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This paper describes an improved surface charge method (SCM) that analyzes the electric field in composite
dielectrics in a three-dimensional (3D) arrangement. In this SCM, curved boundary surfaces are represented
by third-order shape representation functions, and surface charge density distributions on the surfaces are
expressed by non-conforming first-order charge representation functions. This type of SCM realizes natural
treatment of curved surfaces, and also numerically stable treatment of edge parts of the shapes and triple
junctions of different materials without any additional modifications. Two benchmark-test calculations are
carried out to confirm the validity of the proposed method. It has also been applied to field analysis for a
real 3D dielectric support of a high voltage feed line.
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1. Introduction

Surface charge method (SCM) is a numerical field
calculation technique, which simulates an electric field
with the equivalent charge on the boundary surfaces.
Although it has a long history of application, it is
not yet fully developed as a reliable and accurate
method, in particular, in composite dielectrics and
three-dimensional conditions. We have been improv-
ing the accuracy of SCM in these conditions '@ by
applying various computational techniques relating to

(i) representation of surface profiles,
© (ii) expression of charge density on boundary surfaces,

and (iii) formulation of boundary conditions.

In this paper, we demonstrate the usefulness of a
curved surface charge method with non-conforming
charge representation. This type of SCM is realized
by the following procedures.

(1) Control points of Bézier patches are defined, which
express the third-order triangular and quadrilateral sur-
faces.

(2) Non-conforming first-order functions are pre-
pared, which represent surface charge density distribu-
tions on the surface elements.

(3) Matching points of boundary conditions are de-
fined, which give a set of linear equations to solve the
unknown variables of surface charge density.

The following calculations are carried out, and the
results are presented.

(A) Benchmark test I : Spherical dielectric.

(B) Benchmark test II : Cubic dielectric.

(C) Practical example : Dielectric support.

2. Formulation of SCM

2.1 Representation of surface profile When
a model to be treated has a rounded shape, usage of a

curved element is recommended in order to perform re-
liable field calculation.” Some kinds of curved elements
have been applied for such purposes in the high volt-
age engineering field ® ~ ®_ Here, we use a triangular
and a quadrilateral Bézier patches® whose sides are
represented by Ferguson cubic curves .

For ‘the triangular patch, we adopt the third-order
shape functions proposed by Zienkiewicz . For the
quadrilateral patch, we adopt the third-order Serendip-
ity shape functions (. These surfaces are numerically

* described by the formulation of the Bézier patch, and
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they are defined by the control points as shown in Fig.
1 and 2. In the figures, circles mean the control points.
The position vectors of ’on-side’ control points are de-
termined directly from the Ferguson curves. For exam-
ple, the following relationship is valid in Fig. 1.
1
Ty=x1 + §t12 e

where & means a position vector of a control point iden-
tified with a subscript number, and ¢ means a tangent
vector at the first subscribed node toward the second
one. The Ferguson curves can be determined by simple
procedures, for example, by the method described in
reference [8], when the coordinates of vertices and the
side-connection information are provided.

In Fig. 1, the position vector of an interior control
point is calculated by the following equation.

2
10 — T (z1 + 22 + x3)

3
+—

12($4+m5+m6+m7+w8+w9) .

@)

In Fig. 2, the position vectors of interior control
points are calculated by the following way.
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Fig. 1 Control points of the Bézier patch, which represent
a Zienkiewicz triangular element.
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X14, T15, and @16 are determined by the similar equa-
tions. The Bézier patch s is represented by the following
formulations ®. For a triangular element,

s(br,6,8) = L+ BTG + Ft”'gs)s Ty, e (4)

where {1, &2, and €3 mean area coordinates of a trian-
gle, £*"* and F*"* mean the shift operators of the tri-
angular control-point. E®"® and F*"* shift the operated
control-point to the neighboring one in the & and &3
direction, respectively. For example, E**x; means x4,
EriFtrip, means x19, and so on. For a quadrilateral
element,

s(e,n) = (1— €+ BTo4g)® (1 —n + Fon) @, (5)

where ¢ and n ( 0 > &, n > 1) mean normalized coor-
dinates, E9%¢ and F9“*d mean the shift operators of
the quadrilateral control-point. E?%4¢ and F7“e ghift
the operated control-point to the neighboring one in the
¢ and 7 direction, respectively. For example, Favedg,
means s, EBawed pavedg. means xq3, and so on.

We use quadrilateral patches in most of the surfaces,
and only partly use triangular patches.

2.2 Representation of a charge distribution
We use first-order shape functions to represent a charge
density distribution on each element. For a triangular
element, three shape functions agree with the area coor-
dinates of a triangle. For a quadrilateral element, four
shape functions are defined by the bi-linear function.
These functions can also be expressed by the Bézier
patch formulation. The charge density distribution o is
represented as follows. For a triangular element,

o(£1,8&,63) = (& + By + F¢s) 01, -+ (6)

and for a quadrilateral element,

o(€,n) = (1 — &+ E™9) (1—n+ F™n) o1, (7)
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Fig. 2 Control points of the Bézier patch, which represent
a Serendipity quadrilateral element.

where o; means the charge density defined at ;. In
eq. (6) and (7), the shift operators shift the control-
point where o is defined. For example, E**g, means
oq, E4e@F9uds, means o3, and so on.

In this calculation, the charge density distribution
on the whole area is defined discontinuously at the all
connecting-parts of element-sides, which is called the
non-conforming element in the charge representation.
In any case, the charge density distribution on each ele-
ment is described by three or four charge density values
at the triangular or quadrilateral vertices of the element,
respectively.

2.3 Representation of boundary conditions
Boundary conditions are represented by a point match-
ing method. When the point is on a conductor or di-
electric surface, an equation for a potential or a nor-
mal component of flux density is needed there, respec-
tively. For a triangular element, three matching points
of boundary condition are required to harmonize with
the three unknown variables. As these points, we choose
the sampling points of a triangular area integration for-
mula with three points . The area coordinates ({1, &2,
&) of these points are placed at (%,3,%), (§,3,5), and

%,é,%), respectively.

For a quadrilateral element, four matching points
are required. As these points, we choose the sam-
pling points of the Gauss integration formula with two
points ™ in both £ and 7 coordinates. The normalized
coordinates (£, n) of these points are placed at (a,a),
(a,1—a), (1—a,a), and (1—a,1—a), respectively, where
a = 0.211325 .

3. Numerical results

3.1 Spherical dielectric As a benchmark ex-
ample, we calculate the electric field for a spherical di-
electric placed in the free space under a homogeneous
field. As for this example, there exists the well-known
analytical solution, so that we can easily examine the
accuracy of the calculated results by comparing them
with the analytical ones. And it is also known that the
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Fig. 4 Calculated potential V and field strength E. on the
z-axis for a spherical dielectric.

use of curved surface elements is quite necessary for a
reliable numerical analysis of this case.

The radius of sphere, the relative permittivity, and
the electric field strength are lcm, 10, and 1kVem™!
respectively. The homogeneous electric field is applied
parallel to the z-axis. An example of applied mesh pat-
terns is shown in Fig. 3. In this case, by counting a
quadrilateral as two equivalent triangles, the number of
equivalent triangular elements amounts to 480 over the
entire surface. Fig. 4 shows the calculated potential V
and electric field £, on the z-axis corresponding to the
mesh pattern of Fig. 3. Theoretical values and relative
errors are also plotted in the figure. Inside the dielectric,
the field error is less than about 0.1% . The maximum
error of the field is —2.25% near the top of the dielectric
(z=1 —a cm, a = 3 x 1075). We have also calculated
the error of field strength in relation to the number of
surface elements. Fig. 5 shows the calculated relative
error (absolute value) of F, at z =0 and z = 1—a in re-
lation to the number of equivalent triangular elements.
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Fig. 5 Error of electric field strength and spherical surface
area in relation to the number of equivalent triangles for a
spherical dielectric.
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Fig. 6 Mesh pattern for a cubic dielectric on the ground.

The number of equivalent triangles ranges from 480 to
6160. The figure also shows the results corresponding
to mesh patterns made by dividing a quadrilateral into
two triangles. As additional information, the surface
area errors of simulated surfaces are also plotted in the
figure. Fig.5 indicates that the calculated results are
reasonable and have enough accuracy in general use.

3.2 Cubic dielectric As a next benchmark ex-
ample, we calculate the electric field for a cubic dielec-
tric placed on the ground under a homogeneous field. As
for this example, no analytical solution exists, so that
the examination of the calculated results is a difficult
matter. Furthermore it is known that the edge shape
gives singular characteristics for the tangential compo-
nent of electric field. In general, these characteristics
make the accurate calculation difficult.

The side length of the cubic, the relative permittiv-
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Fig. 8 Electric field and electric flux in relation to the
number of elements for a cubic dielectric on the ground.

ity, and the homogeneous electric field strength are 2cm,
10, and 1kVem ™! respectively. The homogeneous elec-
tric field is applied parallel to the z-axis. An example of
applied mesh patterns is shown in Fig. 6. The division
intervals are defined by using an arithmetic sequence
with a constant difference d that equals a half of the
first term of the sequence. The element width becomes
narrower with approaching the edge part. The number
of division is 10 over a side of the cubic, and the num-
ber of elements is 500 over the entire surface above the
ground for the model shown in Fig. 6. Fig. 7 shows
the calculated potential V and electric field E, on the
z-axis corresponding to the mesh pattern of Fig. 6. In
order to estimate the validity of the calculated result,
we have calculated both the electric flux ®;, incoming
through the bottom of the cubic and the flux @4y, out-
going through the outer surface of the cubic. These two
fluxes must theoretically agree with each other, so that
the check of the agreement permits evaluating the de-
gree of satisfaction of the necessary condition. Fig. 8
shows the calculated electric flux and field in relation
to the number of surface elements. The number of ele-
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Dielectric column Relative permittivity=9.3
Height 17.5cm '
Width 6.0cm
Depth 4.0cm

Feed line Applied volt.=—100kV
Radius (in dielectric) | 1.9cm
Radius (in vacuum) | 1.lcm

Guard ring Applied volt.=—100kV
Major radius 2.5cm
Minor radius 0.75cm

Metallic base Grounded (0kV)
Height 2.0cm
Width 8.4cm
Depth 9.0cm

ments is 180, 500, and 980 from left to right. The figure
also represents the relative difference of ®;, and @,y
Fig.8 shows that the calculated results at least satisfy
the necessary condition with difference less than several
percent.

3.3 Dielectric support As a practical example,
we calculate the electric field for a dielectric support of
a high voltage feed line, which is used in vacuum as a
component of a high energy accelerator. In this case,
there appear curved surfaces, edge parts of the shape,



Fig. 10 Calculated potential distribution on the surface.

and triple junctions of different materials. These sur-
faces or interfaces and the complex 3D shape make the
field calculation difficult in general. On the other hand,
it makes the condition advantageous to the calculation
by SCM that an electric potential is fixed on the con-
ducting boundary. \

Fig. 9 shows the mesh pattern of the dielectric sup-
port. The model is composed of three parts. The feed
line is a high-voltage (—100kV) conductor, and has two
guard rings at both parts in contact with the dielectric
support. The dielectric support is a rectangular solid
with a hole, and the feed line penetrates the hole. The
metallic base is a grounded holder of the dielectric sup-
port. Chief specifications for the model are listed in
Table 1. It should be noted that the calculation model
is simplified from the real equipment on several points.
For example, the feed line is cut off 'and rounded at
both ends for the convenience of calculation. The rela-
tive permittivity of the support is roughly estimated to
be 9.3. The symmetric property at ¥ = 0 plane is taken
into consideration, and the number of used elements is
1842 for the half region. The quadrilateral elements are
adopted in most of the surfaces, but triangular elements
are partly used, for example, at the ends of the feed line.

Fig. 10 shows the calculated potential distribution
on the all elements by shading the picture.. It is clearly
shown that the potential gradually varies from —100kV
to OkV. Fig. 11 shows the calculated distribution of nor-
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Fig. 11 Calculated distribution of normal component of
field E,, on the surface (painted E, > 0 region only).

mal component of field E, on the surface. To simplify
the figure, the shading is performed where E,, is directed
outwardly from the surface. The normal component E,,
on the dielectric is enhanced near the feed line and the
guard rings as expected. However the strongest nor-
mal field, 54.1kVem™! at (z,y, 2)=(2.0,0.0,11.84)cm,
is observed at the region slightly apart from the high
voltage conductor, (2.0,0.0,12.3)cm. It is because the
guard rings are well working as for a field-relaxation
role. -

Fig. 12 shows the calculated distribution of electric
field strength |E| on the y = 0 plane. The boundary
between the feed line and the dielectric support is on
both the line of 0 < z <2cm, z = 12.6cm and that of
z = 2.0cm, 12.3 < z < 12.6cm. The boundary between
the dielectric support and the vacuum is on the line of
z = 2.0cm, 10.0 < z < 12.3cm. In the figure, the fields
on the z = 2.0cm boundary line are doubly plotted
corresponding to the discontinuity of the field, by cal-
culating them at z = 2.0410"°cm. An exact numerical
treatment is impossible for the field at the triple junc-
tion, (2.0,0.0,12.3)cm, because it becomes infinitely
high theoretically. However, compared with the am-
bient field strength, the calculated field of 144kVem ™!
at a point (2.0—107°,0.0,12.3)cm shows a qualitatively
likely tendency of field enhancement in the vicinity of
the singular point. The maximum field strength, except
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Fig. 12 Calculated distribution of field strength |E| on
y = 0 plane.

for the field at the triple junction, is 61.9kVem ™! on the
surface of the guard ring at (2.13,0.0, 11.81)cm.

4. Conclusion

An improved SCM is developed and tested, which
analyzes the electric field in composite dielectrics in a
three-dimensional arrangement. In this SCM, curved
boundary surfaces are represented by third-order shape
representation functions, and surface charge density
distributions on the surfaces are expressed by  non-
conforming first-order charge representation functions.
The contents of the paper are summarized as follows.

(1) Calculation methods of interior control points of the
Bézier patch are formulated for the Zienkiewicz trian-
gular and the Serendipity quadrilateral patches in order
to represent curved surfaces.

(2) Non-conforming representation of charge density
and the arrangement of matching points are designed
in order to represent surface charge density and to ob-
tain a set of discrete boundary equations.

(3) Two benchmark calculations of electric field are car-"
ried out relating to a spherical and a cubic dielectric.
The calculated results confirm the validity of the present
method.

(4) As a practical example, a field analysis has been car-
ried out relating to a dielectric support of a high-voltage
feed line to obtain the field distribution, in particular,
to specify the strongest field region on the surface.

From these calculation results, we could confirm the
usefulness of the proposed SCM for computing electric
fields in complicated 3D arrangements.

(Manuscript received December 25, 2000, revised
April 18, 2001)
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