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Electrocardiograms (ECGs) used for the diagnosis of heart diseases generates large amounts of time-series
data. They are regarded as hyperdimensional data. The number of dimension is that of sample points. To
automatically recognize any abnormality in the ECG it is essential to extract significant features from the
hyperdimensional ECG data. We have already developed a method for purpose-oriented feature extraction
and successfully applied it to hyperspectral data which have several hundreds of dimensions. Here we apply
the basic idea of this method to the analysis of 12-lead ECGs for the discrimination of abnormal waveforms.
ECG data were acquired from normal subjects and from patients who seemed to suffer from one of three
classes of abnormalities (anterior myocardial infarction, inferior myocardial infarction, and flattening of the
T wave). A small number of features appropriate for discriminating significant patterns of the ECG were
extracted. Our method can efficiently process the data and give results relevant to the purpose of diagnosis.
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1. Introduction

Time series signals are often used for the detection
of defects or malfunctions, the amount of data becomes
very large for frequent sampling, long periods of ob-
servation, or a large number of data channels. In the
analysis of electrocardiograms (ECGs), waveforms are
simultaneously observed through 12 leads (1). When, for
example, the waveforms are observed at 200 sampling
points for one cycle of each lead (Fig.1), the total num-
ber of dimensions is 2400. Since the time-series data
are mostly redundant in the time domain as the data
from the 12 leads are correlated with each other, essen-
tial information can be expressed by a small number
of features. We must derive significant features to ex-
tract useful information from according to the purpose
of diagnosis.
Many methods have already been developed for diag-

nosis using ECGs. However, the percentage of ECGs
that are correctly classified by computer programs is
often lower than that classified by cardiologists (2)～(4).
Although most programs intend to directly implement
algorithms used by cardiologists and attempt to recog-
nize all of the abnormalities, it is sometimes much more
important to recognize specific abnormalities than to
discriminate all the classes of them.
Conventional methods for extracting features are not

always satisfactory for this type of objective in terms
of optimality and computation time. We have already
developed a method of purpose-oriented feature extrac-
tion for supervised classification and applied it to hy-
perspectral data (5)～(7). Here, we apply this approach
to feature extraction from time-series data. We applied
the scheme of feature extraction to the ECG data and
discriminated the serious abnormalities which were de-

Fig. 1. Waveform of single cycle of ECG

termined by the waveforms.
In the application of our method to time-series data,

the wavelength in spectral analysis corresponds to sam-
pling time in the time domain. Analogously to the spec-
tral data which are synchronized in wavelength, we have
to synchronize the time-series data by the significant
peaks in the waveforms.

2. Purpose-oriented feature extraction

2.1 Basic idea In the analysis of data we have
certain objectives or intentions. The key idea of our
method is to introduce subjective significance explicitly
into feature extraction. By this we can extract a set of
features which discriminates particular classes of wave-
forms from others and, at the same time, separates each
of the particular classes (5).
The features are extracted using a set of training data.

After all the data have been orthogonalized and reduced
by principal component analysis, a set of appropriate
features for prescribed purpose is extracted as linear
combinations of the reduced components. The weight-
ing factors to differentiate the normal and the abnormal
waveforms were determined as the results of feature ex-
traction. Each dimension is weighted and fused accord-
ing to the weighting factors.
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Fig. 2. Description of data

2.2 Procedure of feature extraction (5)

We assume that we have obtained training data for
almost all the classes and can estimate the mean and
covariance of these classes. We denote hyperdimen-
sional data (N dimension) by a vector y = (y1, · · · , yN )t

( t : transpose), and assume that they are classified into
one of n classes. Then, y can be decomposed into class
mean ya and within-class dispersion ye: that is, y is
written as yij = yai

+ yeij
(i = 1 ∼ n, j = 1 ∼ mi),

where yij is the j-th datum of class i (Fig.2). We write
the variance and covariance matrices of y, ya and ye

as Cyy, Ca and Ce respectively. We call Ca and Ce

between-class and within-class covariance matrices, re-
spectively. Here, we assume that the covariance matrix
of each class is identical. This assumption is rather rea-
sonable from the viewpoint of the generality of training
data. We use a measure of separability between the two
classes and extract features which maximize the sepa-
rability.
Our method consists of two steps: preprocessing and

feature extraction (Fig.3). In preprocessing, hyperdi-
mensional data y = (y1, · · · , yN )t are reduced and nor-
malized to m (m � N) components z = (z1, · · · , zm)t

by a linear transformation z = Aty. (See ‘Appendix’
for details of process.) Based on the assumption of
Ce that the within-class dispersion is the same for all
classes, they are normalized into m dimensional spheres
after transformation. This renders the space uniform;
this means that the distance measured in terms of vari-
ance does not have directionality in space.
In the second step, features are successively extracted

until no class remains at a distance from the partic-
ular classes less than the minimum distance obtained
so far. Feature extraction is performed by determin-
ing subspace in the feature space; that is, by making a
linear combination of z as at z, where a is an m dimen-
sional weight vector which we call here a feature vector.
Thus, feature extraction consists of the determination of
a feature vector. Since the space is now uniform, the di-
rection of an optimal feature vector which discriminates
between two classes can be obtained by connecting the
centers of these classes. The feature vectors obtained
are orthogonalized to make them independent.
The procedure for determining successive feature vec-

tors is as follows.
(1) First, we set an optimal feature vector a1 be-

tween the two nearest classes among the prescribed

Fig. 3. Procedure of feature extraction

Fig. 4. Feature vectors discriminating between
two classes

classes.
(2) Next, we evaluate the separability of a1 for all

combinations of the prescribed classes.
(3) If there is any pair of prescribed classes which does

not have sufficient separability, we set an additional
feature vector a2 between them. We orthonormal-
ize the new vector a2 with a1, as shown in Fig.4, so
that this feature vector is independent of the first
one.

(4) Features are successively extracted in the same
way until all the distances among the prescribed
classes are larger than the minimum distance ob-
tained so far.

(5) Then, we reapply steps (2)∼(4) to the distances
between the prescribed and the other classes.

When only one class is prescribed, the procedure be-
gins by setting a feature vector between that class and
its nearest class in the feature space.
The feature ai

tz is equivalent to the (A ai)t y ex-
pression using original data y, because z = Aty, where
Aai means the weighting factor for waveforms.

3. Application to abnormality detection in
ECGs

The ECG is one of the most commonly used tools
for the diagnosis of heart diseases. Automatic recog-
nition of abnormalities in ECGs will be of great help
in medical examinations or the monitoring of general
health. In diagnosis using ECG, it is sometimes much
more important to be able to find a specific abnormality
than to discriminate all classes. We applied the method
of purpose-oriented feature extraction to discriminating
the waveform of significant abnormalities with higher
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目的指向型特徴抽出による心電図識別

Fig. 5. Detection of 12-lead ECG

priority.
The most commonly used ECG detects the wave-

form of electric potential through 12 leads, as shown
in Fig.5. Therefore, when the waveforms are observed
at 200 sampling points for one cycle of each lead , the
total number of dimensions is 2400. Since the data from
each lead are highly correlated with each other, we can
derive essential information from a small number of fea-
tures according to the purpose of the diagnosis.

4. Experiments and results

Twelve-lead ECG data were acquired from normal
subjects and from patients who seem to suffer from one
of three classes of abnormalities (anterior myocardial
infarction, inferior myocardial infarction, and flatten-
ing of the T wave). These abnormalities are known to
be typical symptoms of ischemic heart diseases which
are the most common and serious heart diseases, espe-
cially among middle-aged persons. Figure 6 illustrates
the positions of abnormalities in a single cycle of ECG.
It is thought that myocardial infarctions (MI) are char-
acterized by abnormal Q waves, and the anterior MI and
the inferior MI can be distinguished by the positions of
leads where the abnormal Q wave are observed. It is
said that anterior MI can be recognized as the presence
of abnormal Q in V1 ∼ V4 but not in leads II, III, aVF.
Inferior MI can be recognized as the presence of abnor-
mal Q only in II, III, and aVF

(1). There are several
other variations of leads in which abnormal Q waves
can be observed. However, since the position of abnor-
mal Q corresponds to the damaged part of the heart,
this method can be directly extended to the recognition
of other types of myocardial infarctions when appropri-
ate training data are available. A flattened or negative
T wave is considered to be a generally observed abnor-
mality in ischemic heart diseases. Although a specific
disease cannot be diagnosed solely on the bases of this
abnormality, it will be useful in discriminating between
this type of waveform and a normal one.
We acquired 15 sets of data for each class and used

them in the experiments. The waveforms were mea-
sured at 200 sampling points with the sampling period
of 4ms for each of the 12 leads (I, II, III, aVL, aVR, aVF,
V1 ∼ V6). The waveforms were automatically aligned
so that the R waves come to 50th points. We connected
the data from 12 leads, as shown in Fig.7, and treated

Fig. 6. Abnormalities appearing in ECG corre-
sponding to ischemic heart diseases

Fig. 7. Hyperdimensional data from 12-lead ECG

the data as 2400-dimensional long waveforms. Mean
values and the regions of ±σ for four classes are shown
in Fig.8.
We assumed a case in which one class is to be dis-

criminated from the others. Since the number of classes
is only four in this experiment, the number of available
features is less than three.
Figure 9 shows the derived weighting factors (first fea-

ture) for discriminating the anterior MI from the other
classes. It can be seen that the weighting factors are
relatively high in the region which corresponds to the
abnormal Q waves observed in V1 ∼V4. This means
that this region is the most significant in discriminating
the abnormal waves of anterior MI.
Since the number of data were restricted to 15 sets for

each class, we applied the “leaving one out” method to
estimate the accuracy of classification. Each time we set
aside one datum for testing and extracted the feature
using the rest of the data which used at the same time as
training data. When the weighting factors were derived
as a result of feature extraction, the feature values can
be calculated as inner products with the observed wave-
forms. After converted to feature values, test data were
classified using the classifier determined by the training
data. We checked whether the “leaved out” datum was
correctly classified. We shifted the data one by one until
all the data were examined to be classified.
The confusion matrix of classification (15 data sets for

each class) when one feature is used is listed in Table 1.
Fourteen out of 15 data sets from the anterior MI were
classified correctly (93%) by one feature. We neglected
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Fig. 8. Twelve-lead ECG (mean±σ)

the classification of other classes in feature extraction.
Figure 10 illustrates the weighting factors (first fea-

ture) extracted for the discrimination of the inferior MI.
The weighting factors are relatively high in the region
of abnormal Q waves observed in II, III and aVF. The
confusion matrix is listed in Table 2. Twelve out of 15
data sets from the inferior MI were classified correctly
(80%).
The difference between the results in Tables 1 and 2

suggests that the performance of our purpose-oriented
feature extraction is very high. Table 5 lists the confu-
sion matrix when all (three) features were used, which

means the maximum available accuracy of classification.
We can see that the extracted features give the same ac-
curacy as the values in Table 5 for the prescribed class.
In the same way, Fig.11 shows the weighting factors

for the discrimination of the flat T wave, and Table
3 lists the confusion matrix for one feature. Figure 12
shows the result for the case where both the anterior and
inferior MIs were designated to be discriminated from
the other classes. The weighting factors show higher
weights in the regions of abnormal Q waves of both an-
terior MI and inferior MI. The confusion matrix in Table
4 shows that the classification accuracy of the two MI
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Table 1. Confusion matrix (number of data sets)
(object class: Anterior MI, number of features: 1)

Normal Ant MI Inf MI Flat T

Normal 8 0 3 4

Anterior MI 0 14 0 1

Inferior MI 5 0 9 1

Flat T 5 2 1 7

Table 2. Confusion matrix (number of data sets)
(object class: Inferior MI, number of features: 1)

Normal Ant MI Inf MI Flat T

Normal 2 4 0 9

Anterior MI 4 10 0 1

Inferior MI 0 1 12 2

Flat T 5 0 1 9

Table 3. Confusion matrix (number of data sets)
(object class: Flat T wave, number of features: 1)

Normal Ant MI Inf MI Flat T

Normal 9 3 3 0

Anterior MI 2 8 3 2

Inferior MI 8 5 0 2

Flat T 0 2 0 13

Table 4. Confusion matrix (number of data sets)
(object class: Anterior & Inferior MI, number of
features: 1)

Normal Ant MI Inf MI Flat T

Normal 6 1 3 5

Anterior MI 0 13 0 2

Inferior MI 3 0 11 1

Flat T 6 1 0 8

Table 5. Confusion matrix (number of data sets)
(number of features: 3 (maximum))

Normal Ant MI Inf MI Flat T

Normal 13 0 1 1

Anterior MI 0 14 0 1

Inferior MI 2 0 12 1

Flat T 0 1 0 14

classes were weighted at the same time.
This means that our feature extraction method yields

the position to be used for diagnosis. These position
agree well with those used by medical doctors.

5. Conclusions

We have applied the approach of purpose-oriented
feature extraction to the discrimination of electrocar-
diograms (ECGs). The method was applied to the dis-
crimination of four classes of waveforms (normal, infe-
rior myocardial infarction, anterior myocardial infarc-
tion, and flattening of the T wave).
Although the number of data sets used in the exper-

iments was limited (15 data sets for each class), the
prescribed classes of myocardial infarction were classi-
fied successfully using only the first extracted feature.
Our method can efficiently process the time-series hy-
perdimensional data and give results matched to the
purpose of diagnosis. The application of our method to
the cases where more classes of ECG are included and
the confirmation of its validity for medical applications
are subjects for future study.
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Appendix

The transformation of hyperdimensional data y =
(y1, · · · , yN )t to reduced and normalized data z =
(z1, · · · , zm)t is formulated as follows. First we trans-
form N -dimensional data y to only m (m � N) princi-
pal components u = (u1, · · · , um)t by

u = Qty. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (A1)

The transformation matrix Q can be constructed from
eigenvectors of the covariance matrix Cyy as Q =
(q1, · · · , qm). Each eigenvector q1, · · · , qm corresponds
to the m largest eigenvalues ϕ1, · · · , ϕm.
After reducing the data, we normalize the within-

class dispersion of each class by a linear transforma-
tion so that the dispersion is transformed to an m-
dimensional sphere. The within-class covariance ma-
trix of reduced data u can be written as C̃e = QtCeQ.
When the eigenvalues of C̃e are expressed by λ1, · · · , λm

(λ1 > · · · > λm) and the eigenvectors by p1, · · · , pm, the
transformation is

z = P tu, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (A2)

where P = (p1/
√

λ1, p2/
√

λ2, · · · , pm/
√

λm ). Then,
the transformation from y to z is written as

z = Aty, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (A3)

where A = QP .
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Fig. 9. Extracted first feature for discrimination of anterior MI

Fig. 10. Extracted first feature for discrimination of inferior MI

Fig. 11. Extracted first feature for discrimination of the flat T wave

Fig. 12. Extracted first feature for discrimination of both of the anterior and inferior MI
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