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In neural network based control systems, if system environments, that is, system parameters and distur-
bances at training stage, are much different from those at control stage, performances of control systems
may become worse. To solve this problem, robust control design is needed. In this paper, we propose a new
minimax control method using Universal Learning Networks, in which the criterion function is evaluated at
several specific operating points, and at each training step the worst criterion function among the operating
points is optimized. Moreover, a sensitivity term calculated on the operating point is included in the crite-
rion function in order to improve the performance of the control system between two operating points. The
minimax control method including sensitivity term is shown to have better robustness against the changes
of system parameters.
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1. Introduction

Because artificial neural networks can approximate
any continuous nonlinear function to any desired ac-
curacy, neural networks are becoming an effective tool
in optimal control of nonlinear systems. Many neural
network based controllers have been developed for com-
pensating the effects of nonlinearities and for handling
system uncertainties in control systems. A neural net-
work based controller can be constructed by either on-
line adaptive control design methods or off-line robust
control methods. Many approaches have been proposed
to use neural networks for adaptive control of nonlinear
systems (1)～(3). In this paper, we focus on off-line robust
controller design.
In a conventional off-line design method, the crite-

rion function is usually evaluated at a specific operat-
ing point of system parameters (4). This arises a problem
that system performance at the evaluation point can be
ensured, and there is, however, no guarantee at other
points. It means that the obtained off-line solution will
be restricted to the case of a small change in the en-
vironments. If system environment variables at control
stage are much different from those at training stage,
the performance of control systems becomes worse, and
systems may become unstable.
A natural way to solve this problem is to increase

the evaluation points, that is, the use of multi-point
evaluation method. The weighted multi-point evalua-
tion method is one of the simplest implementations (5).
However, it is usually difficult to choose appropriate

weights. As a better alternative of multi-point evalua-
tion methods, in this paper we propose a new minimax
control method. In the new method, the criterion func-
tion is evaluated at several specific operating points of
the system parameters, and at each training step the
worst criterion function among the operating points is
optimized. By using the minimax control method, the
criterion function at each special operating point can be
ensured to be small.
On the other hand, since one can practically only

choose limited evaluation points, there is no guarantee
for system performance between two specific operating
points. To solve this problem, we further introduce a
sensitivity term calculated on the operating points to
the criterion function based on a similar concept in-
troduced in feedback system theory for preventing un-
desirable effects caused by parameter variations in the
control system (6). It has been demonstrated that low
sensitivity to parameter variations is one of the neces-
sary properties to secure a robust control. In this pa-
per, the sensitivity is defined as a change of criterion
function caused by a small change in the system pa-
rameters around a nominal value. In our method, an
extended criterion function containing sensitivity term
has been considered for controller design using ULN
(Universal Learning Network) learning (4) (7). This al-
lows us to obtain a controller that minimizes the worst
criterion function and the sensitivity calculated on the
operating point. A controller obtained in this way is
expected to have better robustness for the change of
system parameters. The effectiveness of the proposed
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method is demonstrated by applying it to a nonlinear
crane control system.
This paper is organized as follows: Section 2 gives a

brief review on the ULN. Section 3 discusses ULN based
minimax control method. Section 4 carries out a numer-
ical simulation to demonstrate the effectiveness of the
proposed method. Finally, Section 5 gives concluding
remarks.

2. Universal Learning Network

Universal learning network (ULN) has been proposed,
as its name indicates, to provide a universal framework
for a class of neural networks and moreover, to model
and control complex systems based on the idea that
most of general complex systems in real world can be
modeled by networks whose nodes represent the pro-
cessing elements and branches among the nodes describe
their relations (7).
It is generally recognized that any dynamic system

can be described by a set of related equations (8). De-
pending on prior knowledge available about systems,
equations may be fully known, partly known, or to-
tally unknown. To model such dynamic systems, we
introduce a learning network consisting of two kinds
of element: nodes and branches. The nodes corre-
spond to equations and branches to their relations. The
nodes may have continuously differentiable nonlinear
functions including a function realized by a subnetwork,
e.g., sigmoidal neural networks or neuro-fuzzy networks,
in addition the branches for inter-connecting nodes can
have arbitrary time delays and adjustable weights on
them. Such learning networks are called ULN. When
no prior knowledge is used and only sigmoidal functions
are used in all nodes, the learning network is reduced
to a conventional sigmoidal neural network.
One of the distinctive features of the ULN is that it

incorporates prior knowledge, if available, in the mod-
eling. For example, the dynamics described by differen-
tial or difference equations can be treated in the ULN,
and prior knowledge of systems expressed in fuzzy rules
may be incorporated in the ULN via a fuzzy network.
It, therefore, is expected to have performances superior
to conventional neural networks in the applications of
system modeling and control.
The generic equation that describes ULN behavior is

expressed as follows:

hj(t) = fj({hi(t−Dij(p))|i ∈ JF (j), p ∈ B(i, j)},
{rn(t)|n ∈ N(j)}, {λm|m ∈M(j)},
{fg|g ∈ G}) t ∈ T · · · · · · · · · · · · · · · · · (1)

where fj is the nonlinear node function of node j, hj(t)
the output value of node j at time t, JF (j) the set of
suffixes of the nodes connecting to nodes j, rn(t) the
n-th external input, λm the m-th adjustable parame-
ter, Dij(p) the time delay of p-th branch from node i
to node j, fg the value of g-th system parameter, G the
set of suffixes of system parameters fg, t the sampling
instant, T the discrete set of sampling instants, and
N(j), M(j) the sets of suffixes of external inputs and

Fig. 1. Structure of universal learning network

adjustable parameters related to node j, respectively.
Figure 1 shows the architecture of ULN.
Because a ULN allows any nonlinear function to be

embedded in its nodes, both a controlled system and
its controller can be represented by a single ULN when
the ULN is applied to controller design problems. If the
controlled system is unknown, one should first perform
an identification (9), then design the ULN control system
using the ULN learning. Therefore the fundamental dif-
ference of a ULN control from a conventional control is
that controller design can be regarded as a parameter
optimization, which makes design problem simple.
Furthermore, the ULN is equipped with a general-

ized learning algorithm, in which second or higher or-
der derivatives can be used. The higher order derivative
calculation mechanism of the ULN renders additional
advantages to ULN controllers. As a criterion function,
one may employ a standard control performance index,
for example, tracking error of the controlled system. In
addition to this, one can also put other terms to the
criterion functions. For example, the additional term is
the sensitivity of the standard criterion function with
respect to the changes in the plant parameters. Min-
imizing a sensitivity using a gradient method requires
the second order derivatives since the sensitivity itself
is the first order derivative.

3. ULN Based Minimax Control Method

3.1 Minimax Approach Minimax approach is
one of the major techniques for designing systems ro-
bust to system uncertainties, in which the goal is
to optimize the worst-case performance. Let λ =
{λ1, . . . , λm, . . . , λM} denote the controller parameters,
f = {f1, . . . , fg, . . . , fG} the system parameters, E(λ, f)
the criterion function. The optimization of a minimax
approach can be described by

σ = inf
λ
sup
f

E(λ, f). · · · · · · · · · · · · · · · · · · · · · · · · (2)

Introducing e(λ) representing the maximum risk asso-
ciated with the control λ, defined by

e(λ) = sup
f

E(λ, f), · · · · · · · · · · · · · · · · · · · · · · · · · (3)

(2) can be expressed as

σ = e(λ̂). · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (4)
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Fig. 2. Basic idea of ULN based minimax control
method

In order to obtain a controller robust against changes
of system parameters, we apply the above minimax ap-
proach to ULN control system. Let the criterion func-
tion be evaluated at several specific operating points,
and at each step the worst criterion function among the
operating points be optimized. The criterion function
for minimax approach is described by

ER = Max
l∈L
{El} · · · · · · · · · · · · · · · · · · · · · · · · · · · (5)

where El is the standard criterion function depend-
ing on discrete system parameter vector l, and l =
(l1, l2, .., l|G|) ∈ L is the vector in discrete system pa-
rameter space, and L is the set. Minimizing (5) ensures
that the criterion at each special operating point l to be
small. However, in the minimax method only discrete
operating points can practically be chosen, there is no
guarantee for the performance between two specific op-
erating points. Further improvement is needed.

3.2 Sensitivity Term To solve the problem, we
introduce a sensitivity term to the standard criterion
function El. As shown in Fig.2, in the minimax ap-
proach the optimization at each step is performed such
that the criterion function is minimized at the specific
operating point where it has the worst criterion val-
ues among all specific operating points. Obviously, if
the sensitivity at the corresponding operating points is
also minimized, then it may guarantee that the crite-
rion function not only at the operating point but also
on a small area around the operating point is minimized.
When the number of specific operating points is chosen
to be sufficient large, we may expect that the obtained
control system has good performance also between two
specific operating points. The criterion function includ-
ing sensitivity term is described by

ER = Max
l∈L


El + kf


∑
g∈G

∂†El
∂fg




2

 · · · · · · (6)

where g ∈ G is the suffix of system parameters, fg the
value of gth system parameter, and kf the sensitivity
coefficient assigned an appropriate positive number. In
(6), the sensitivity is defined as an ordered derivative
∂†El

∂fg
, which is the change of criterion function El caused

by change of system parameter fg with other variables

fixed (10), see Appendix A for more details about the
ordered derivative.

3.3 Controller Design In a ULN based control
system, both objective system and its controller are
treated as a unified network called ULN. The controller
design becomes the ULN learning. The ULN learning
is performed by minimizing the criterion function (5)
or (6) depending on whether the sensitivity term is in-
cluded. A gradient-based implementation of the mini-
mization is described by

λm ←− λm − γ
∂†ER
∂λm

· · · · · · · · · · · · · · · · · · · · · · (7)

where ∂
†ER

∂λm
is the order derivative of ER with respect

to λm.
However, calculating ∂†ER

∂λm
is not trivial. In a mini-

max optimization, even if the standard criterion func-
tion El is differentiable for all operating point l’s, ER is
non-differentiable in general. Therefore gradient-based
methods can not be directly used for the optimization.
To overcome this difficulty, several methods have been
proposed in the literature (11). For example, the problem
can be replaced by the one using a differentiable objec-
tive function which is a uniformly close approximation
to the original objective function. The new problem
can then be treated using gradient-based methods. This
only guarantees a near-optimal solution of the original
minimax optimization problem, and the algorithm is
usually very time-consuming.
For simplicity, in this paper we only approximately

calculate ∂
†ER

∂λm
by

∂†ER
∂λm

� ∂†Elmax

∂λm
· · · · · · · · · · · · · · · · · · · · · · · · · · (8)

for the criterion function without including sensitivity
term, and

∂†ER
∂λm

� ∂†

∂λm





Elmax + kf


∑
g∈G

∂†Elmax

∂fg




2






· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (9)
for the criterion function including sensitivity term,
where Elmax = Maxl∈LEl is the El with largest value
determined at each learning step. Obviously, this ap-
proximation will cause large error when algorithm closes
to minimum points of ER, and may result in oscilla-
tion of the algorithm. To avoid the oscillation, we let
the learning coefficient γ → 0 as the training step
t → ∞. Further research is needed to develop algo-
rithm for calculating ∂

†ER

∂λm
more efficiently.

Because the sensitivity itself is the first order deriva-
tive, calculating (9) requires the second order deriva-
tives of the standard criterion function. See Appendix
B for the calculation of the first and second order deriva-
tives of El.

4. Simulation Studies

The proposed minimax approach is applied to a non-
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Fig. 3. Structure of nonlinear crane system

linear crane control system to demonstrate the effective-
ness.

4.1 Nonlinear Crane System The objective
to be controlled is a nonlinear crane system shown in
Fig.3. Let x, θ and l denote the position of crane stand,
the angle between rope and vertical line, and the po-
sition of load, respectively. Then the nonlinear crane
system is described by

d2x

dt2
= −mg

M
θ − D +G

M

dx

dt
+

G

lM
u1 · · · · · · · (10)

d2θ

dt2
= −M +m

lM
gθ − D +G

lM

dx

dt
+

G

lM
u1 · · (11)

d2l

dt2
= −C +Gm

m

dl

dt
+

Gm
m

u2 · · · · · · · · · · · · · (12)

where u1 ,u2 are the input voltages for moving the crane
stand and for rolling up the load, M the mass of the
crane stand, m the mass of the load, C, D the fric-
tion coefficients, G, Gm the coefficient of transforming
voltage to torque, and g the gravity acceleration.
Let h1(t) = x(t), h3(t) = θ(t), h5(t) = l(t), h2(t) =

dx
dt , h4(t) = dθ

dt , h6(t) = dl
dt . The discrete-time forms of

(10)-(12) are described by

h1(t) = h1(t− 1) + ∆t・h2(t− 1) · · · · · · · · · · · (13)

h2(t) =
(
1−∆t

D +G

M

)
h2(t− 1)

− mg

M
∆t・h3(t− 1) +

G

M
∆t・u1(t− 1) (14)

h3(t) = h4(t− 1) + ∆t・h4(t− 1) · · · · · · · · · · · (15)

h4(t) = h4(t− 1)− D +G

M
∆t

h2(t− 1)
h5(t− 1)

− M +m

M
g∆t

h3(t− 1)
h5(t− 1)

+
G

M
∆t

u1(t− 1)
h5(t− 1)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (16)
h5(t) = h5(t− 1) + ∆t・h6(t− 1) · · · · · · · · · · · (17)

h6(t) =
(
1− C +Gm

m
∆t

)
h6(t− 1)

+
Gm
m

∆t・u2(t− 1) · · · · · · · · · · · · · · · · · · (18)

where ∆t is the sampling time.
4.2 ULN Based Crane Control System To

control the crane system, we introduce two layered neu-
ral network controllers, each of which has 4 hidden

Fig. 4. A feedback control system of nonlinear
crane system using a layered controller

nodes with tanh(·) node function, and one linear output
node.
Now let us introduce 6 nodes for the six difference

equations (13)-(18) describing the crane system, one
node for one equation, and many branches for the re-
lation of the equations. Then the crane system is de-
scribed by a network. This network and the two neural
network controllers can be treated as a unified learn-
ing network – ULN. Figure 4 shows the ULN describ-
ing the nonlinear crane system and its controllers in a
unified network. In this way, the controller design is
transformed into the ULN learning.

4.3 Simulation Conditions
• Physical parameter values:
M = 40[kg], g = 9.8[m/sec2], C = 0.42[kg/sec],
G = 700[N/V ], Gm = 0.98[N/V ], D = 300[kg/sec],
and ∆t = 0.003[sec].
•Control aim:

the crane stand position : 0 → 1.0 [m]
the load height : 1 → 0.5 [m]

• Standard criterion function:

E =
1
2

[∑
s∈T
{Q1(xref − x(s))2}+Q2ẋ(tf )2

+
∑
s∈T
{Q3θ(s)2 +Q4θ̇(s)2}

+
∑
s∈T
{Q5(lref − l(s))2}+Q6 l̇(tf )2

+
∑
s∈T
{R1u1(s)2 +R2u2(s)2}

]
· · · (19)

where Q1 = Q2 = Q3 = Q4 = Q5 = 1.0, Q6 = 5.0
and R1 = R2 = 0.001 are the coefficients, tf =
7.5[sec] the final control instant, and |T | = 2500
the set of sampling instants.

4.4 Simulation Results In the simulations, the
load mass m is taken as the system parameter fg. The
aim is to design a controller so that the control system
is stable even though the load mass m changes in a wide
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Fig. 5. Results of one-point evaluation

range.
Simulations are carried out to compare control per-

formance of the following four control methods:
•One-point Evaluation

ER = Em · · · · · · · · · · · · · · · · · · · · · · · · · · · · (20)
m = 2

•Multi-point Evaluation

ER =
∑
m∈L

µmEm · · · · · · · · · · · · · · · · · · · · · (21)

µm = 1.0

•Minimax Evaluation

ER = Max
m∈L

{Em} · · · · · · · · · · · · · · · · · · · · · (22)

•Minimax Evaluation with Sensitivity

ER = Max
m∈L

{
Em + kf (

∂†Em
∂m

)2
}
· · · · · (23)

kf = 1.0

First, we carried out a simulation by using the con-
ventional one-point evaluation method. The criterion
function is evaluated at point m = 2 kg, and then we
trained the controller. After training of the parameters
of the neural network, system responses were calculated
at points m = 2, 4, 6 and 8 kg, the responses with re-
spect to l were shown in Fig.5. We can see that the
performance at the operating point m = 2 kg is best,
but the larger the value of m is, the worse the system
performance is.
Then, we choose m = 2, 4, 6 and 8 kg as the evalua-

tion points, and trained the controllers using other three
methods, respectively. After training, system responses
were calculated at the evaluation points. Figure 6, 7
and 8 show the responses for l using multi-point evalua-
tion, minimax evaluation and minimax evaluation with
sensitivity, respectively. We can see that the minimax
evaluation method has better performance than the

Fig. 6. Results of multi-point evaluation

Fig. 7. Results of minimax evaluation

Fig. 8. Results of minimax evaluation with sensi-
tivity control

multi-point evaluation method, and the minimax eval-
uation with sensitivity has the best performance. Fig-
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Fig. 9. Comparison of the dynamics among the
different methods at evaluation point m = 8 kg

Fig. 10. Comparison of the dynamics among the
different methods at non-training point m = 7 kg

ure 9 shows a comparison of the dynamics among dif-
ferent methods at evaluation point m = 8 kg. Figure
10 shows the system responses for l at non-evaluation
pointm = 7 kg. We can see that the controller performs
well even at the non-evaluation points; this means that
the trained neural network controllers using the four
methods have generalization ability.
To further show the generalization ability, we calcu-

late the control responses with a control aim different
from the one for controller design. Figure 11 shows
the control responses of l for the case where the initial
position of the load and the reference position of the
load height are changed to

the crane stand position : 0 → 1.5 [m]
the load height : 1.5 → 0.5 [m].

It can be seen that a reasonable performance can be
guaranteed even though the initial values and reference
values of the system have changed because of the gen-
eralization ability of neural networks.

Fig. 11. Responses of control system with a con-
trol aim different from the one used for controller
design.

Fig. 12. Influence of sensitivity terms on the
dynamics

Finally, to show the influence of sensitivity terms on
the dynamics we carried out simulations with different
values of kf . It has been found that system perfor-
mance is improved when kf is larger, however too large
kf causes learning algorithm diverged. Therefore, it is
necessary to choose appropriate values of kf in practical
applications. However, how to choose an appropriate kf
for a specific problem is still an open problem. Further
research is needed. Figure 12 shows the dynamics dif-
ference between sensitivity coefficient kf = 0.1 and
kf = 1.0. We can see that speed of response decreases,
but overshoot also decreases when kf becomes larger.
It is clear that sensitivity coefficient kf is a factor for
balancing quick response and robustness.

5. Conclusions

This paper proposed a minimax robust control
method. In the proposed method, the criterion func-
tion is evaluated at several specific operating points,
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and at each learning step the worst criterion function
among the specific operating points is optimized. Nu-
merical simulations show that the proposed robust con-
trol method has better performance than both the con-
ventional one-point evaluation method and the conven-
tional weighted multi-point evaluation method; and the
sensitivity calculated on the specific operating points
can be used to further improve the system performance.
The proposed method has been applied to a nonlin-

ear crane system to demonstrate its effectiveness. From
simulations, it is concluded that the proposed method
can be effectively applied for the system where the dy-
namics of its system is known and differentiable to en-
hance the robustness. If the dynamics of the controlled
system are unknown, the proposed method can be ap-
plied after the system is identified. Although in this
paper simulations are done only for the change of the
mass of load, the design of robust control can be done
in the same manner for any other system parameters
such as disturbances and external inputs.

Appendix

1. Ordered Derivative
Ordered derivative is basically a kind of partial deriva-

tive. It is firstly introduced by Werbos (10), which is a
partial derivative considering both direct and indirect
relationship. J-S.R. Jang and C.T. Sun (1995) (12) ex-
plained the difference between the ordered derivative
and the ordinary partial derivative in details. Here we
borrow the simple example to briefly show the differ-
ence, see Ref. (12) for more details.
Consider a problem where z is a function of x and y,

and y is in turn a function of x:

y = f(x) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (A1)
z = g(x, y). · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (A2)

For the ordinary partial derivative ∂z∂x , we assume that
all the other variables (in this case, y) are constant:

∂z

∂x
=

∂g(x, y)
∂x

. · · · · · · · · · · · · · · · · · · · · · · · · · · · (A3)

In other words, we assume the direct variables x and y
are independent, without paying attention to the fact
that y is actually a function of x. For the ordered deriva-
tive, we take this indirect causal relationship into con-
sideration:

∂†z
∂x

=
∂g(x, y)

∂y

∣∣∣
y=f(x)

·∂f(x)
∂x

+
∂g(x, y)

∂x

∣∣∣
y=f(x)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (A4)
Therefore, the ordered derivative takes into considera-
tion both the direct and indirect paths that lead to the
causal relationship.

2. First and Second Order Derivatives
2.1 Calculation of ∂

†El

∂fg
Considering the direct

and indirect relationship of El and fg, it is easy to show

that ∂
†El

∂fg
is calculated by

∂†El
∂fg

=
∑
r∈J0

∑
s∈T0

[
∂El
hr(s)

∂†hr(s)
∂fg

]
+

∂El
∂fg

· · (A5)

where J0 and T0 are the sets of nodes and time instants
directly related to the evaluation.
∂†hr(s)
∂fg

can be calculated in two ways: backward prop-
agation and forward propagation. In this paper, we use
the forward propagation method, that is, it is first com-
puted for the nodes directly related to fg, then propa-
gated toward the nodes directly related to El. Introduc-
ing a notation P1(j, t, fg) denoting the change of node
output hj(t) for fg,

P1(j, t, fg) =
∂†hj(t)
∂fg

, · · · · · · · · · · · · · · · · · · · · (A6)

we can express the iterative algorithm by

P1(j, t, fg) =
∑

i∈JF (j)

∑
p∈B(i,j)

[
∂hj(t)

∂hi(t−Dij(p))

× P1(i, t−Dij(p), fg)
]
+
∂hj(t)
∂fg

(A7)

where JF (j) is the set of nodes connected to node j,
and B(i, j) is the set of branches from node i to node j.

2.2 Calculation of ∂†2El

∂fg∂λm
By differentiating

(A5) with respect to λm, we have the second-order
derivative ∂†2El

∂fg∂λm
given by

∂†2El
∂fg∂λm

=
∑
r∈J0

∑
s∈T0

[∂†( ∂El

∂hr(s) )

∂λm

∂†hr(s)
∂fg

+
∂El

∂hr(s)
∂†2hr(s)
∂fg∂λm

]
+
∂†(∂El

∂fg
)

∂λm
. · (A8)

Introducing

P2(j, t, fg, λm) =
∂†2hj(t)
∂fg∂λm

, · · · · · · · · · · · · · · · (A9)

the iterative calculation algorithm for P2(j, t, fg, λm)
can be obtained by differentiating (A7) for λm

P2(j, t, fg, λm)

=
∑

i∈JK(j)

∑
p∈B(i,j)

[∂†( ∂hj(t)
∂hi(t−Dij(p))

)

∂λm

×P1(i, t−Dij(p), fg)
]

+
∑

i∈JF (j)

∑
p∈B(i,j)

[
∂hj(t)

∂hi(t−Dij(p))

×P2(i, t−Dij(p), fg, λm)
]

+
∂†(∂hj(t)

∂fg
)

∂λm
· · · · · · · · · · · · · · · · · · · · · · · · · (A10)

(Manuscript received October 24, 2000, revised
March 23, 2001)

電学論 C，121巻 9号，平成 13年 1477



References

( 1 ) F.C. Chen and C.C. Liu, “ Adaptively controlling nonlinear

continuous-time systems using multilayer neural networks”,

IEEE Transaction on Automatic Control, Vol. 39, No. 6,

pp.1306-1310, June, 1994.

( 2 ) F.C. Chen and H.K. Khalil, “ Adaptive control of a class of

nonlinear discrete time systems using neural networks”, IEEE

Transaction on Automatic Control, Vol. 40, No. 5, pp.791-

801. May, 1995.

( 3 ) M. S. Ahmed, “Neural-Net-Based Direct Adaptive Control

for a Class of Nonlinear Plants”, IEEE Transactions on Au-

tomatic Control, Vol. 45, No. 1, pp.119-124, January 2000.

( 4 ) K. Hirasawa, J. Murata, J. Hu, C. Jin, “Universal Learn-

ing Networks and Its Application to Robust Control”, IEEE

Trans. Syst., Man, and Cybern., part B, Vol. 30, No. 3,

pp.419-430, June 2000.

( 5 ) M. Obayashi, K. Hirasawa, N. Toshimitsu, J. Murata and J.

Hu, “Robust Control for Universal Learning Network Consid-

ering Fuzzy Criterion and Second Order Derivatives”, Trans.

of SICE, Vol. 34, No. 9, pp.1246-1254, 1998 (in Japanese).

( 6 ) William R. Perkins, Jose B. Cruz, and Richard L. Gonza-

les, “Design of Sensitivity Systems”, IEEE Trans. Automatic

Control, Vol AC-13, No.2, pp.159-167, April, 1968.

( 7 ) K. Hirasawa, X. Wang , J. Murata, J. Hu, C. Jin, “Univer-

sal Learning Network and its application to chaos control”,

Neural Networks, Vol.13, pp.239-253, 2000.

( 8 ) R. Isermann, S. Ernst, and O. Nelles, “Identification with dy-

namic neural networks–Architectures, Comparisons, Applica-

tion,” in Proc. IEEE Int. Conf. Syst.,Man, Cybern., 1998,

pp.997-1022.

( 9 ) M. Han, K. Hirasawa, M. Ohbayashi, and H. Fujita, “Mod-

eling dynamic systems using universal learning networks,” in

Proc. IEEE Int. Conf. Syst., Man, Cyben., Beijing, China,

1996, pp. 1172-1177.

(10) P.Werbos; Beyond Regression, “New Tools for Prediction and

Analysis in the Behavioral Sciences”, Ph.D.dissertation, Har-

vard University, 1974.

(11) Dipti Deodhare, M.Vidyasager, and S. Sathiya Keerthi, “Syn-

thesis of Fault-Tolerant Feedforward Neural Networks Us-

ing Minimax Optimization”, IEEE Trans.Neural Networks,

Vol.9, No.5. pp.891-900, Sept.1998.

(12) J-S.R. Jang and C.T. Sun, “Neuro-Fuzzy Modeling and Con-

trol”, Proceedings of the IEEE, Vol.83, No.3. pp.378–405,

1995.

Hongping CHEN (Non-member) She received the B.S.
degree in Process Control Engineering from
Dalian University of Technology, China in
1989. She received the M.S. degree in Electri-
cal and Electronic System Engineering from
Kyushu University in 2000. She is currently
working toward the Ph.D. degree in Electrical
and Electronic System Engineering at Kyushu
University. Her research interests include neu-
ral networks and their applications in control

systems.

Kotaro HIRASAWA (Member) He received the M.S. de-
gree in Electrical Engineering from Kyushu
University in 1966. From April 1966, he served
in Hitachi Lab. of Hitachi Ltd., and in 1989
he was a vice president of Hitachi Lab.. From
August 1991 to November 1992, he served in
Omika Factory of Hitachi Ltd.. Since Decem-
ber 1992, he has been a professor in the fac-
ulty of Engineering, Kyushu University. Now
he belongs to the Graduate School of Informa-

tion Science, Kyushu University. Dr. Hirasawa is a member of
the Society of Instrument and Control Engineers, a member of
IEEE.

Jinglu HU (Member) He received the M.Sci. degree in
1986 from Zhongshan University, China and
the Ph.D degree in 1997 from Kyushu Insti-
tute of Technology. From 1986 to 1993, he
was a Research Associate and then a Lecturer
in Zhongshan University. Since 1997, he has
been Research Associate at Kyushu Univer-
sity. His current research interests are learn-
ing network theory, system identification and
their applications. Dr. Hu is a member of the

Society of Instrument and Control Engineers.

Junichi MURATA (Member) He received the D.Eng de-
gree in Electrical Engineering from Kyushu
University in 1986. From 1986 to March 1988,
he was Research Associate at Kyushu Univer-
sity. From April 1988, he is an Associate Pro-
fessor at Kyushu University. Now he belongs
to the Graduate School of Information Sci-
ence and Electrical Engineering, Kyushu Uni-
versity. He is a member of SICE, ISCIE and
IEEE.

1478 T.IEE Japan, Vol. 121-C, No.9, 2001


