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This paper introduces a compression technique for power disturbance data via discrete wavelet transform
(DWT) and wavelet packet transform (WPT). The data compression leads to a potential application for
remote power protection and power quality monitoring. The compression technique is performed through
signal decomposition up to a certain level, thresholding of wavelet coefficients, and signal reconstruction.
The choice of which wavelet to use for the compression is of critical importance, because the wavelet affects
reconstructed signal quality and the design of the system as a whole. The Minimum Description Length
(MDL.} criterion is proposed for the selection of an appropriate wavelet filter. This criterion permits to
select not only the suitable wavelet filter but also the best number of wavelet retained coefficients for signal
reconstruction. The experimental study has been carried out for a single-phase to ground fault event, and
the data compression results of using the suitable wavelet filter show that the compression ratios are varied
from 2% to 11% and are reduced to more than a half of those values by implementing an additional lossless

coding.
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1. Introduction

The transients due to ground faults, load switchings,
and other disturbances may cover a broad frequency
spectrum. A single captured event recorded for several
seconds using monitoring instruments having tens to
hundreds KHz sampling rate can produce kilo- to mega-
bytes of data. As a result for several captured events,
the volume of the generated and maintained data in-
crease significantly, which lead to a high cost in storing
and transmitting such data. Therefore, it is necessary
to develop an effective compression technique which has
capability to reduce the volume of data necessary for
storing and to speed up the transmitted data for re-
mote monitoring (Mehta and Russel, 1989; Santoso et
al, 1997; Littler and Morrow, 1999).

Wavelet and wavelet packet transforms have recently
emerged as powerful tools for a broad range of appli-
cations, signal compression in particular (Santoso et
al, 1997; Littler and Morrow, 1999; Hilton, 1997; Wal-
czak and Massart, 1997). The wavelet transform has
good localization in both frequency and time domains,
having fine frequency resolution and coarse time reso-
lutions at lower frequency, and coarse frequency reso-
lution and fine time resolution at higher frequency. It
makes the wavelet transform suitable for time-frequency
analysis. In data compression, the wavelet transform is
used to exploit the redundancy in the signal. The per-
formance of a wavelet transform for data compression
lies in its ability in concentrating a large percentage of
total signal energy in a few coefficients (Coifmann and
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Wickerhauser, 1992). After the original signal is trans-
formed into the wavelet coefficients, many coefficients
are so small so that these coefficients can be omitted
without losing significant information after the signal is
reconstructed.

During the last three years, power disturbance data
compression using wavelet and wavelet packet trans-
forms have been proposed (Santoso et al, 1997; Lit-
tler and Morrow, 1999). The choice of which wavelet
to use in compression system plays an important role,
because the wavelet affects reconstructed signal qual-
ity and the design of the system as a whole. Com-
pared with the actual compression performance of sev-
eral different wavelets, the previous authors (Santoso et
al, 1997; Littler and Morrow, 1999) choose only a spe-
cific wavelet filter. Improper choice of filter can produce
distortions in the reconstructed signal. The previous
authors also used a fix thresholding value to suppress
the noise for the compression. However, in the real con-
dition the noise level is difficult to estimate. Improper
choice of filter and threshold setting can cause not opti-
mum compression ratio. An algorithm to optimize the
efficiency of compression in the wavelet domain called
the Minimum Description Length (MDL) has been pro-
posed (Saito, 1994). The algorithm permits one to se-
lect the suitable wavelet filter and the best number of
wavelet retained coefficients of a signal, and it is free
from threshold selection.

In this paper, we propose a data compression method
based on wavelet and wavelet packet for power sys-
tem disturbances. The method includes the selection



of wavelet filter using the MDL criterion to optimize.

the compression technique. We evaluate several wavelet
filters and compare their performances. Although there
are many types of wavelet filters, we restrict our-
selves to the Daubechies, Coiflets and Symlets fam-
ilies with a certain level of decomposition. In ad-
dition, the results from this wavelet-based compres-
sion method are then combined with a lossless coding
e.g. Huffman, Lempel-Ziv-Welch (LZW), or Lempel-
Ziv-Haruyasu (LZH) to get more effective compression
(Littler and Morrow, 1999).

2. Wavelet

2.1 Discrete Wavelet Transform The wavelet
transform of a discrete input data sequence f = {f,} =
{fos f1,+, fN—1}, where N is the length, can be pre-
sented in a vector matrix form as

where « contains N wavelet coefficients, and W (IV x
N) is an orthogonal matrix consisting of row basis vec-
tors. The basis vector are specified by a set of numbers,
called wavelet and scaling filter coefficients.
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Fig.1. Decomposition of a® up to level m using
DWT. ’

Once a specific wavelet has been chosen, we can use
its coefficients to define two filters, the low-pass filter
and the high-pass filter. Both types of filters use the
same set of wavelet filter coefficients, but with alternat-
ing signs and in reversed order, meaning this pair of
filters is the quadrature mirror filters (QMF). The low-
pass and high-pass filters are also called the scaling and
the wavelet filters, respectively. These filters are used
to construct the filter matrices, denoted as G and H.

To decompose (or analyze) the signal, Mallat (1989)
introduced a recursive algorithm which is known as
pyramid algorithm. This algorithm offers the hier-
archical, multiresolution of the signal. In this algo-
rithm the set of N input data is passed through the
low-pass and high-pass filters. Each output of the fil-
ter consists of N/2 wavelet coeflicients. The output
from low-pass filter is the approximation coefficients
(a* = {a},al, ""a}\f/2~1}) at the first level of resolu-
tion. The output from high-pass filter is the detail co-
efficients (d' = {d}, di, ...,d}v/z_l}) at the first level of

resolution. The approximation coefficient a', can now
be used as the data input for another pair of wavelet fil-
ters (identical to the first pair), generating sets of length
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N/4 of approximation (a? = {a2,d?, ...,a?v/4_1}) and
details coefficients (d? = {d2,d3, ..., d?v/4_1}) at the sec-
ond level of resolution. The process is continued until a-
desired level of resolution. Since the original input data
vector, f, is the approximation at the lowest level of res-
olution (level 0), i.e.: a® = f = {fo, f1, .., fy—1}, then
the DWT algorithm can be presented by the following
recursive formula

a™ = Ga™!

where m denotes the resolution level and m = 1, 2,...,
logy N. Figure 1 shows-this decomposition process.

The different resolution for each level is related to
the sampling interval. For level m the sampling in-
terval equals 2™. As the sampling interval increases,
resolution decreases and each approximation contains
gradually less information. The difference in informa-
tion between the approximations at level m and level
m — 1 is contained in the detail at level m.

It is possible to use the approximation and detail co-
efficients to reconstruct (or synthesize) the original sig-
nal. The reconstruction process uses the recursion al-
gorithm in reverse with conjugates of G and H. For
the orthonormal basis the conjugates of G and H equal
to the transposed matrices GT and HY, respectively.
Thus, the reconstruction formula is as follows

a™ ' =GTa™ +HTd™.

2.2 Wavelet Packet Transform

2.21 Theory Wavelet packet transform is a di-
rect expansion of the structure of the DWT tree algo-
rithm to a full binary tree. In the pyramid algorithm
the detail branches are not used for further calculations,
only the approximations at each level of resolution are
treated to yield approximation and detail obtained at
higher level. For the wavelet packet, both the detail

and d™ =Ha™ !
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Fig.2. Wavelet packet decomposition of a® viewed
as a binary tree.

and approximation coefficients at level m are further
decomposed into level m + 1. The main advantage of
the WPT is better signal representation. The search
for the best representation of the signal by any subtree
of the WPT is called the best-basis selection. Wavelet
packet decomposition is shown in Fig. 2, in a trée struc-
ture to indicate the decomposition processes. The detail
and approximation coefficients in each level for each tree
(or subspace) are derived in similar manner to those of
DWT using Eq.(2).
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2.2.2 Best-Basis Selection The complete sig-
nal representation by the WPT allows one to choose
the appropriate representation of the signal. To find
the best-basis or the wavelet coefficients of the best-
tree, one first computes its complete detail and ap-
proximation (wavelet) coefficients up to a desired level.
Then, it is very natural to use the entropy as a mea-
sure of efficiency of the basis (Coifmann and Wicker-
hauser, 1992). Here the entropy of a signal @ ={z,}=

{0, %1, ..., xn—1} 18 defined as
N-1
H(z) =~ > [zallog|al?, «oooooeeee (4)

n

which is known as the non-normalized Shannon entropy
" (Wickerhauser, 1994). The best-basis is the basis giv-
ing the minimum entropy or maximum information for
its distribution of coefficients (Coifmann and Wicker-
hauser, 1992; Wickerhauser, 1994).

The wavelet packet may be efficiently searched for
the best-basis. Each tree in the binary tree as shown in
Fig. 2 represents a subspace, consisting of the detail or
approximation coeflicients, of the original signal. Each
parent subspace is the orthogonal sum of its two. chil-
dren’s subspaces. The search for the best-basis involves
computing entropy using Eq.(4) for each subspace, then
performing a comparison between the entropy of parent
subspace and that of its two children’s subspaces. If
the parent has a smaller entropy, its two children are
omitted from the tree. On the other hand, if the parent
has a larger entropy, its two children are kept from the
tree. This process is repeated until the original signal
at the top level is reached (see also Fig. 4).

3. Minimum Description Length Criterion

The Minimum Description Length (MDL) criterion is
an interesting approach to simultaneous noise suppres-
sion and signal compression. It is free from any param-
eter setting such.as threshold selection, which can be

particularly useful for real data where the noise level is

difficult to estimate. The MDL criterion aims to gain
the compromise between the number of retained wavelet
coefficients and the error of signal reconstruction. This
criterion selects the "best” wavelet filter and the ”best”
number of wavelet coefficients for the signal reconstruc-
tion (Saito, 1994).

The MDL criterion has the followmg algorithm. Let
us consider a discrete model

f=xz+n

where the vector f represent the noisy observed data,
vector @ is the unknown true signal to be estimated,
and vector n is noise. First, pick the index (k,n) frorn
the MDL function defined as

3 N -
MDL(k,n) = min {iklogN + 0 log ||&, —

0<k<N;1<n<M
where &, = W,, f denotes the vector of the sorted de-
composition coefficients of f via the wavelet filter n,
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and aff) = 0Wa, = 0 (W,.f) denotes the vector
that contains k nonzero elements, and ©(® is a hard-
thresholding operation which keeps the k largest ele-
ments of &, in absolute value intact and set all other
elements to zero. The N and M denote respectively
the length of the signal and the total number of wavelet

filters used. The &, and an have to be normalized
by [|&x||, so that the magnitude of each coefficient in

&, and olf) is strictly less than one. Note that ]|

is defined as (330" |2,[2)1/2. The MDL function in
Eq.(5) is expressed as the sum of two conflicting terms.
The first term represents the penalty function, linearly
increasing with the number of the retained wavelet co-
efficients %k, whereas the second term describes the log-

arithmic of residual energy between &, and !, We
see that the log(residual energy) always decreases as k
increases (see also Fig. 5 later). Number of coefficients
k, for which the MDL function reaches its minimum,
is considered as the optimal one. With this criterion
one can optimize the choice of wavelet filter as well. It
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Fig.3. Fault record from a single-phase to ground
of three-phase power system. Data no. 1, 2 and
3 are the voltage of phase a, phase b and phase c,
respectively, and the data 4, 5 and 6 are for the cur-
rent of phase a, phase b and phase ¢, respectively.
The fault occurred at 116 ms on phase a.

should be noted that each wavelet filter has different
characteristics. A wavelet filter, which is optimal for a
given signal, is not necessarily the best for another type
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Fig.4. The entropy value of each subspace, and the tree indicates the wavelet packet best-basis of

data no. 2.

of signal.

Second, reconstruct the estimated true signal =
{zn} = {%0,21,...,zx_1} through the following equa-
tion

which is exactly the same process as in Eq.(3).

4. Experimental Study

4.1 Power Disturbance Data The experimen-
tal study has been carried out for a single-phase to
ground fault event, and six power disturbance data
have been recorded. The data were obtained from a
power system simulator (APSA: Advanced Power Sys-
tem Analyzer) owned by Kansai Electric Power Com-
pany (KEPCO), Japan. The performances of DWT and
WPT compression are evaluated using these power dis-
turbance data. Figure 3 shows these original signals.
The length of each signal is N = 8000 samples for 800
ms. Each sample requires 12 bytes ASCII and only the
magnitudes are stored, so that each signal has a size of
96,000 bytes.

4.2 Library of Wavelet Filters Ten wavelets
from the Daubechies family (with 2, 4, 67 8, 10, 12,
14, 16, 18, and 20 filter coeflicients), five wavelets from
Coiflets (with 2, 4, 6, 8, and 10 filter coefficients), and
seven wavelets from Symlets (with 4, 6, 8, 10, 12, 14,
and 16 filter coeflicients) are used for the data com-
pression. This corresponds to M = 22. The coeffi-
cients of each wavelet filter can be found in Wicker-
hauser, (1994).

4.3 Performance Evaluation  To evaluate the
compression performance, two performance indexes are
employed. The first one is the compression ratio (CR),

i.e., the ratio of the size of the compressed file over the
size of the original file, defined as

bytes of the compressed signal )

C =
(%) bytes of the original signal

The second one is the percentage of mean square error,
defined as

VSN (f -
Vo £2

where f and @ are noisy observed (or original) signal
and reconstructed signal, respectively.

MSE(%) =
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The MDL function and its components for
the WPT coefficients of data no. 2 with Dbb filter.
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Table 1. Number of retained coefficients, MSE, and MDL value for 22 wavelet filters using DWT

Filter | k MSE | MDL k MSE | MDL k MSE | MDL k | MSE | MDL k MSE | MDL k MSE. | MDL
n Ol e @@ lelele @ @] @ lel e 6 ] 6] ®
Dbl 160 | 14.68 | 12904 | 336 | 10.38 | 13891 | 327 | 10.31 | 13740 | 214 | 9.86 | 12041 | 247 | 11.00 | 12922 | 217 | 13.84 | 13435
Db2 133 | 10.95 11367 | 341 | 3.40 9491 | 388 | 2.76 9290 | 205 | 3.63 7916 | 168 | 6.56 9789 | 147 | 9.97 | 11182
Db3 135 | 10.13 | 11080* | 598 | 0.89 7607 | 629 | 0.73 7246 | 163 | 3.26 6927 | 591 1.14 8478 | 556 1.72 9671
Db4 138 | 10.11 11114 | 577 | 0.75 6644 | 600 | 0.62 6205 | 539 | 0.85 6638 | 547 | 1.15 7931 | 527 | 1.71 9246
Db5 138 | 10.17 | 11137 | 588 | 0.72 6611 | G609 | 0.59 6084 | 528 | 0.84 | 6434* | 547 [ 1.13 7845 | 529 1.64 9106
Dbé 140 | 10.02 | 11105 | 577 | 0.73 6539 | 601 | 0.59 6016 | 537 | 0.83 6477 | 541 1.11 7693 | 533 1.61 9098
Db7 132 | 10.50 | 11184 | 593 | 0.72 6696 | 603 | 0.59 6041 | 537 | 0.82 6445 | 538 | 1.10 | 7629* | 533 1.61 9091
Db8 144 | 10.12 | 11200 | 577 | 0.73 6537 | 604 | 0.60 6128 | 541 | 0.82 6490 | 547 | 1.08 7699 | 531 1.61 | 9065*
Db9 | 143 | 10.16 | 11200 | 583 | 0.74 6667 | 601 | 0.59 | 6004* | 539 | 0.82 | 6482 | 548 | 1.08 7683 | 539 | 1.59 9118
Dbi0 | 144 | 10.20 | 11229 | 578 | 0.73 6550 | 608 | 0.59 6112 | 542 | 0.82 6516 | 540 | 1.09 | 7631* | 534 | 1.61 9115
Coifl | 136 | 10.70 | 11313 | 331 | 3.49 9457 | 377 | 2.75 | 9125 | 201 | 3.67 | 7908 | 165 | 6.47 | 9695 | 633 | 1.92 | 11139
Coif2 | 147 | 9.92 11159 | 582 | 0.76 6758 | 597 | 0.63 6221 | 544 | 0.85 6704 | 551 1.13 7911 533 | 1.67 9232
Coif3 | 146 | 10.18 | 11248 | 577 | 0.75 6611 | 603 | 0.60 6068 | 541 | 0.83 | 6534 | 541 | 1.10 7683 | 535 | 1.63 9162
Coif4 | 151 | 10.11 | 11290 | 582 | 0.73 6589 | 610 | 0.59 6115 | 545 | 0.82 | 6576 | 552 [ 1.09 7782 | 540 | 1.60 9162
Coif5 | 161 | 9.92 11351 | 588 | 0.74 6713 | 602 | 0.61 6111 | 556 | 0.82 6690 | 558 | 1.07 7780 | 544 | 1.60 9205
Sym2 | 133 | 10.95 | 11367 | 341 | 3.40 9491 | 388 | 2.76 9290 | 205 | 3.63 7916 | 168 | 6.56 9789 | 147 | 9.97 | 11182
Sym3 | 135 | 10.13 | 11080 | 598 | 0.89 7607 | 629 | 0.73 7246 | 163 | 3.26 6927 | 591 1.14 8478 | 556 | 1.72 9671
Sym4 | 138 | 9.99 | 11065* | 578 | 0.77 6766 | 590 | 0.65 6219 | 534 | 0.88 6692 | 545 | 1.15 7910 | 529 | 1.68 9217
Symb | 138 | 10.10 | 11111 | 584 | 0.72 6584 | 609 | 0.58 6054 | 537 | 0.84 6518 | 546 | 1.12 7828 | 532 | 1.63 9120
Sym6 | 141 | 10.02 | 11120 | 587 | 0.71 6561 | 601 | 0.59 6024 | 536 | 0.83 6468 | 536 | 1.12 7664 | 528 | 1.62 [ 9056%
Sym7 | 138 | 10.26 | 11175 | 569 | 0.75 | 6502* | 603 | 0.59 6022 | 536 | 0.82 | 6443* | 532 | 1.12 7637 | 537 | 1.60 9114
Sym8 | 142 | 10.20 | 11202 | 577 | 0.72 | 6486* | 592 | 0.61 | 5971F | 543 [ 0.83 6554 | 543 | 1.09 7671 | 535 | 1.61 9114

Note: The number inside the parenthesis is the data number, and the asterisk (*) indicates the first two minimum MDL.

Table 2. Number of retained coeflicients, MSE, and MDL value for 22 wavelet filters using WPT
Filter | k MSE | MDL k | MSE | MDL k | MSE | MDL k | MSE | MDL k | MSE | MDL k MSE | MDL
n ool o leleolelelele lelel @|lele ! 6 el E | ©

Dbl 187 | 13.40 | 12890 | 341 [ 9.98 [ 13787 | 336 | 9.74 | 13622 | 352 | 5.46 | 11521 | 279 | 9.82 | 12886 | 217 | 13.88 | 13433
Db2 135 | 10.90 | 11362 | 354 | 3.26 9481 | 387 | 2.76 9261 | 206 | 3.63 7916 | 169 | 6.56 9789 | 148 | 9.97 | 11182
Db3 139 | 10.05 | 11090 | 608 | 0.88 7670 | 628 | 0.75 7287 | 165 | 3.25 6926 | 592 | 1.14 8478 | 557 | 1.72 9671
Db4 142 | 10.06 11136 | 583 | 0.75 6705 | 603 | 0.65 6382 | 539 | 0.85 6621 | 550 | 1.15 7967 | 528 | 1.71 9239
Dbb 135 | 10.44 | 11189 | 595 | 0.72 6705 | 620 | 0.58 6166 | 530 | 0.84 | 6453* | 547 | 1.12 7816 | 529 1.64 9091

" Db6 146 | 10.02 11173 | 593 | 0.71 6626 | 593 | 0.62 6060 | 538 | 0.83 6480 | 540 | 1.12 7704 | 532 1.62 9082
Db7 138 | 10.50 { 11251 | 589 | 0.75 6766 | 594 | 0.63 6125 | 538 | 0.83 6480 | 537 | 1.10 | 7625 | 534 | 1.61 9079
Db8 150 | 10.18 11291 | 595 | 0.71 6631 | 614 | 0.59 6149 | 541 | 0.82 6487 | 549 | 1.08 7707 | 531 1.61 | 9055*
Db9 129 | 10.27 | 11044* | 587 | 0.74 6712 | 596 | 0.60 6007 | 540 | 0.82 6482 | 549 | 1.08 7683 | 540 | 1.59 9117
Db10 | 137 | 10.29 11158 | 587 | 0.73 6664 | 603 | 0.60 6072 | 543 | 0.82 6516 | 541 | 1.09 7631 | 535 1.61 9115
Coifl | 136 | 10.73 11313 | 331 | 3.50 9463 | 381 | 2.73 9137 | 202 | 3.67 7908 | 166 | 6.47 9695 | 634 | 1.92 11147
Coif2 | 148 | 9.92 11159 | 586 | 0.74 6708 | 597 | 0.63 6193 | 541 | 0.86 6658 | 549 | 1.14 7910 | 534 | 1.66 9209
Coif3 | 150 | 10.01 11221 | 585 | 0.71 6492 | 600 | 0.59 5964 | 540 | 0.83 6510 | 539 | 1.10 7652 | 534 | 1.63 9138
Coif4 | 164 | 10.03 | 11286 | 586 | 0.70 6487 | 611 | 0.58 6028 | 546 | 0.82 6576 | 553 | 1.09 7782 | 541 1.60 9162
Coifs | 162 | 9.94 11357 | 597 | 0.71 6657 | 601 | 0.59 5974 | 557 | 0.82 6690 | 559 | 1.07 7780 | 545 | 1.60 9205
Sym?2 | 135 | 10.90 | 11362 | 354 | 3.26 | 9481 | 387 | 2.76 | 9261 | 206 | 3.63 | 7916 | 169 | 6.56 | 9789 | 148 | 9.97 | 11182
Sym3 | 139 | 10.05 [ 11090 [ 608 | 0.88 | 7670 | 628 | 0.75 | 7287 | 165 | 3.25 | 6926 | 592 | 1.14 | 8478 | 557 | 1.72 9671
Sym4 | 140 | 9.93 | 11058* | 589 | 0.75 | 6752 [ 591 | 0.65 | 6220 | 532 | 0.89 | 6681 | 544 | 1.15 | 7887 | 531 | 1.67 9199
Symb | 140 | 10.05 | 11103 | 586 | 0.72 | 6590 | 593 | 0.61 | 6033 | 539 | 0.83 | 6524 | 545 | 1.13 | 7807 | 530 | 1.64 9101
Sym6 | 144 | 9.96 11121 | 585 | 0.70 | 6459 | 599 | 0.59 | 5946 [ 536 | 0.83 | 6474 | 537 | 1.12 | 7664 | 529 | 1.62 | 9056*
Sym7 | 146 | 10.01 [ 11167 [ 569 | 0.73 | 6420*% | 508 | 0.58 | 5885% | 538 | 0.82 | 6464* | 532 | 1.12 | 7610* | 536 | 1.60 | 9093
Sym8& | 143 | 10.20 | 11203 | 580 | 0.71 | 6435* | 583 | 0.60 | 5818* | 543 | 0.83 6539 | 540 | 1.10 7647 | 535 1.60 9088

Note: The number inside the parenthesis is the data number, and the asterisk (*) indicates the first two minimum MDL.

Table 3. The appropriate wavelet filters based on

5. Results

We compare the performance of 22 wavelet filters for
the compression. All signals are decomposed via the
DWT and WPT with those filters up to fourth level
of resolution (m = 4). For the case of the WPT, ‘the
decomposition is performed following the best-basis se-
lection with minimum entropy criterion. The wavelet
coefficients from the decomposition is sorted according
to their absolute amplitude. The optimal number of
retained coefficients k£ can be calculated based on the
MDL criterion.

To simplify the explanation we will give attention on
the signal of data no. 2, and we apply the WPT with the
Daubechies 5 (Db5) filter. First the data is decomposed
up to a predefined level using Eq.(2). The entropy of
each subspace is then calculated using Eq.(4) to find the
best-basis. Figure 4 shows the result of the best-basis
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MDL criterion

Data DWT WPT
1 Sym4 - Db3 | Db9 - Sym4
2 Sym8 - Sym7 | Sym7 - Sym8
3 Sym8 - Db9 | Sym8 - Sym?7
4 Db5 - Sym7 | Db5 - Sym7
5 Db7 - Db10 | Sym?7 - Db7
6 Sym6 - Db8 | Db8 - Sym6

with minimum entropy criterion. Once the best-basis
is found the MDL function is applied to compute the
number of wavelet retained coefficients k. The result
of the MDL function and its components is shown in
Fig. 5. The function reaches the minimum at k = 595,
meaning the number of coefficients required for the sig-
nal reconstruction using Db5 filter is 595. The process




above is repeated until the last wavelet filter in the li-
brary (n = M = 22), and then by selecting the lowest
MDL value, the appropriate filter can be chosen.

Table 4. CR and MSE using DWT with Symlets 7
filter and lossless codings

Data | DWT | DWT+4Huff. | DWT+LZW | DWT4LZH | MSE
(%) (%) (%) (%) (%)
1 2.49 1.10 1.20 1.09 10.26
2 10.10 4.38 4.45 4.19 0.75
3 10.72 4.65 4.67 4.40 0.59
4 9.54 3.74 3.20 2.80 0.82
5 9.46 3.73 3.05 2.68 1.12
6 9.55 3.76 3.10 2.74 1.60
Table 5. CR and MSE using WPT with Symlets 7
filter and lossless codings
Data | WPT | WPT+Huff. | WPT+LZW | WPT+LZH | MSE
(%) (%) (%) (%) (%)
1 2.75 1.21 1.32 1.19 10.01
2 10.23 4.43 4.50 4.22 0.73
3 10.75 4.66 4.67 4.39 0.58
4 9.72 3.80 3.25 2.85 | 0.82
5 9.55 3.76 3.07 2.70 1.12
6 3.80 3.13 2.78 . 1.60

9.64

We have applied the MDL criterion to all data to
select the suitable filter, and the results are tabulated
in Table 1 and Table 2 for the DWT and WPT, re-
spectively. Both tables show the number of retained
coefficients k, the MSE and the minimum value of the
MDL function for all wavelet filters. From this point,
we can chose the appropriate filter for each correspond-
ing data based on the minimum MDL value, and the
results for the first two filters having smallest MDL are
tabulated in Table 3. We can see that the appropriate
filter for a given signal may different for another type
of signal. However, in practice it is preferable to use
. only one ”best” filter for all signals. From the table the
Symlets 7 and Symlets & filters seem to be the candi-
dates for the best filter. We sirnply select the Symlets 7
filter for the compression of all power disturbance data
analyzed here.
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Fig.6. The original, reconstructed, and residual

error signals of data no. 2 using WPT with Sym7
filter.
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Using the MDL we can compute the number of non-
zero ratained coefficients to be stored as the compressed
data. Here the compressed data contains both magni-
tude and position of those retained coefficients. We al-
locate 12 bytes ASCII for the magnitude and 5 bytes
ASCII for its position. ‘

In addition, more effective compression can be per-
formed by implementing an additional lossless coding
(e.g. Huffman, LZW, or LZH) to the results of the
DWT and WPT compression. Here, we used the term
?coded data” to the result of coding process. Since the
coding has lossless properties, the coding result always
reproduce the same data when a file is decoded. Ta-
ble 4 and Table 5 show the comparison of CR and MSE
of the analyzed signals using the Symlets 7 filter. The
compressed file size (in percentage of original file size)
is calculated for the DW'T, WPT, and DWT+lossless
coding as well as WPT+lossless coding. Both the DW'T
and WP compression significantly reduce the original
file size of each signal to less than 11%. Further, the
tables show that by implementing the lossless coding
the CR’s are reduced to more than a half of those CR’s
without the lossless coding.

For the signal reconstruction, first the coded data (the
original data which is compressed via wavelet and loss-
less coding) is decoded. This decoded data contains
non-zero wavelet retained coefficients and their loca-
tion. Second, these wavelet retained coefficients are
rearranged according to their locations, and then zero
magnitudes are inserted to the rest of locations. Last,
the signal reconstruction from these coefficients is done
using Eq.(3). Figure 6 shows an example of the origi-
nal signal, reconstructed signal and its residual error for
data no. 2 using the Symlets 7 filter.

6. .Conclusions

The application of the DWT and WPT to compress
the data of power system disturbances has been demon-
strated and evaluated. Both transforms offer attrac- .
tive properties for the compression. The experimental
results show that bettér quality reconstruction can be
achieved by employing an appropriate wavelet filter to
each signal. In practice, it is preferable to use one suit-
able filter for compressing all signals. Using the MDL
criterion, the Symlets 7 filter generally appears supe-
rior than other wavelet filters for most power distur-
bance signals analyzed here. The compression ratios
that can be obtained using this filter are varied but
less than 11%. Combining wavelet-based compression
with a lossless coding could results in better compres-
sion ratios. Our results show that the compression ra-
tios are reduced to more than a half by implementing
an additional lossless coding. Finally, the compression
algorithm presented here can be used to compress not
only ground fault signals but also wide variety of one-
dimensional power system disturbance signals.

(Manuscript received January 22, 2001)
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