Paper

A Test Program Generation for Scalable SIMD Parallel Computer

Member Akira Iwase (Mitsubishi Electric Corp.)

Non-member Tetsuaki Isonishi (Mitsubishi Electric Corp)

Non'member Hiroyuki Miyata (Mitsubishi Electric Corp.)

Member Hisao Koizumi (Tokyo Denki University)

Computer hardware testing is performed with test programs generated by using machine instructions or high-level
language. A parallel computer is characterized by the complexity resulting from its system configuration consisting of an
array of a number of processors, and also by the parallel processing unit whose hardware configuration can be varied
corresponding to the system objects and the required performance conditions. Because of this, it is required to prepare the
test programs corresponding to the respective hardware configurations. This means that the number of test programs
required increases with the number of hardware configuration types designed, and this requires a tremendous amount of labor
for their generation.

This paper proposes a system for efficiently generating the test programs to be used for hardware testing of the scalable
SIMD parallel computer. This system makes the most of the functions and features of the scalable SIMD parallel computer,
and generates the test programs without depending on the hardware configuration of the parallel processing unit. By using
this system, it is possible to reduce the types and number of the test programs, and consequently, the period for the

development.

Keywords: test program, hardware testing, SIMD, parallel computer

1. Introduction

Along with the enhancement of performance in the
general-purpose microprocessor and the progress in the
multiprocessor, computers are showing a -remarkable
improvement in performance. However, in multimedia
processing and others, the amount of data to be processed is
tremendous, and much greater computing power is required.
As a possible solution for this problem, a scalable parallel
computer based on VLSI technology is being looked for. In
particular, for high speed and efficient execution of various
routine processing of two-dimensional image data, application
of the SIMD (Single Instruction Multiple Data stream) system
is effective as a parallel processing system making most of the
parallelism included in such image processing @.

This paper discusses the test program to be used for the
hardware testing of this SIMD parallel computer. Hardware
testing means detecting, pinpointing the location of and
finding out the cause of any fault by operating the system
hardware under the conditions equivalent to those in the
actual operating environment. The hardware testing is
executed by using test programs generated by human effort by
using machine instruction or high-level language. When
generating such test programs, it must be taken into
consideration that the specifications of the parallel processing
unit and hardware configuration can vary according to the
system objects and required performance. If the test programs
are to be created for all of required hardware configurations, it

would require a large amount of manpower and much longer
development period. The authors have been concerned in the
development of the SIMD scalable parallel computer
(hereinafter called CAP in this paper) @9 and found that this
problem was significant in the generation of the test programs
for prototype machine which was developed as an architecture
model for the first time.

It can therefore be said that generating the test programs
independently ~without being affected by hardware
configuration of the parallel processing unit will lead to a
reduction in the test program development period.

This paper proposes a method for generating the test
Pprograms, independent from the hardware configuration of the
para]lel processing unit, for the scalable SIMD parallel
computer. It also reports that application of this method
resulted in a reduction not only in the number and types of the
test programs but also in the period required for generating
the test programs compared to the conventional method.

Chapter 2 describes the ‘test program development
procedures for the scalable SIMD parallel computer and
remaining problems, and chapter 3 proposes a test program
generating method independent from the hardware
configuration of the parallel processing unit. Chapter 4
evaluates the application results.

2. Test program generating procedure for scalable
SIMD parallel computer and remaining

T.IEE Japan, Vol. 121-C, No. 8, 2001

Test Program Generation for SIMD Computer

problems
2.1 Configuration and features of SIMD parallel
computer ‘
Typical configuration of the SIMD parallel computer is
shown in Fig. 1. As shown here, this computer is composed of a
parallel processing unit (AU) and a control unit (CU) that
controls the parallel computer as a whole, and AU is further
composed of a number of basic processor elements (PE) and a
network that interconnects the PEs. A shared memory (SM) is
used to store a large quantity of data. This AU features that it
can be so configured as to meet the objective and required,
performance by making the number and connection of PEs
variable. Each PE is basically designed to perform data
processing operation simultaneously in synchronization with
the clock according to the instruction given by CU.

: Frontendvmca@r:: - (FBy |

Fig.1 Structure of SIMD parallel computer

The parallel programs and test programs of the SIMD
parallel computer are stored in CU, where the parallel
program execution sequence control and scalar operation,
input/output control, and the control of the array operation
executed by AU are carried out.

2.2

procedure

The test program to be used for hardware testing of the
SIMD parallel computer has been generated by human effort
by using machine struction or high order language, or by
using RIT (Random Instruction Testing) where the machine
instruction is executed random @,

The procedures for test program generation and test
program execution are shown in Fig. 2. Based on the test

Conventional test program generating

specifications, the test programs are generated using the
machine instruction or high-level language. A software
simulator is then used to debug the programs before they are
executed on the actual machine. These test programs are then
loaded to the CU of the actual machine together with the test
program monitor for controlling test program execution. These
programs are then verified by executing them in sequence. The
test program operation is shown in Fig. 3. The basic procedure
consists of initialization, setting of expected data, setting of
input data, execution of test instruction, comparison of
execution result and expected data, and judgment for error. If
any error is detected, its cause is traced.

TBHFWC, 121585, PR IIF

1335

I Test-Specifications I

: il
High-level Language||_ Program Coding _ | g8
Machine Language Compile/Assemble _% _;';’
<4 B ®
Instruction Level o 8
: I B
[Simulator]L Debugging "B
a1zl £%
I Test Program Monitor I 2 % %" o
aglw| &8
| Test Data ITest Programls c 2 — 2
Elg| 22
Result Transfer Q 0% E
- - =} =8
I Parallel Processing Unit (AUj 2 <3
I
a

ir

L Shared Memory (SM)j

Fig.2 Test program design and test program execution
I Initial Setting

>V
l Expected Data Setting |

¥

I Input Data Setting I

v

I Test Instruction Execution I

v

I Comparison with Expected Data I

Error

No Error
Completed entirely?
Yes Error Analysis

Fig.3 Operational flow of test program

Since the test programs are generated by taking the
verification procedures of the objective hardware into
consideration, the number of test programs required is
obtained by multiplying the number of functions to be tested
by the number of hardware configurations.

The types and contents of the machine instructions for a
typical SIMD parallel computer classified by functions are
shown below:

(1) Array instruction

All PEs perform array operations simultaneously for the
array data stored in the register file and local memory in each
PE of AU. The array instructions include LOAD-STORE,
MOVE, SHIFT, ARITHMETIC-LOGICAL OPERATION, and
TRANSFER AMONG PEs.

(2) Scalar instructions

The scalar instructions include LOAD-STORE, MOVE,
SHIFT, ARITHMETIC-LOGICAL. OPERATION, and
BRANCH, which perform parallel program execution
sequence control and operation for scalar data.

(8) Array-scalar instruction

This instruction is for converting the array data of all the

PEs to the scalar data, and transferring it to CU.

(4) Scalar=array instruction

In contrast to the above, this instruction is for broadcasting
the data inside CU commonly to all the PEs.
(5 I/O instruction

This instruction is for data transfer between hardware
blocks and outside.

In the SIMD parallel computer, these machine instructions
are used to generate test program set classified by functions.
Table 1 shows the test program set. Accordingly, hardware
testing of the SIMD parallel computer requires the test
program sets composed of these five functions, with the
maximum number of those test program sets being equal to
the number of the hardware configurations of the required

AUs. Table.1 Types of test program

Magchine Instruction to be Tested
Input=Output Instruction

Test Program
Interface Test between
Hardware Blocks
Memory Test
for CULM
Test of Scalar—Array Data Scalar—Amray Instruction
Translation Function between CU &AU | Amray— Scalar Instruction
Array Instruction

Array Instruction

a)

b) Input/Output Instruction

)

d) | Test of Processing Function in AU

Test of Processing Function in AU

° involving PE to PE Transfer

2.3 Problems related to test program generation
corresponding to AU hardware configuration
When performing hardware testing of the SIMD parallel
computer, the hardware configuration of AU cannot be
specified. The reasons are that the SIMD parallel computer
itself is able to adopt a scalable configuration with variable AU
configuration, and that, at the stage of hardware testing, the
objective AU hardware is not always complete. It is also not
practical to have enough number of individual test programs
generated in advance corresponding to the required hardware
configurations. It is necessary to arrange the test program to
be used for hardware testing so that it can correspond to any
change in the hardware configuration. This point will be
further discussed below:
" The scalable SIMD parallel computer performs equal
" operation to all the PEs, hence it is generally considered that,
as a general rule, only one test program will do without paying
attention to hardware configuration. However, this can apply
only to the so-called program code, and still we have to take
the test data into consideration. The test data mentioned here
refer to both the input data and expected data. If only the
identical test data is to be set for all the PEs in executing the
test program, then we need not take care of the hardware
configuration. However, if we want to improve the quality of
testing, it is then necessary to set to each PE different data
patterns such as periodic pattern and random pattern as test
patterns. In such a case, the hardware configuration must be
taken into consideration, and a plural number of test data
groups must be prepared corresponding to the hardware
configuration.

Besides, testing of array operating function that involves
data transfer among PEs will result in an operation over a
plural number of PEs within an AU. Hence, the position of
data transfer destination PE would vary with the hardware
configuration and connection among PEs, and the result of the

operation may also vary accordingly. This means that the test
data groups must be prepared in the number equal to that of
combinations of connections among PEs.

As mentioned above, the test program sets must be
generated in the same number as that of the required
hardware configurations. This will result in a large increase in
the amount of manpower for program generation as well as for
program maintenance afterward. A higher test program
generating efficiency is therefore being looked for.

Many studies have been conducted concerning automatic
test program generation with a view to increase the test
program generating efficiency. The results of such studies
placing the emphasis on a particllar processor and
architecture have been reported ®©®, However, reports of the
studies on the parallel computer of SIMD type, etc., or reports
on the test program generation by considering the difference in
hardware configuration are few.

3. Test program generauon independent from AU

hardware configuration

In this chapter, we propose a method for setting and
generating the test data of the test program independent of the
hardware configuration, and further, performing a series of
operations consecutively up to the transfer of test data and
executing the test program so that the test program is
adaptable to any arbitrary hardware configuration of AU.

Since the test program a) shown in Table 1 is independent of
the AU hardware configuration, only one type of test program
will be enough. As the methods for making the automatic
generation of the test data possible, we herein propose a
method to be applied to test programs b), ¢), and d), which do
not accompany data transfer between PEs, and a method to be
applied to test program e) which accompany data transfer
between PEs.

(1) The method in which the test program monitor gives
instructions to CU to generate the test data

The test program monitor causes CU to generate the test
data at the time of test program execution, and also broadcasts
the data corresponding to the testing area of AU.

This is applicable to such a test where different data
patterns including increment pattern and decrement pattern
are inputted as the test data into each memory-address or each
PE in cases b), ¢), and d). Different hardware configuration’
requires the use of different test data. It is also necessary to
change the broadcasting range corresponding to the changes in
the hardware configuration. In this method, the test data is
automatically generated inside CU corresponding to such
changes.

Fig. 4 shows how to realize this method. First, the test data
generating routine which generates automatically the test
data according to the algorithm and corresponding to the’
hardware configuration, the test data feiching routine for
taking out the required number of data patterns, and the
transfer range specifying routine for setting the range of
transferring by broadcasting are prepared inside the CU. Next,
these routines are arranged so that they can be called out from
each test program via the test program monitor.

T. IEE Japan, Vol. 121-C, No. 8, 2001

Test Program Generation for SIMD Computer

l Teést Domain Designation’] (Command)

Test Data Generation
Routine

v

Ilz:nzq 189, | weldo1d 189, l

v Sursseooig Aesry
KI0WaN poreys

Test Data Fetch
Routine

v

Data Transfer Range
Designation Routine

Simulation of PE-PE
Transfer

| 10JIUOJA WreISoId 189, |<._

pa
\m

Control Unit (CU)| (AUYSM]

Fig.4 Test data generation and transfer of data

Before executing the test program, the hardware testing
personnel or test program operator inputs the value for
specifying the AU area to be tested by using commands. The
test program then transfers the input value as a parameter to
each prepared program routine to execute the routine. By
this method, it becomes possible to automatically generate and
broadcast the test data that corresponds to the hardware
configuration to be tested. After executing the broadcast, test
program execution can be started at once under the control of
the test program monitor. ‘

@ The method in which the test program monitor is
provided with simulation function

This method uses the test program monitor provided with the

simulating function to generate the test data corresponding to

the prepared hardware configuration at the time when

executing the test program.

This is applied to the case e). Since the position of each PE'in
AU, that is, the PE address is inseparable from test execution,
an appropriate test pattern must be generated each time the
hardware configuration changes.

For this purpose, we provided inside CU a PE to PE transfer
simulating routine program that can be called from the test
program for simulating PE to PE data transfer as shown in
Fig. 4.

As an example, a method for realizing a case of SIMD
scalable parallel computer whose AU connection network is
two-dimensionaltorus connection with m x n configuration.
Fig. 5 shows its configuration. Fig. 6 shows how data
transfer among PEs is operated in such a configuration. If
instructions are given to transfer the data within all the PEs
into an PE separated by M cells in X-axis direction and by N
cells in Y-axis direction, then the position of PE (X, Y) to which
the data at PE (x, y) will move after completion of transfer
operation can be indicated by the following equation:

X Y) =M, Y+N)............ if X+MZm—1 and Y*N=<n—1
=(X+M—m, Y+N—n)... if X+M>m—1 and Y+N>n—1

If simulation is executed according to this equation for the
input data, and the expected data after execution of the PE to
PE transfer instruction is calculated, the test data will be
automatically generated without depending upon the
hardware configuration. Fig. 7 shows the sequence of the test
program execution in this operation. The PE to PE transfer

BHHC, 1214585, FRI3E

simulation is executed within CU to have the expected data of
the test generated, and then the input data is transferred to
AU to execute the instructions to be tested. Next, the expected
data generated in advance is transferred to AU and compared
with the results of executing the instructions to be tested to
judge if any error exists. In this case, also, it is possible to
perform a series of operations consecutively from test data
generation to test program execution.

\
n-1

Fig.5 2-dimensional m X n Torus connection of AU

0 ~ — > m-1
0o (d | I\ __
y.V}_ N M] |
i
L \@ HER
N
ilo
q . &)
VXN (o
o1 | [N A4

<+ mX n_PESTructurc FE

This diagram shows the followingtwo cases.;
@: x+M=m-1, y+N=n-1
@:x+M>m-1, y+N>n-1

%) (X,Y):PE Address (Coordinates)

Fig.6 Data transfer among PEs

Input K ® ®

L data \ % v
Ok s
Simulation of FIE
PE to PE data BE
Transfer 2z %

R w |2
o |
Expected /,/(@' =k

Controt Unit CU AU|.SM
(DExpected data generation (Simulation)
(@Input data transfer
(®Execution of instruction to be tested
@Expected data transfer

®Comparison of result data with expected data
Fig.7 Test sequence of Array Instruction having PE to PE data Transfer

1337

~Similar principle applies also to the machine instructions
involving data transfer among PEs. In addition, this idea can
be similarly applied not only to the Torus connection, but also
to other connecting methods. Therefore, it is sufficient to
generate only one type of test program.

4. Evaluation of and consideration on application
results

The proposed test program generating system independent
from the AU hardware configuration was applied to an actual
SIMD scalable parallel computer, and the results were
evaluated and examined concerning to what extent the
program development efficiency was enhanced. In this study,
we performed an evaluation based on the actual results of the
manpower and time required for generating the test programs
for CAP ®® which is a scalable SIMD parallel processor
developed by us.

CAP is composed of the parallel processing unit (CAU) and
the CAP control unit (GCU) which controls the entire CAP as
shown in Fig. 8. This CAP and the shared memory (SM) are
connected by the multiplex bus to constitute an SIMD' array
processor. CAU is further composed of the cellular array unit
consisting of a two-dimensional array (m x n PE) of a number
of basic processor elements (PE), the processing control unit
which controls the cellular array unit, and the data
nput/output control unit. CAU is variable consisting of m x n

(1) Application results

To show clearly how high the test program generating
efficiency has been improved, the test program generating
manpower is selected as the evaluation index.

In this evaluation, we assumed a case of four configuration
types (8 x 8 PE, 16 x 16 PE, 24 x 24 PE, and 32 x 32 PE), and
another case of eight configuration types (8 x 8 PE, 16 x 16 PE,
24x24 PE, 32x 32 PE, 40 x 40 PE, 48 x 48 PE, 56 x 56 PE and
64 x 64 PE), and generated the test programs shown in Table 1
corresponding to the respective configurations. We prepared
two types of test data: one for giving the same data to all the
PEs or memory addresses, and one for giving different data to
each of the PEs or memory addresses. The manpower for
generation & debugging of test program was, for the case of
test program a), common to both the prototype machine and
evaluation machine, and equal to the sum of time required for
generating the program code and test data. For the case of test
programs b), ¢), d), and e), the manpower was equal to the case
of a) for the prototype machine, but for the evaluation machine,
it was the sum of the time for generating the program code
and test data routine or PE to PE transfer simulation routine.

Table 2 shows the number of all the test programs generated
under the above-mentioned conditions and the manpower
required for generating these.

Table.2 Number of test programs and manpower

elements so that it can be configured to meet the design objects 4 typg‘;.‘fmwe s tyngtfcype | Bt Type
and required performance. CAU and GCU correspond cufigraian cnfigration
respectively to the typically configured AU and CU of the T oo Nugper | Man Mo Man
SIMD parallel computer shown in Fig. 1. Program Progeams| (o) P o
The authors developed two types of machines; a prototype a) Interface Test Hoda 1 250 1 250 1 20
machine and its evaluation machine ®® for CAP development. D) Merrory Test for CU,LM
The prototype was an architecture model, and its CAU (M) : Fror B 2 ! pat
conﬁ};gl;ramon Bdem?mm;n; 32 x 32 PEij T}f{emevall}an;n c);:cg%%%gm
een
mac! : e was : velope y oorrectmg the faults 9 the gamDm) . 210 . 0 . 0
prototype machine and enlarging its CAU configuration to flerent Data) 4 1080 | 8 20 | 1 | 0
maximum 64 x 64 PE. The test program generation by the) Test of Procecsing
prototype was performed using the conventional method, while el . Froull R B O B
the proposed test program generating method independent o) Test of Processing
_ ,) Furction in AU involvi 4
from the AU configuration was applied to the evaluation PEOPE T o o ! 0
machine. \ , Tetal 2 | 340 | 3% | om0 | 8 | 250
LFront End Processor
) m X n PEs
I e | 0 m-1
T CAP SM Qep
| -~ e relret eaetre P
Multiplex Bus | | "
Parallel T PE(PE| PH[| PETPE[] PEf{P 3
1 == Processing Tt ——==m g "‘: s 3
: Unit (CAU) . : PE[PE[]PHE[JPE[]PH[]P Ny
CAP |1 |Processing | Input/ Cellular | pEHPEH pEHPEHPEH pH--TP 3
Contro}l : Contro] [|Output || Array |1 T
Unit |1 {Unit Control Unif | . ., HIES) #N-1 PEHPEHPEHPAHPEH pHl-{P 3
@yl) L@acy [1OCY)] ' s T
: I—_I*i il PE([MPE{1PE[PEPE[1 PH P %
| _} Shared N T DT i o R
TTTTTTTTTTyT Tt Meftiory....., : iy
System Bus

Fig.8 Structure of CAP

1338

T.IEE Japan, Vol. 121-C, No. 8, 2001

Test Program Generation for SIMD Computer

(2) Evaluation and consideration

As can be seen from Table 2, by applying the proposed test
program generation system independent of the hardware
configuration of AU, the number of test programs, compared to
that of the prototype machine was reduced down to 2/5 for the
case of four hardware configuration types, and 2/9 for the case
of eight hardware configuration types, and the generaﬁng
manpower down to about 1/2 and 1/4 respectively.

This is because that: in the case of the conventional system
used for the prototype machine, the test programs must be
generated in the number capable of coping with all the
hardware configurations and all the test data, whereas in the
case of the system proposed for the evaluation machine,
generation of the test programs only in the number
corresponding to the number of types of the test data is
required.

In the evaluation shown in Table 2, when using the same
test data for each PE or each memory address in test programs
a), b),), and @, there is no difference in the number of test
programs to be generated and the generating manpower
between the prototype machine using the conventional system
and the evaluating machine using the proposed system.
However, in the case of setting different test data to each PE or
each memory address in test programs b), ¢), and d), and also
in the case of performing arithmetic operation test
accompanied with PE to PE transfer in test program e), it is
necessary to generate the test data corresponding to the
hardware configurations of AU if such configurations differ.
Because of this reason, the prototype machine using the
conventional system requires four or eight test programs for
each of b), ¢), d and e), corresponding to the hardware
configurations. On the other hand, for the evaluation machine
to which the proposed system was applied, it is necessary to
generate only one test program for each. Accordingly, the
number of entire test programs required when the proposed
system was applied was reduced to 2/5 and 2/9 respectively for
four types and eight types of AU hardware configurations,
compared to the cases where the conventional system was
used.

As for the generating manpower for all the test programs,
the conventional system applied to prototype machine required
24 man-months and 40 man-months, for four types and eight
types of AU hardware configurations respectively. Contrary,
the manpower for the proposed system applied to the
evaluation machine was 12 man-months, which means a large
reduction to about 1/2 and 1/4 respectively. It is clear that the
larger the number of hardware configurations of AU, the
greater these ratios will become.

As explained above, by making it possible to generate the
test data for the test programs automatically in accordance
with AU configuration, it was demonstrated that the efficiency
of test program development can be increased largely.

Next, test program maintenance, test results, test program
execution time, test program operation and the test coverage
are evaluated and considered in turn.

* The burden for maintenance and control of the test programs
was reduced corresponding to the reduction in the number of

TFWHC, 121585, FR13E

1339

programs and program types.

* The test programs generated by the conventional system
and proposed system were executed respectively under the
condition where a failure was generated forcibly in the actual
machine. As a result, the same error was detected correctly
by each program. There is no difference in the execution result
of both programs, and the quality of them is equivalent.

* Table 3 shows the test program execution time for the case of
test program d). With the conventional system, the execution
time means the time when both the program code and test
data are set on the main memory of CU which is the scalar
processor. The difference in time shown in the table can be
regarded as the time for automatic generation of test data, and
it became clear that the execution time of the proposed system
is longer by approximately 8%. In the case of the conventional
system, however, it is necessary to place the test data in the
external storage of CU and load the data into the main
memory as necessary when executing a plural number of test
programs consecutively. The execution time, when this access
time to the external storage is taken into consideration, may
become longer for the conventional system, and when
executing a plural number of test programs in succession, it is
expected that the total execution time of the conventional
system may be longer.

Table.3 Execution time of test program

Test Conventional Proposed
Program System System
d) Test of Processing

Function in AU 75 sec 81 sec

* As to the operation for executing the test program, the
proposed system requires operation for specifying the AU
hardware configuration necessary for automatic generation of
test data and the types of generating patterns as parameters,
and this increases the number of items to be indicated by the
operator. However, when executing a plural number of test
programs, the conventional system requires loading of test
data from the external storage each time a test program is
executed. Compared to this, the operation of the proposed
system would be easier and save the operator’s labor.

* It can generally be considered that the test coverage would
improve as the number of combinations of test data increases.
The proposed system permits automatic generation of test
data conforming to the arbitrary algorithm by using test data
generating program and simulation. So, much more test data
can be generated easily than the conventional system. This
also serves to increase the number of combinations of test data.
Accordingly, the proposed system is also effective for improving
the test coverage.

5. Conclusion ,

Both the variety and number of test programs required for
the hardware testing of the SIMD parallel computer have
increased, requiring a huge amount of time for generating
them, because the AU hardware configuration as the
specification was variable and the AU hardware was not fixed

at the time of hardware testing. With a view of solving this

problem, the authors developed a system for automatically
.generating the test data for the test program corresponding to
the AU hardware configuration, and applied this system to the
scalable SIMD parallel computer CAP {(evaluation machine).
As the result, it was possible to reduce the manpower for
generating the test program significantly. This leads to the
reduction in both the development period and development
cost. Thus, it was shown that this system is quite effective in
test program generation for the SIMD parallel computer.
" For further improving the program generating efficiency and
- consolidating the test program functions, we will keep
studying the following issues:
- Method for automatic generation of test programs for
SIMD parallel computer
- Method for evaluating the test coverage of the hardware
testing, and thereby realizing the maximum coverage
with minimum test program

(Manuscript received Oct. 30, 2000, revised April 4, 2001)

References
(1) Shinji Tomita; Parallel Computer Engineering, Shoko-do,
73 (1996)
(2) Miyata, Isonishi, Kan, Iwase; Cellular Array Processor for
High-speed Image Processing, Society of Electronic
Communications, EC84-6, 49/60, 1984
(3) Miyata, Isonishi, Kan, Iwase; scalable Parallel Processor
CAP, 31 National Convention of Image Processing and
Information Processing Society, 103/104, 2D-9, 1985
(4) J. Willson et al: Challenges and Trends in Processor
Design, Computer, Vol. 31, No: 1, 39/50, Jan. 1998
(5 T Hattori et al: Design Method of a 200MHZ super-scalar
microprocessor: SH4, Proceeding of the Design Automation
Conference, 246/249, 1998 .
(6) S. Taylor et al: Functional Verification of a Multiple-issue,
Out-of-order, Super-scalar Alpha Processor-The DEC Alpha
21164 Microprocessor, Proceeding of the Design Automation
Conference, 638/643, 1998
(7) Nakano, Kimura, Nonaka: Test Case Automatic
Generating Tool, Mirage, 46% National Convention of
Information Processing Society, 5N-5, 1993
(8) Isonishi, Miyata, Iwase: Architecture of Cellular-Array
Type Scalable Parallel Processor, Information Processing
Society; Computer Architecture Study Group, 88-ARC-73,
61/68, Oct. 1988 |
(9 Miyata, Isonishi, Kan, Iwase' Distributed Parallel
Processor for Satellite Image Processing (1), Society of
Electronic Information Communications, CPSY90-8, 25/32,
1990

Tetsuo Isonishi

Hiroyuki Miyata

Hisao Koizumi

‘research interests include

(Member) received the BE. degree in

electronic engineering from Tohoku
University in 1965. Since 1965, he has
engaged in Mitsubishi Electric Corporation.

His research interests include
MiCro-processor and computer
architecture.

(Non-member) received the BE. and M.E.

degrees from Niigata University in 1981
and 1983. Since 1983, he has engaged in
Mitsubishi Electric Corporation. He
worked at MIT Media Laboratory as a
research affiliate from 1992 through 1994.
His research interests include parallel
computer architectures, network-based
multimedia’ systems, and multimedia
He is a member of the

Information Processing Society of Japan.

contents.

(Non-member) received the B.E, M.E and

ph.D. degrees from Kyoto University in
1980, 1982 and 1997 respectively. Since
1982, he has engaged in Mitsubishi
Electric Corporation. His research interests
include parallel computer architecture and
parallel algorithm. He is a member of the
Information Processing Society of Japan.

(Member) received B.E. and ph.D degrees

“from Tohoku University in 1961 and 1993.

He worked at Mitsubishi Electric
Corporation from 1961 through 1997. Since
1997, he has been a professor at the
Department of Computers and Systems
Engineering, Tokyo Denki University. His
information
system and software engineering. He is a
member of the Information Processing-
Society of Japan.

1340

T.1EE Japan, Vol. 121-C, No. 8, 2001

