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Plane wave diffraction by a semi-infinite strip grating is analyzed in order to investigate the end-effect of finite
gratings in pure form. In the formulation, the current induced on each strip is divided into periodic current on an
infinite strip grating and the correction current induced by the truncation of the periodic structure. These currents
are determined by solving a set of integral equations by using the method of moment. Numerical calculations for
current distribution, diffraction patterns, and norm of the induced correction currents reveal the end-effects of the

semi-infinite grating.
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1. Introduction

The problem of electromagnetic wave diffraction by
gratings has great umportance in microwave and optical
engineering, and diffraction characteristics of various kinds
of gratings have been investigated so far [1]. Most papers
have dealt with infinite gratings to which the Floquet
theorem is applicable. The actual gratings, however, have
finite extent and their diffraction characteristics are
different from those of infinite gratings because of the
"end-effects" that caused by the ends of the finite gratings.
In order to reveal the end-effects, diffraction by finite
gratings and related problems have been analyzed, and
diffraction characteristics have been investigated [2]-[10].
However, the most suitable model for analyzing the end-
effects of finite gratings is a semi-infinite grating, because
it can provide end-effects contributions in pure form as the
Sommerfeld's solution for half-plane can reveal the
mechanisms of edge diffraction. Hills and Karp [11] have
analyzed this problem by using the Wiener-Hopf technique
and have revealed the interesting diffraction phenomena.
In their analysis, the problem have been solved under the
assumption that the thin wire elements are widely spaced
relative to the wavelength. However, it is necessary to
reveal the dif{raction characteristics for narrow spacing in
using the finite grating for practical applications such as
frequency selective surface or polarization selective
surface [12]-[13]. In our previous paper [14], we have
analyzed the diffraction by a semi-infinite strip grating
under the assumption that each strip is narrow relative to
the wavelength. That analysis have given us many {eatures
of the end-effects of finite gratings, but enough
information has not been obtained because the strip width
of the actual gratings is not so narrow relative to the
wavelength.

In this paper, we numerically analyze the diffraction of
plane waves by a semi-infinite strip grating and investigate
the end-effects contribution. The method of analysis is
based on the method used in [14], but there is no restriction
of the strip width and spacing. In the formulation, we
divide the cwrrent induced on each strip into two currents,
the periodic current on the inlinite strip grating and the
correction current induced by the truncation of the infinite
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structure. These currents are determined by solving a set
of integral equations by using the method of moment.
Numerical results for current distribution, diffraction
patterns, and radiated powers by the induced currents are
shown, and investigate the end-effect contributions.

Throughout this paper, the time factor ™ is assumed
and suppressed.

2. Formulation of the problem

The geometry of the semi-infinite strip grating is shown
in Fig.1(a). The spacing between the strips is d and each
strip has a width 2a. The incident wave is an E-polarized
plane wave given by

Ei(x, y) — e-ik(x sin 6; —y cos ;) (1)
where 6; is an incident angle, k= wyety =27/ A is a
wavenumber, and A is a wavelength. The current induced
on each strip has only a z-component. For convenience, let
us divide the current on the n-th strip J*(nd + x) (I x1<a)
into two parts:

JHnd +x)=T"(nd + x) + J°(nd + x)

|x|sa. n=0,1,2,-~ )
where J?(nd + x) is the current on the infinite strip grating
as shown in Fig.1(b) and J°(nd+ x) is the unknown
correction current induced by the truncation of the infinite
structure. For periodicity of the structure, J*(nd + x)

satisfies the [ollowing periodic condition

TP(nd + x) = e™"Po? JP(x) 3)

Bo=ksin 6, )]
From physical consideration, it is obvious that J"(nd + x)
approaches J7(nd+x) as n increases. Therefore,
Jé(nd + x) has a [ollowing important property:

l7fmd +x) || =0 as n—ow ®)

The integral representations of the scattered field E” from
the infinite strip grating of Fig.1(b) and scattered field E*



from the semi-infinite grating of Fig.1(a) are expressed as
follows:

=) X a
EP(x,y) =~iwp, 2 e Odf JP(x")
n= - -a

- G(x, y Ind + ', 0) dx’ 6)
=) a
E*(x, y) = ~iou, nzof_a THnd + x')
- G(x, y Ind + x', 0) dx’ @)

where G(x,ylx',y') is the two-dimensional Green's function

®

and H? is the Hankel function of the second kind. By
applying the boundary condition

G, 1%,y ) = & HOO = 2) + - y)7)

E'(nd +x,0) + EP(nd + x,0) =0

©®)

to Eqs.(6) and (7), and taking into account Eqgs.(2) and (3),
we can derive the following integral equations for J*(x)
and J°(nd + x) .

lxlsa, n=0,=l, £2,

i . 3 ~inf od @ 178%
E'(x,0)=iwu, X e"Fo JEED)
nSew —a .

G(x,0lmd+x,0)dx', |x|sa  (10)

i 2 . a
E'(md + x, 0) = iwu, ZO e—mﬂodf

—a
- G@md + x,0 Ind + x', 0) dx'
[ a
+ iy, ZO f Jnd +x")
n=0 Jj—q

- G(md + x,01nd + x', 0) dx’'
m=0,1,2,

JP(x')

(11)

If JP(x) is obtained by solving Eq.(10), then J°(nd +x)
can be determined by solving Eq.(11).

|x|=a,

-ata <d»

(a) Semi-infinite strip grating.

-+ >

-a'a

(b) Infinite strip grating.

Fig.1 Semi-infinite and infinite strip gratings.
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3. Application of the method of moment

In order to solve Eqs.(10) and (11), we use the method
of moment (MoM). As the bases function, we employ the
pulse function defined by

q)(x)z{é

where A=2a/Q is the pulse width, and Q is the number
of discretization of the current. First, we express the
unknown current JP(x) and J°(nd + x) in terms of @(x)
as follows:

Osx sA(=2a/Q)

otherwise (12)

-1
JP(x) = QZO A, 0(x+a—-ph) (13)
P:
-1
Jnd + x) = 020 B, ,9(x+a—ph),
p=
n=0,1,2, (14)

where A, and B, , are unknown expansion coefficients
to be determmed Since the correction current J° has the
property of Eq.(5), coefficients B, , have following

property.

-0 as n—o (p=0,1,2, - 0-1)
As the weighting function, we employ the delta function
d(x+a—(g+1/12)4) (g=0,1,2,...,0-1) (point matching).
The procedure of standard MoM leads to the following
simultaneous equations to determine the unknown

coefficients A, and B, , as follows:

1B,,, (15)

Q-1 1 .
—infqd i
pgo A { Z e G, P‘q} T iwug A 709
g=0,1,2,,0-1 (16)
o] 1 ;
nzo pzo Bn' Gn_m‘ pq = m mq
—pgo AP n§0 e_mﬂOdG"—"i- P—q] (17)
q=0,1,2,,0-1, m=0,1,2,
where
%ng)(klndanAl)‘ tn=0or p=0
G o~
mp -
l1+Za-p-Lnkd
; .
+(E~ﬁ+ T +,,_hln )(kA)z]
n=p=0 (18)
Ep g f E'(md + x,0) 6( x +a— (g +1/2)A) dx

— —rﬁo(md a + (g + 1/2)4) (19)

and y=0.5772 ... is Buler's constant. In the calculation of
G, p,we have taken into account that the pulse width 4 is
sufficiently small relative to the wavelength, and have used

the approximation of the Hankel function for small
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argument. From Eq.(16) the unknown coefficients A, are
determined. Once the A, are known, other coefficients
B, , are determined from Eq.(17). Although Eq.(17) is an
infinite dimensional simultaneous equations, we can
truncate it and solve it numerically, because B, ,
approaches zero as n increases (see Eq.(15)).

4. Scattered field

Taking account of Eq.(2), scattered field of Eq.(7) is
expressed as follows:

ES(x,y) = E*P(x, y) + E*(x, y) (20)

where E5? and E*“ are the fields radiated by the currents
JP and J° respectively. Scattered field E5?, in which the
effect of the correction currents is not include, is called a
"Kirchhoff solution" [11]. Substituting Eqs.(2) and (3)
into Eq.(7), and transforming the spatial integral into
spectrum domain, we have following spectral integral
representations.

wud 2t
ES(P)(x, y)=-— j:]g pgo A[j

F (&) e ¥V -2 gmits
c Jiro ;2(1 _e—i<ﬁo—§>d)

ag, (50 (2D

: w Q-1
s(c) - w;qu
E (-x, _V)"‘_ 4 n§0 pgo Bn,p
Y e s
Fp(c)e_“y k=65 —i(x—nd)§
: g, (ys0) (22
fc K- 2)
where
FP(D - SIHC(AC?F)/Z) e i(—a+(p+12)A), (23)

and branch of ¥ k>~ is as follows:

— VE=EE o k>IEl

K—g? = 24)

=k k<l

The contour C is the infinite path in the ¢ plane as shown
in Fig.2, where it is assumed that £ has a small negative
imaginary part. The poles of Eq.(21) located at
E=B, =pBo+2mald correspond to the Floquet's modes of
the infinite grating.

Next, in order to derive the far field representation, we
evaluate the integrals of Egs.(2l) and (22) for
kr = kyJx*+y* >> 1 by using the saddle point method.

branch cut Im &

k C Re £
e\ L\ @ +lo) W AYm
= NS T - - :
/3_3 /3_2 -k /3_1 /50 g [31 ﬁ?,

Fig.2 Contour C in complex £ plane.
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Since the scattered field £° is symmetric with respect to x-
axis, we shall derive the far field representation for
‘ 6] =x/2. Let us introduce the following change of
variables.
E=ksinw, x=rsinf, y=rcosb. (25)
Substituting Eq.(25) into Eqgs.(21) and (22), and evaluating
the integrals by the saddle point method [15], we can
obtain the uniform asymptotic expression as follows:

EX(r, 6) = E&(r, 6) + E4(r, 6) (26)
where
omA %5 & FB
E3(r,0)=— 24 >; Pom 2, \/mz;
e —ikr cos(ﬂ—wﬁl) u(e _ ng) (27)
d.. wped 25! <
E“r.6)=— —5; pgo Ay 2 [-sen(6-wh)

—inl4
FP(ﬂm) e —tkr cos(8 —wp) €

TS5 D)
T-p e
WA T k- i)
T4 k€ ’

g-1 F_(ksin 6)
. P
pzzo [Ap{ 1 —exp[ —ikd(sin 8, —sin 6) |
i 3 _FBw 1

L3
0 R (o-wp 1)

+ Fy(k sin 6) ngo B, ,e inkd sinf ] (28)

E,=V2krsin(| 6-wE|/2) (29)
(p - @ e—itzdt 30
®=], o
u®={4: 570 Gh

and W}, = arcsin (B,,/k) , which are the poles of Eq.(21),
correspond to the Floquet's modes of periodic structure.
Eq.(26) indicates that the scattered field by a semi-infinite
grating is expressed as a sum of two types of waves, E®
and E%. The wave E®, which is the residue contribution
of Eq.(21), is a set of plane waves (Floquet waves) and E¢
is a diffracted wave at the end of the semi-infinite grating.
It can be shown that the amplitudes and the directions of
propagation of the plane waves of E® coincide with those
ol Floquet waves of the infinite grating shown in Fig.1(b).
It is, however, found from Eq.(27) that they exist only
within the region wh<8=a/2. Thus, the lines 6 =w}
act as the shadow or reflection boundaries of the Floquet
waves similar to those appearing in the diffraction by a
conducting half plane. This result is also pointed out by
Hills and Karp [11]. The first term of Eq.(28), which is
derived form Eq.(21), is a contribution of higher order term
of uniform asymptotic evaluation when the poles and
saddle point close to each other. This term removes the
singularities of the diffracted field in the transition regions
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Fig. 3. Current distributions on the strip #1, #2, #3, and #10. (2a=1A, d= 154, 6,=30°)

near shadow and reflection boundaries where the first order
solution of saddle point method fails. The second term of
Eq.(28), which is derived form Eqs.(21) and (22), is a
cylindrical wave diffracted at the end of the grating.

5. Numerical results and discussions

Numerical calculations are carried out for current
distributions on the strip elements located near the edge,
diffraction and scattering patterns, and norm of the
correction currents that is defined for the quantitative
evaluation of the end- effect. In order to obtain accurate
solutions, the choice of the pulse width A becomes
important. In reference [16], it is shown that, for scattering
by single strip, A=A/50 is sufficiently small 1o get an
accurate solution (energy error is less than 1%).
‘According to this fact, we shall chose the width of the
pulse as A=A/50.

Figure 3 shows the current distributions on the strip #1,
#2, #3, and #10. This figure indicates (hat the correction
current J© on the edge strip (#1) is comparatively large
and it becomes small as the strip number increases. On the
strip #10 that is located far away {rom the edge, /¢, as we
expected, becomes negligibly small and total current J”
coincides with periodic current /7 on the infinite grating.
In order to evaluate the behavior of the correction currents,

we also calculate the norm of the correction currents
defined by

Je¢ = \/fa ‘J"(nd + X) 2 dv
Yn T : S
—-a

(32)
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Fig. 4. Norm of the correction current J;; on each strip.
(2a=14, d=1.54, 6,=30°)

Figure 4 shows the log scale representation of the norm of
the correction current on each strip. From this result, we
can conlirm that correction currents act J§ x n73/2 ag the
strip number increases, and Eq.(3) is satisfied.

Figure 5 shows the diffraction pattern E?given by
Eq.(27) for the same parameters of Fig.3. The pattern is
normalized by one half of the intensity of the incident
wave. The Kirchhoff solution, which are obtained by
letting /°=0, are also shown by the broken line. It is
found from this result that the diffraction at 90° and -38° is
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Diffraction Pattern E¢ [dB]

Kirchhoff ----------
-30 0 30 60 90
Observation Angle 6 [deg]
Fig. 5. Diffraction pattern E 4
(2a=1A, d=1.54, 6;=30°, kr=504,)
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Fig. 6. Scattering pattern ES.
(2a=1A, d=1.5A, 6;=30°, kr=504,)

suppressed by the effect of the correction currents. When
the width of the strip is narrow (2a << A) , we have pointed
out that the diffraction pattern has sharp nulls in some
directions [14]. However, this result indicates that those
nulls do not appear except for at 8= 90° and -38° when the
width of the strip is not narrow. For this configuration
(d=1.5A, 8,=30°), reflection boundaries of the 0-th, -1st,
and -2nd order Floquet waves appear in the directions 8 =
30°, -9.6°, and -56.5°, respectively. In the diffraction
pattern, we can observe discontinuilies in these directions.
On the other hand, Fig. 6 shows the scattering pattern E*
that is given by Eq.(26). Since the Floquet waves E¥ is
added to the field, the discontinuities of the pattern
disappear. In the regions -9.6°< 8 < 30° and 30°< 8 < 90°,
we can find the oscillation of the pattern caused by the
interference of the Floquet waves.

Next, we shall quantitaively evaluate the end-effects
contribution. Since the end-effect of the semi-infinite
gratings is considered as the effects caused by the
correction current /¢, we calculate the total norm of the
correction currents in order to estimate the degree of the
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Fig. 7. End-effect R versus spacing d. )
(2a=034, 6,=0%)

end-effects contribution. The total norm R is defined by

R

ngl ujc(nd +X) “2

P} _a |7¢md + 0| dx 33)

Figure 7 shows the total norm R versus the spacing d. We
can find, from this figure, that R becomes large when d =
mA for 6, = 0° where m = 1,2,3,... . For infinite grating,
these values correspond to the spacing for cut-off of the m-
th mode, and the multiple scattering between the elements
becomes strong ( or the Wood's type anomaly occurs ).
Therefore, this result indicates that the end-effect of the
semi-infinite grating becomes large for cut-off frequencies
of Floquet waves.

6. Conclusions

In this paper, we have numerically analyzed the plane
wave diffraction by a semi-infinite strip grating and have
investigated the end-effects contribution in pure form.
Numerical results of current distributions and diffraction
pattern have revealed the behavior of the currents near the
edge and dilfraction properties. It has also been revealed
that the end-effect contribution becomes large for cutoff
frequencies of the Floquet waves. These results are very
useful for evaluating the diffraction by finite gratings.
Furthermore, according to the concept of the GTD, we can
easily derive the diffraction coefficients of semi-infinite
grating, and will be able to use them in calculating the
diffraction by a very large finite grating.

In order to investigate the end-effect contribution in
more detail, we have to calculate the near f{ield around the
edge. This analysis is left as future problem.

(Manuscript received January 30, 2001, revised May 30,
2001)
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