), to straight ahead, 	T = (0, 0, 1). Ro-
tation was set to Ω = (0◦, 0◦, 0◦).

6.2 various rotation angles Optical flows were
synthesized from a random depth map, given various
rotation angles around Z-axis. Error (E) between the
degrees of estimated rotation angles Ω) and those of the
true angles (Ω0) is defined as:

E = arccos
( |Ω||Ω0|

Ω · Ω0

)
. · · · · · · · · · · · · · · · · · · · (12)

Figure 3 shows the error level in the degrees of esti-
mated rotation angles as the function of the true rota-
tion angles. It can been seen from the figure that the
error level is low over the estimation of small rotation
angles, but becomes higher when the true rotation an-
gles increase. The reason is that our method is based on
an instantaneous approximation of motion perspective,
where the optical flow vectors are defined as the deriva-
tives, with respect to time, of the x- and y-components
of the image point. Therefore, it is valid only if rotation
angles are small enough, and usually introduces higher
error levels when rotation angles are over the limit of
the approximation. However, as can been seen from the
figure, the error introduced by the instantaneous ap-
proximation is quite small if the rotation angle is less
than 3 degrees per frame.
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Fig. 3. Error level of estimated rotation angles.
Depth from point to point varied randomly from
128 to 256 (in unit pixels). Entire image was 64×64.

Rotation angles varied from 	Ω = (0◦, 0◦, 0◦),
	Ω = (0◦, 0◦, 0.5◦), ..., to 	Ω = (0◦, 0◦, 6◦). Trans-

lation direction was set to 	T = (0, 0, 1).

6.3 recovery of simulated environment In
this section, we tried to recover 3D information about a
simulated environment using several synthesized optical
flows. Figure 4 shows the simulated 3D environment, in
this environment, two plates are separated by a ball and
four columns, there is also an ellipse on one of the plate.
Synthesized optical flows are shown with needle-grams
in figure 5, the length of each needle represents the am-
plitude of the motion vector.

Fig. 4. Simulated 3D environment. 3D model was
created using 3D modeler SCED (7); Image and
depth map were created using rendering program
RAYSHADE (6).

From these synthesized optical flows, we carried out
the recovery of 3D motion information using the pro-
posed method.

Table 1 shows the computed 3D motion parameters.
It can been seen that 3D motion parameters are ac-
curately recovered when the observer is under motion
along X, Y -axis, or on the X − Y plane, but small er-
rors arise over the estimation for observer moving along
Z-axis.

Depth maps of the environment, recovered from the
estimated 3D motion parameters, are shown in figure
6. We notice that although the recovered depth maps
are generally consistent with those of the simulated en-
vironment, significant errors exist along x- and y-axis
in the case that the observer is moving along Z-axis, or
forward. The reason is that in our method, the process

(a) �T = {1, 0, 0}

(b) �T = {0, 1, 0}

(c) �T = {0.7, 0.7, 0}

(d) �T = {0, 0, 0.1}

Fig. 5. Synthesized optical flows. Rotation was set
to Ω = {0, 0, 0}.

of recovering relative depth is based on the assumption
that both x- and y-components of motion vector are
valid at a given image location. However, in the case
that the observer is moving forward, y-component of
motion vectors are unavailable for image locations along
x-axis, and vice versa. Therefore, the method tends to
fail in recovering depth map along x- and y-axis when
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the observer is moving forward only.

Table 1. Computed 3D motion parameters. Tx,
Ty and Tz represent estimated 3D translation pa-
rameters; Ωx, Ωy and Ωz represent estimated 3D
rotation parameters.

Tx Ty Tz Ωx Ωy Ωz

a 1.0 0.0 0.0 0.0 0.0 0.0

b 0.0 1.0 0.0 0.0 0.0 0.0

c 0.707 0.707 0.0 0.0 0.0 0.0

d 0.085 0.023 0.996 -0.0 0.001 -0.0

6.4 recovery of real scene Figure 7 shows sev-
eral sample frames from a real image sequence. The
image sequence was taken while a camera moving par-
allel to a cluster of trees on the ground.

This image sequence is known to be difficult to an-
alyze because of the relatively poor resolution, the
amount of occlusion, and the low contrast. Before
the optical flows being computed, the sequence was
smoothed using a three-dimensional Gaussian-filter.
Then, optical flows were computed for the smoothed
sequence using multiple gradient constraints method (9),
and the computed optical flow is shown in figure 8.(a).

We continued to estimate 3D motion information
about the real scene from the computed optical flows.

Table 2 shows the computed 3D motion parameters.
Direction of translation was estimated with the sam-
pling spaces’ resolution being set to 0.015. To im-
prove the speed of computation, we selected several key
patches instead of all the patches over the whole image
plane. The selection of key patches were determined
by examining the numerical reliability of each patch in
the image plane, only those patches with high numer-
ical reliability are used for the estimation. A detailed
explanation of numerical reliability examination can be
found in our another paper (9).

Table 2. Computed 3D motion parameters

Tx Ty Tz Ωx Ωy Ωz

1.0 0.0 0.0 0.0 0.0 0.0

Figure 8.(b) shows the recovered depth map. We can
see that the area of trees and ground which are close to
the camera has the highest gray value, and the bushes
behind has lower gray value.

It can thus be concluded that the recovered 3D mo-
tion parameters and depth map are consistent with that
of the real scene.

7. Conclusion

In this paper, based on motion perspective, we pro-
posed a new method for estimating 3D motion informa-
tion from 2D optical flow. Considering an observer mov-
ing through a static environment, we tried to recover
observer’s 3D motion parameters and environment’s rel-
ative depth map.

Our proposed method solved the recovery issue in
three steps after decomposing the nonlinear equation of
motion perspective into three sets of linear equations.
Firstly, a residual function was derived from the first
set of equations using subspace theory, and direction of

a: �T = {1, 0, 0}

b: �T = {0, 1, 0}

c: �T = {1, 1, 0}

d: �T = {0, 0, 1}

Fig. 6. Recovered depth map. Gray-scale level at
each image point represents the inverse relative
depth from the corresponding 3D location to the
observer.

translation was then recovered by searching a candidate
over a discrete sampled space, which would minimize
the residual function. Secondly, rotation was estimated
from the second set of equations by using least square
optimization. Finally, relative depth map of the envi-
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frame 01

frame 06

frame 19

Fig. 7. Real image sequence. The image size was
256× 230.

ronment was recovered using the third set of equations,
given the recovered 3D motion parameters.

To verify the efficacy of the new method, we car-
ried out several experiments both on simulated and real
scene.

Experiment 6.1 and 6.2 were intended to verify the va-
lidity of our method to various 3D motion components.
it could be seen from the results that our method was
able to provide measurements of various 3D translation
and rotation with relatively low error level. Although
significant errors arise for large rotation angles because
of instantaneous approximation of motion perspective,
the error introduced by the instantaneous approxima-
tion is quite small if the rotation angle is less than 3
degrees per frame.

Experiment 6.3 was to examine our method’s efficacy
of recovering relative depth information from synthetic
optical flows. We can see from the results (figures 6.(a),
6.(b), and 6.(c)) that our method could provide fairly
accurate recovery of the simulated depth when the cam-

(a) computed optical flow

(b) recovered depth map

Fig. 8. Computed optical flow and the recovered
depth map for the real scene.

era was under simple translations.
In experiment 6.4, we tried to recover 3D motion in-

formation about a real image scene. As can be seen in
table 2 and 8.(b), given relatively accurate optical flows,
our method could provide valid measurements of cam-
era’s 3D motion parameters and environment’s relative
depth map.

However, there are still some problems in our method
need to be considered. At the phase of recovering trans-
lation components, there exists a searching process over
a discrete sampling space. The searching process will be
very computational costing when the resolution of the
sampling space is high. And the computational accu-
racy depends on sampling space’s resolution. The trade-
off between computation cost and accuracy will be an
obstacle to implementing our method to real-time sys-
tems. Another problem is that in our method, the depth
recovery step is very sensible to errors in estimated 3D
motion components. As shown in figure 6.d, although
the error level of estimated 3D motion components was
very low, there still existed several apparent errors in
recovered depth map from the optical flow synthesized
while the camera was moving straight forward.

Our future work will involve in several issues. To im-
plement our method to real-time systems, a substitute
of the searching process at the phase of estimating trans-
lation components will be necessary. The robustness of
recovering depth map need to be improved so that our
method will be adaptive to more complex situation. We
are also planning to extending our method to deal with
scenes in which there are multiple motions.

電学論 C，121巻 7号，平成 13年 1193



Acknowledgment

The authors are grateful the reviewers for their con-
structive comments and advice. The first author would
also like to thank Prof. Oe for his long-term guidance
and kind help.

(Manuscript received April 27, 2000, revised February
21, 2001)

References

( 1 ) J. Barron, “A Survey of Approaches for Determining Optic

Flow, Environment Layout and Egomotion”, Technical Re-

port(Dept. of Computing Science, University of Toronto)

RBCV-TR-84-5, 1984.

( 2 ) J.J. Gibson, The Perception of the Visual World, Houghton

Mifflin, Boston, 1950.

( 3 ) R. M. Haralick and L. G. Shapiro, Computer and Robot

Vision, VOLUME I, Addison-Wesley Publishing Company,

Inc., 1993.

( 4 ) R. M. Haralick and L. G. Shapiro, Computer and Robot

Vision, VOLUME II, Addison-Wesley Publishing Company,

Inc., 1993.

( 5 ) D.J. Heeger and A.D. Jepson, “Subspace Methods for Re-

covering Rigid Motion I : Algorithm and Implementation”,

Technical Report(Dept. of Computing Science, University

of Toronto) RBCV-TR-90-35, 1990.

( 6 ) RAYSHADE - a System for Generating Ray-traced Images,

http://www-graphics.stanford.edu/c̃ek/rayshade

( 7 ) SCED - a Constraints Based Scene Designer,

http://http.cs.berkeley.edu/s̃chenney/sced/sced.html

( 8 ) G. Strang, Linear Algebra and its Applications, Academic

Press, New York, 1980.

( 9 ) C. Yang and S. Oe, A New Multiple Gradient Constraints

Method to Compute Optical Flow, The Journal of the In-

stitute of Image Electronics Engineers of Japan, vol. 28 no.4

pp. 387, 1999.

Yang Chunke (Non-member) received the B.Eng. degree
in computer science from Sichuan University,
China, in 1993, and the M.Eng. degree and
Ph.D. in information science from University
of Tokushima in 1997 and 2000, respectively.
His main research interests are in computer vi-
sion and motion image analysis. He is a mem-
ber of IEEE and IEICE.

Shunichiro Oe (Member) was born in Shiga Prefecture in
1943. He received the B.Eng. and M.Eng. de-
gree from Tokushima University in 1967 and
1969, respectively, and the Ph.D. from the
University of Osaka Prefecture in 1980. From
1969 to 1974 he was research assistant at com-
puter center of the University of Tokushima,
from 1974 to 1995 he was a lecturer and asso-
ciate professor at the Department of Informa-
tion Science and Intelligent Systems, Faculty

of Engineering, the University of Tokushima, and from 1995 he
has been a professor at the same department. His current research
interests include time series analysis, pattern recognition, neural
networks, genetic algorithms, and image processing, especially
texture segmentation, industrial image processing, three dimen-
sional image processing and remote sensing. He is a member of
IEICE, SICE and etc.

Kenji Terada (Member) received the Ph.D degree in Elec-
trical Engineering from Keio University in
1995. In 1995, he joined the Faculty of En-
gineering, the University of Tokushima, where
he is now an Associate Professor. His research
areas include image processing, computer vi-
sion and image sensing. He is a member of
IEEE, SICE of Japan, IEICE of Japan, ISCIE
of Japan.

1194 T.IEE Japan, Vol. 121-C, No.7, 2001


