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Test feature classifiers are generated directly from training samples and have a 100% recognition rate on
training data. Although this perfect learnability is an important feature of the classifiers, it does not guar-
antee a good generalization. In this paper, we concentrate on the performance of classifiers on test data,
and describe cases when a 100% recognition rate can be achieved. We show that training data can contain
information about possible discriminant boundaries between entire classes. In general, it is impossible to
extract this information, although we propose a heuristic algorithm which could lead to a 100% recognition
rate. To test the performance of the classifiers, we apply them to both artificial and real data. For the real
data, we use the well-known breast cancer and satellite image databases. Our experimental results show
that the proposed classifiers have not only a high recognition ability, but also confirm the ability of a 100%
recognition rate in real classification problems.
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1. Introduction

Classification techniques are one of the most impor-
tant subjects in the field of pattern analysis. The goal
of designing pattern classification systems is to achieve
the best possible classification performance for the task
at hand. There are several factors to be considered. In
many applications, the most important factor becomes
the ability of the classifier to exhibit a good generaliza-
tion.
In this paper, we present test feature classifiers and

concentrate on their generalization ability. These classi-
fiers are generated directly from training samples using
so-called tests, sets of features that are sufficient to dis-
tinguish patterns from different classes of training sam-
ples (do not confuse with test data). The concept of
the test was first introduced in Chegis & Yablonsky (1)

for the purpose of digital logic circuit analysis. The
first use of tests, as the pattern recognition tool was
reported in Zhuravlov et al. (2), and several algorithms
for test extraction, which are asymptotically best (i.e.
when the number of features is large, the algorithm se-
lects only tests in each step and does not make idle
steps) were proposed in the papers (3) (4). Many the-
oretical aspects of test feature classifiers including an
estimation of the number of all tests were considered in
Aleshin (5). The real applications of test feature clas-
sifiers are presented (14)～(16). In Lashkia et al. (14), an
application of test feature classifiers to textual region
location was considered. In Itqon et al. (15), some ex-
tensions of test feature classifiers were introduced and
an application to character recognition was considered.
Test feature classifiers were also applied to the phoneme
database (16). In the above applications a high general-
ization ability was achieved. These experimental results
were very encouraging and showed the importance of

further investigation of test feature classifiers.
In this paper we address some issues relevant to the

ability of test feature classifiers to have a high recogni-
tion rate. In some experiments (14) (16) there were cases
when test feature classifiers achieved a 100% recogni-
tion rate. Our purpose in this paper is to understand
why and when a 100% recognition rate is possible and
propose an algorithm which can lead to a perfect gen-
eralization.
By extracting tests from a training set, test feature

classifiers guarantee to have a 100% recognition rate on
training data. Although many classifiers can also learn
perfectly training data, this does not guarantee a good
recognition rate on test data. We show that in the case
of test feature classifiers the set of tests can also con-
tain information about possible discrimination bound-
aries between entire classes, which we aim to recognize.
If we are able to extract this information by extracting
kernels from tests we will obtain a 100% recognition
rate on any test data. In general, it is impossible to
find this set of kernels but we propose a heuristic kernel
detection algorithm, employ it in real applications, and
show its effectiveness.
We apply the proposed classifiers to both simulated

and real data. In the real applications, we use the
well-known breast cancer and satellite image databases.
There are many papers related to experiments on these
databases (6)～(12). Among them, comprehensive stud-
ies of instance-based learning algorithms are presented
(6) (7). Most of instance-based learning algorithms are
based on metrics. Although these algorithms perform
well and are one of the most reliable classifiers in real-
world domains, they have difficulty to achieving high
recognition rates when classes become overlapped. The
misclassifications of the near-boundary instances often
reduce performance. Experiments (6)～(9), (11), (12) show
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that distance based classifiers have the best performance
on the breast cancer and satellite image databases, al-
though there performance results are still unsatisfac-
tory. Classifiers based on optimization methods are
also very popular and often appear in real-world ap-
plications. They too, have difficulties in achieving
high recognition rates when there are complicated over-
lapped classes. The optimization procedures termi-
nate when a set of parameters that correctly classify
the training data is found. However there could be
many decision boundaries which hold global extrema
and correctly separate training data. The selected de-
cision boundary also may not correspond to an intu-
itive notion of what constitutes a good decision bound-
ary (13). In the case of the breast cancer and satellite im-
age databases, classifiers based on optimization meth-
ods perform worse than distance based classifiers (9), (12).
Other types of classifiers such as statistical paramet-
ric classifiers (11), (12) and decision trees (9), (12) show even
worse recognition results.
Our experiments on real data confirm theoretical abil-

ity of test feature classifiers to have a 100% recogni-
tion rate. The proposed kernel detection algorithm give
good result in kernel detection. On the breast cancer
database a 100% recognition rate was achieved with a
relatively small number of rejections. On the satellite
image database, a 100% recognition rate was obtained
with a very large number of rejections. In Section 3 we
indicate possible was to reduce the number of rejections
and show that the ideal way to achieve complete classifi-
cation without rejections is by constructing a prototype
training set. Despite the number of rejections, a 100%
recognition rate is very important, especially in appli-
cations where mistakes could cause fatal results.
This paper is organized as follows: in Section 2, we

introduce test feature classifiers and in Section 3 we dis-
cuss their properties and performance. In Section 4, we
present results on simulated and real data.

2. Basic Concept and Notations

Assume that P is an n-dimensional feature space,
P = {t = (t1, ..., tn)}, and each pattern is represented as
a binary-valued feature vector in this space ti ∈ {0, 1}.
Let us also assume that there are two possible classes I1

and I2. The problem of designing a classifier for pattern
recognition can be stated as follows: a function V must
be found such that a pattern x is in the class I1 (in the
class I2) if and only if V (x) ≥ 0 (V (x) < 0).
Let us denote B1 = {x1, ...,xm1} as a set of training

samples from the class I1 and B2 = {y1, ...,ym2} as a
set of training samples from the class I2, where xj =
(xj

1, ..., x
j
n), j = 1, ...,m1, yj = (yj

1, ..., y
j
n), j = 1, ...,m2,

and I1 ∩ I2 = ∅. A collection of k features (1 ≤ k ≤ n),

τ = {i1, ..., ik}
is called a test feature (or test) of B1 and B2 if for any
p (1 ≤ p ≤ m1) and any q (1 ≤ q ≤ m2) there exist
some is ∈ τ (1 ≤ s ≤ k) such that xp

is
�= yq

is
. In other

words, a test is a collection of features which is sufficient
to distinguish vectors from different classes of training

samples. If for a test τ , the set τ −{is} is not a test for
any s (1 ≤ s ≤ k), then τ is called a prime test feature
(or prime test).
It is important to note that the assumption of binary-

valued features in the test definition is not essential. A
test could be defined similarly on a many-valued or real-
valued feature space. The only requirement is to have
an inequality relation R on the feature space, such as an
ordinary inequality �=, or any other specific inequality.
The definition of a test is formulated as follows. A col-
lection of features, τ = {i1, ..., ik}, (1 ≤ k ≤ n) is called
a test of B1 and B2 if for any p (1 ≤ p ≤ m1) and any
q (1 ≤ q ≤ m2) there exist some is ∈ τ (1 ≤ s ≤ k)
such that xp

is
R yq

is
. Many-valued and real-valued cases

can be easily reduced to the binary cases, therefore we
concentrate on the basic binary case below.
A test τ = {i1, ..., ik} can be considered as an n-tuple

vector,

τ = (τ1, ..., τn)

where τi is 1 if i ∈ {i1, ..., ik}, and 0 otherwise. Denote
the number of features (1s) in a test τ as |τ |. We say |τ |
is the length of τ . A test is a collection of features for
discriminating training samples of different classes and
it can be used for the classification of unknown patterns.
For a given test τ we can measure the degree of sim-

ilarity of an unknown pattern t to the training pattern
x by

n∏

i=1

(1− τi|ti − xi|) · · · · · · · · · · · · · · · · · · · · · · · · · (1)

This expression takes the value 1 if and only if t and x
coincide in the features defined by test τ , and takes the
value 0 otherwise. In this case, no metric is used. The
coincidence of t and x defined by test τ can be expressed
as τ ◦ t = τ ◦x, where the symbol ◦ means a projection
operator such that (a1, a2, · · · , an) ◦ (b1, b2, · · · , bn) =
(a1 · b1, a2 · b2, · · · , an · bn).
Let T be a set of tests. Taking (1) as a measure

of similarity we calculate votes V1(t) and V2(t) for the
classes I1 and I2 in the following way

V1(t) =
1

m1

∑

τ∈T

∑

x∈B1

n∏

i=1

(1− τi|ti − xi|)

V2(t) =
1

m2

∑

τ∈T

∑

y∈B2

n∏

i=1

(1− τi|ti − yi|).

We call a classifier based on the discriminant function

V (t) = V1(t)− V2(t)

as test feature classifier with T and denote it by TFT
(5).

We extend TF to reject patterns t for which V (t) = 0,
and denote TFT classifier as TFRT for the optional
function of rejection.

3. Properties and Performance

Since V is a polynomial of n variables with a degree
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less than or equal to n (16), for large values of n, the
evolution of TF becomes time consuming. We can im-
prove the time requirement by extracting important (for
classification) features and reducing the dimension of a
feature space. Denote T̂ as the set of all prime tests, and
T̂i, i = 1, ..., n, as the set of all prime tests containing
the ith feature. We define a info vector as

p = (p1, ..., pn)

where pi = |T̂i|/|T̂ | is an info weight (5). We assume that
the more the prime tests contain the ith feature, the
more the ith feature is important for the classification
purpose. The info weight can be considered as a mea-
sure of the feature importance. Therefore, features can
be sorted by their importance and we can reduce their
number by removing features with small info weights.
Because the construction of the set of all prime tests is
very time consuming (there are sets with even an ex-
ponential number of prime tests), in our experiments
to calculate the info vector we use a set of short prime
tests instead of T̂ .
It is easy to prove that for any training set B1 and B2

(B1∩B2 = Ø), the classifiers TF and TFR have no error
on the training samples. As seen from the definition of
the test feature classifier, the classification performance
on the test samples depends on the set of tests T , and
on the set of training samples B1 and B2. Let us call a
test (a prime test) of I1 and I2 a kernel (a prime ker-
nel). Suppose that there exists a non-trivial (different
from (1, 1, ..., 1)) set of kernels. If κ is a kernel then
obviously κ is a test for B1 and B2 and the following
relation holds

κ ∈
⋂

B1∈I1,B2∈I2

T · · · · · · · · · · · · · · · · · · · · · · · · · · (2)

where T is the set of all tests for B1 and B2. Suppose
that a set of kernels K for unknown I1 and I2 is found.
It is easy to see that TFRK has a 100% recognition
rate on any test samples for any training set. Each set
of kernels defines a discriminant boundary between the
classes I1 and I2. By extracting tests from the train-
ing set, we are guaranteed to have a 100% recognition
rate on the training data. Then, by extracting kernels
from the set of tests, we are guaranteed to have a 100%
recognition rate on test data. In general, it is impossi-
ble to find the set of kernels for unknown I1 and I2, but
we can estimate it from the training sets using relation
(2), or we can construct some heuristical algorithms for
kernel detection.
Suppose that l is the minimal length of tests. Let us

propose the following simple heuristic kernel detection
algorithm.
First, the set T containing all tests with a length no

more than d is formed. Next, an info vector is calculated
using T . Since the length of the kernel is more or equal
to the length of the minimal test, the length k of the
candidate kernel is selected as k ≥ l. Finally, by choos-
ing k features with highest info weights we construct a
candidate kernel.

The value d is a parameter of the algorithm and it is
determined experimentally depending on the available
computational power necessary for tests detection. If
d is small, it is easier to detect tests, but a more reli-
able estimation of the info vector can be obtained if d is
large. A preferable compromise for d is the value l + 1,
which we use in our experiments on real data.
If we detect a set of kernels K, TFRK gives a 100%

recognition rate on any test samples. But the TFR
classifier can also reject samples when the discriminant
function is 0, and this can happen in many cases. For
TF classifier even if we find a set of kernels we need
an appropriate training set to obtain a recognition rate
of 100%. We say that the pair (B, K), B = B1 ∪ B2,
covers a pattern z if there exist x ∈ B and κ ∈ K such
that z ◦ κ = x ◦ κ. Denote by C(B, K) the set of all z
that are covered by (B, K). We call a set B a prototype
set for K if C(B, K) ⊇ I1 ∪ I2. It is easy to see that if
B is a prototype set for K then TFK will have a 100%
recognition rate on any test samples.
The proposed kernel detection algorithm detects only

one candidate kernel for each training set. In the cases
when a prototype set is not available, test feature clas-
sifiers based on only one kernel will lead to a large num-
ber of rejections. However, despite this number of re-
jections, the success in kernel detection gives a 100%
recognition rate. This is very important, especially in
applications where mistakes could cause fatal results.
We apply this algorithm to the real data in Section 3,
and show its effectiveness.
It can be proved that I1 and I2 have only one prime

kernel when I1∪I2 = P . If the set T consists only of the
test (1, 1, ..., 1) then test feature classifier is degenerated
and becomes useless. Test feature classifier works well
for the cases when I1 ∪ I2 is a small part of P and has
many kernels. These are cases which we encounter in
reality when n becomes large.

4. Experiments

4.1 Artificial Data Several experiments on ar-
tificial data were conducted in the previous works (14),
(15). In this paper let us consider and analyze the ex-
periment on one of the artificial data (14).
We consider the problem with two adjacent classes of

two-dimensional region in a 32×32 square shown in Fig.
1. The class 1 is represented by the gray area and the
class 2 by the white area. The coordinates of patterns
(points) are utilized as features. The number of ran-
domly chosen training patterns was varied from 30 to
100, and 1024 patterns are used for testing.
The performance of TF was compared with one of the

most popular non-parametric classifiers, a single nearest
neighbor classifier (NN). Both NN and TF classifiers
have no error on the training samples. A NN classi-
fier with Euclidean distance (NN1) is applied directly
to two-dimensional patterns. For TF, a 10 bit binary
representation of coordinates (each coordinate is repre-
sented by five bits) was used and the set of all prime
tests of the training samples was employed. A NN clas-
sifier with Hamming distance (NN2) is applied to the
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Fig. 1. A two-class problem with a kernel
(1100011000).

Fig. 2. Examples of training sample. 60 black cir-
cles show the class 1 samples and 60 crosses the
class 2.

Fig. 3. Recognition rate vs training sample
number

Table 1. Template patterns in each class

class feature patterns

1

01--- 01---

01--- 10---

10--- 01---

10--- 10---

2

00--- -----

01--- 00---

01--- 11---

10--- 00---

10--- 11---

11--- -----

’-’ means ’don’t care’.

same binary data as TF.
The two-class problem shown in Fig. 1 has the prime

kernel (1100011000). Since the classes can be con-
structed from combination of quarters in both axes (fea-
tures), upper two bits in each feature are enough to
distinguish the classes as shown in Table 1. For this

kernel, 16 prototypes are needed to have a 100% recog-
nition rate on any test samples. When the training set
contained 80, 90, or 100 samples, the set of all detected
prime tests coincided with the kernel. However only
the cases with 90 and 100 training samples gave a 100%
recognition rate as shown Fig. 3. This is because in
these cases a prototype set was contained in the train-
ing set. This and other experiments show that kernels
can be detected from training sets and confirm the abil-
ity of a 100% recognition rate on a test data.
In the presented experiment, I1 ∪ I2 = 2n, where

n = 10. As we mentioned at the end of Section 3, in such
cases there is only one kernel. In real applications,we
usually encounter a large number of kernels (14), which
makes test feature classifiers very useful and practical.

4.2 Real Data A number of experiments are
conducted on real data. For the real data, we
use the well-known breast cancer and satellite image
(satimage) databases, which are available via ftp at
ftp.dice.ucl.ac.be. In order to have a reasonable esti-
mation of the performance of the classifiers we use the
same holdout method with two trials as in Woods et
al. (12). Each data set is randomly partitioned into two
equal halves, keeping the class distributions similar to
that of full data set. Initially, one set is used as train-
ing data, and the classification accuracy is evaluated
using the other set. Next, the roles of the two sets are
reversed.
The classification problem of the breast cancer data

is to distinguish between benign and malignant. This
database is composed of two classes in nine dimen-
sions. Each feature is integer-valued and varies from
1 to 10. There are 699 samples in the database. In Wil-
son & Martinez (6), where 90% of the data samples were
used as a training and remaining 10% as testing data,
the best recognition result show by the Edited Nearest
Neighbor, a 97% recognition rate. In Wolberg et al. (9)

and Mangasarian et al. (10), experiments were conducted
on 369 samples. 50% of samples were used as a train-
ing data, and on the remaining 50% of samples a 93.5%
recognition rate was achieved.
We removed 16 samples with missing attribute val-

ues from the breast cancer database and test feature
classifiers are evaluated on the rest of the 683 samples.
We apply test feature classifiers directly to the nine di-
mensional integer-valued breast cancer database. The
inequality R is defined as, xR y if and only if |x−y| > tr,
where tr = 1. The value 1 is the maximal value of tr
which still makes sense of the use of test approach.
In each trial, the kernel detection algorithm is ap-

plied to the training samples. First, the set T contain-
ing all tests with length no more than d = l + 1 (where
l = 3 is a minimal length of the detected tests) is con-
structed. Then, by calculating an info vector from the
set T , we construct a candidate kernel τ of length d
, by taking the d features with highest info weights.
In the first trial, |T | = 28. Fig. 4 shows distribu-
tions of the info vector of a training set. The pro-
posed kernel is τ = (101011000), which corresponds to
4 higher values of the info weights. In the second trial,
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Fig. 4. Info weights in trial 1

Fig. 5. Info weights in trial 2

Table 2. Results for TF classifiers on the breast
cancer database

trial classifier rate rejection

1 TFRτ 100% 137

1 TFτ 90.4% –

1 TFRT 97.4% 21

1 TFT 96.8% –

2 TFRτ 100% 169

2 TFτ 90.8% –

2 TFRT 96.7% 23

2 TFT 95.4% –

33 shortest prime tests are extracted to calculate an
info vector. Fig. 5 shows a graphical interpretation of
the info vector of a training set. The detected kernel is
τ = (101111000), which corresponds to 4 higher values
of the info weights (since the 3th and 5th info weights
have the same value, the length of τ becomes 5). The
performance of test feature classifiers are evaluated on
two sets of tests, we use {τ} and the set T .
In Table 2, we show the recognition rates of the test

feature classifiers. Although TFR rejects samples, it
achieves a 100% recognition rate which means that the
proposed kernels are real. This is a very important re-
sult and indicates that kernels can be detected from a
training set even in difficult classification problem. In-
creasing the number of detected kernels will decrease
the number of rejections. To improve the performance
farther more powerful kernel detection algorithms need
to be developed.
The number of rejections essentially decrease when

we employ the set T in test feature classifiers. The per-
formance of test feature classifiers on the set T is stable,
remains high, and has small number of rejections..
Next, let us concentrate on the satimage database,

which was generated from a multi-spectral satellite scan
of landscape. This database is composed of six classes in

Table 3. Best confusion matrix obtained by
k-NN classifier on the satimage database using
Leave-one-out method

class 1 2 3 4 5 6

1 98.1 0.2 1.1 0.1 0.5 0.0

2 0.0 96.5 0.1 0.7 2.0 0.7

3 0.5 0.1 93.4 4.6 0.0 1.4

4 0.0 0.8 13.7 70.6 0.8 14.1

5 3.1 0.8 0.1 0.8 89.7 5.5

6 0.0 0.1 1.9 7.3 2.0 88.7

36 dimensions. Each feature is represented in eight bits,
with 0 corresponding to black and 255 to white. There
are 6435 patterns. We use the satimage CR databases
to evaluate test feature classifiers. The CR notation
indicates that the database was preprocessed by a nor-
malization routine in which each feature is centered and
reduced to unit variance. The best estimate of the Bayes
error rate of satimage CR by a k-NN classifier using the
Leave-one-out method is given in Table 3 (11).
In Woods et al. (12), where 50% of the data samples

were used as training the best performance on the satim-
age CR database was achieved by the nearest neighbor
with almost 88% recognition rate. Experiments in Blayo
et al. (11) (50% as training data) also showed that the
nearest neighbor has the best performance with almost
90% recognition rate. The experiments with the same
data (12) show that the satimage database is a quite dif-
ficult classification problem.
The satimage database is of multi-class, and the test

concept presented here is for a two-class problem. We
discuss the concept of a test for multi-classes (15), and
since the purpose of this section is only to show a 100%
recognition ability of test feature classifiers, we concen-
trate on only one two-class problem from the satimage
database. As seen from Table 3, class 4 has the lowest
recognition rate. This class represents damp grey soil,
which appears difficult to discriminate from classes 3
and 6, which represent grey soil and very damp grey
soil, respectively. Let us consider the problem of dis-
criminating class 4 from the other classes. We apply
test feature classifiers directly to the 36-dimensional
real-valued satimage CR database. The inequality R
is defined as, xR y if and only if |x − y| > tr, where
tr is chosen such that it corresponds to the intensity
value 4 in the original satimage database. This choice
of threshold value was made by taking into account the
fact that human eyes are almost insensitive to changes
in intensity around 4.
In each trial the kernel detection algorithm is applied

to the training samples. 50,000 short tests (with length
no more d = l + 1, where l = 15 is minimal length
of the detected tests) are extracted and the set T is
formed. Then based on T we calculate an info vector,
and construct a candidate kernel τ of length d, by tak-
ing d features with the highest info weights. A set T ′ is
constructed from 300 randomly chosen prime tests. The
performance of test feature classifiers are evaluated on
the set T ′ and on the candidate kernel τ . In Table 4,
we show recognition rates of the test feature classifiers.
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Table 4. Results for TF classifiers on the satimage
database

trial classifier rate rejection

1 TFRτ 100% 3128

1 TFτ 90.4% –

1 TFRT ′ 90.6% 1305

1 TFT ′ 91.1% –

2 TFRτ 100% 3145

2 TFτ 90.4% –

2 TFRT ′ 90.1% 1485

2 TFT ′ 90.2% –

Again, a 100% of recognition rate is achieved by TFR,
which means that the proposed kernels are real. The
large number of rejections can be reduce by increasing
the number of kernels, or by constructing a prototype
training set. The error rate of TF, which has no rejec-
tions is much better than a Bayes error rate estimation
obtained by k-NN with the Leave-one-out method.

5. Conclusions

Test feature classifiers are m-degree polynomials, and
can be used for partitioning the n-dimensional fea-
ture space, m ≤ n. Optimization methods, statisti-
cal, structural or metrical characteristics of patterns
are not required. The method is desirable when sta-
tistical or structural information is not available. We
discuss the generalization ability of the proposed classi-
fiers. We show that test feature classifiers theoretically
can achieve a 100% recognition rate on any test data.
This is happens when a set of kernels is detected. In
general, it is impossible to find kernels, but we proposed
a heuristic algorithm to estimate them.
To test the performance of the classifiers, we apply

them to the well-known breast cancer and satellite im-
age databases. Experiments show that kernels can be
detected from training sets, and confirm the ability of
a 100% recognition rate, despite a large number of re-
jections. Possible ways to reduce this number are in-
creasing the number of training samples or kernels, or
constructing a prototype training set. Future research
will be focus on the development of an efficient algo-
rithm for construction of a prototype set.
(Manuscript received October 20, 12, revised Novem-

ber 7, 12)
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