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The impedance matrix generated by the discretization of volume integral equation is usually nonsym-
metrical and dense. When the direct matrix solver such as Gaussian elimination is employed to solve the
impedance matrix, O(N?) memory and O(N?) operations are required, where N is the number of unknowns.
Therefore, the direct matrix solver is not suitable for the practical solution of large-scale problems by the
volume integral equation. The implement of the iterative-methods is the realistic solution to improve the
calculation efficiency in solving the problems. In this paper, we evaluate six well-known iterative-methods
in solving the matrix equation obtained by the discretization of volume integral equation. We investigate
the convergence characteristics of the residual-norms in this evaluation. In the methods based on Lanczos
process, it is found that the convergence characteristics of the residual-norms become unstable under some
conditions. In the methods based on Arnoldi process, it is found that the convergence characteristics of the
residual-norms are always stable under various conditions. Since we found that GMRES is the most effective
iterative-method in solving the matrix equation obtained by the discretization of volume integral equation,

we particularly investigate the convergence characteristic of GMRES based on Arnoldi process.
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1. Introduction

A number of iterative-methods for the reduction of
the computational costs, which can be applied to the
solution in the moment-method, have been proposed so
far ® @ & @ However, the evaluation of the iterative-
method used for the volume integral equation has not
been reported to our knowledge. In this paper, we
investigate six well-known iterative-methods in solv-
ing the matrix equation obtained by the discretization
of volume integral equation. The research of the ap-
propriate iterative-method for solving the volume inte-
gral equation, and the evaluation of the convergence
characteristics under the various conditions are im-
portant problems for the numerical simulation of the
large-scale scattering problems by Personal Computer
(PC). We evaluate the convergence characteristics of the
residual-norms of the following iterative-methods. The
iterative-methods used in this evaluation are General-
ized Minimal RESidual method (GMRES), Generalized

Conjugate Residual method (GCR) and Orthomin®

method that are based on Arnoldi process, and Con-
jugate Gradient Squared method (CGS), Bi-Conjugate
Gradient STABilized method (Bi-CGSTAB) and Gen-
eralized Product-type method based on Bi-CG (GPBi-
CG) that are based on Lanczos process. All of these
iterative-methods have the capability to solve the non-
symmetrical and dense matrix ®.

By solving the scattering of electromagnetic wave by
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the dielectric rectangular plate, we investigate the most
effective iterative-method to solve the volume integral
equation. For the investigation of the most effective
iterative-method (GMRES) that can be found by the
above evaluation, we evaluate the convergence charac-
teristics by changing the relative permittivity, the size
of rectangular plate and the size of cells used in dis-
cretization that relate to the number of unknowns. The
preconditioning method is not used in the evaluations
in this paper. The validity of numerical values obtained
and used in the evaluations has been confirmed by the
optical theorem.

2. Volume Integral Equation

The outline of the volume integral equation used in
this paper and the system of linear equation obtained
by applying the moment-method to the volume integral
equation are shown as follows (" ®);

Electric-Field Integral Equation (EFIE) is given by

E(r) = E'(r)
—Jwitg /V G.(r,7) - [e,(r") — 1 E(r")d/,
(1)

and we can obtain the three-dimensional volume inte-
gral equation expressed by the integration of principal
value by performing the analytical integration in the
finite-small region that contains singular point as
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E'(r) = —k2 /{/ Ge(r,r') - [e.(r") — 1| E(r")dv

+D.(r)E(r), (2)

where E(r) is the total electric-field, E'(r) is the
electric-field of incident wave and fv is the integration
of principal value. Coeflicient of kg and €, show the
wave number of free space and the relative permittivity
respectively, and De(r) is given by

The electric dyadic Green’s function Gg(r,r’) in
Eqgs.(1) and (2) is given by

: _ 1
Ge(r,) =1+ ﬁvv)g(rﬂ"'),
9

e~ dkolT =T

N —
g('r,'r)— 47T|7'—’l"/‘7

T = igiy + iy, + 4sis.

The volume of dielectric region V is divided into small
cubic cells as shown in Fig. 1, L is the number of small
cubic cells. We discretize Eq.(2) by using pulse function
as the basis function and delta function as the weight-
ing function (collocation method). In the discretiza-
tion by the pulse function and delta function, it is well-
known that accuracy of numerical results decrease in
some problems . However, we used this discretization
method in order to solve the large-scale scattering prob-
lems, because we can drastically reduce the computa-
tional memory of our PC. The validity of the numerical
calculation has been confirmed by the optical theorem.

As a result of this discretization, Eq.(2) has been ap-
proximated by a system of linear equations, which has
3L unknowns as

L 3

Ei(ry) = > ElZy
=1 k=1

('I’L = 152>3)p = 152)N L)7

where E’l’C is unknown coefficient, Zg}; is impedance ele-
ment, p is observation point, and n, k denote the factor
of x, y, z. The matrix equation (7) can be solved by an
appropriate iterative-method.

3.

Iterative Solution

The significant features of six well-known iterative-
methods evaluated in this paper are shown as follows.

There are some theoretical similarities between GM-
RES and GCR, since both iterative-methods are based
on the same minimal residual condition. So they show
‘the convergence characteristics that look alike well. Or-
thomin is an improved method as to the method of

EBYWA, 120%105, PR 13F
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Fig.1. The geometry of this problem. The dielec-
tric rectangular plate is divided into small cubic
cells.
Table 1. The variable range of parameters in this
problem.
koa = kob | kgc kod €r N
ex.1l 6.0 0.27 0.27 2.0,4.0,6.0,9.0 | 2700
ex.2 6.07 0.27 | 0.27/2 2.0,4.0,6.0 21600
ex.3 6.07 0.2m | 0.2%/3 2.0 72900
ex.4 12.0m 0.27 0.27 2.0 10800
ex.5 18.0m 0.27 0.27 2.0 24300
ex.6 24.0m 0.27 0.27 2.0 43200

keeping the orthogonal vector based on GCR.. Orthomin
breaks and discards the orthogonal vector per k time of
iterations, so it has the advantage in saving memory
compared with GCR. However, the orthogonal system
is broken by this manipulation, therefore the conver-
gence of the residual-norms is not guaranteed. In our
evaluation, 10 were used for the restart coefficient k.

The methods of CGS, Bi-CGSTAB and GPBi-CG are
distinguished by the coefficient used in the calculation
of appropriate solved vector. The method of CGS has
irregular convergence characteristic. The methods of
Bi-CGSTAB and GPBi-CG are improved methods for
the purpose of stable convergence.

In our numerical evaluation, the convergence charac-
teristics of these six well-known iterative-methods are
discussed.

4. Numerical Evaluation

4.1 Dielectric Rectangular Plate The geom-
etry of this problem is shown in Fig. 1. The dielec-
tric rectangular plate is divided into small cubic cells
as shown in Fig. 1. The electric vector in each small
cubic cell is assumed to be constant in our cases. Ta-
ble 1 summarizes the parameters of rectangular plates.
Parameters of kga and kgb show the size of rectangular
plates, we assume that kga=kob in this paper. Param-
eters of kgc shows the thickness, kqd shows the size of
small cubic cells, and €, show the relative permittivity
of rectangular plates.

The angle of incident waves in Fig. 1 is changed as
# =10,10,20,...,90 deg and ¢ = 0 deg, and it is calcu-
lated on two conditions of polarization i.e., TE and TM



Table 2. The average of errors depend on optical

theorem. (ex.1, e, = 2.0)

90

Iterative-method | Average of errors(%) 29:0 10.20.... error/10
GMRES 0.049740743469
GCR 0.049740743469
Orthomin 0.049740743460
CGS 0.049740743469
Bi-CGSTAB 0.049740743468
GPBi-CG 0.049740743468

waves. The condition of incident TE wave means that
the incident electric vector is parallel to the x-y plane
and that of incident TM wave means that the incident
magnetic vector is parallel to the x-y plane in Fig. 1.

In the problem in this paper, the impedance matrix
is symmetrical and dense, since all cubic cells have the
same volume.

4.2 Confirmation of Optical Theorem The
validity of numerical values is confirmed by using the
optical theorem. The optical theorem of this problem
is shown in Fig. 1, and it can be written as follows @2;

[ 6P = antne; P, e ()

where F'(r) represents the scattering coefficient and it
is given by

PG

F(r) b X X /‘/Jeq(r’)ejw/'dev’, (9)

and Jeq(r') is given by ‘
Jeq(’r'/) = jweO[ET(r/) - ”E(Tl)? """"" (10>

where ¢ is the permittivity of free space. In Eqs.(8) and
(9), ¢ = (po/€0)*’?, Sy is a spherical surface enclosed
scattering object, e is the complex conjugate vector of
incident electric-field, r is the direction vector of the
incident waves and %, denotes a unit radial vector of the
observation vector 7. '

The average of errors of optical theorem obtained by
various iterative methods is shown in Table 2 for the
case of ex.1 in Table 1 (& = 2.0). The average of errors
in Table 2 is defined as follows. We subtract the value
of the left hand side of Eq.(8) from that of the right
hand side of Eq.(8), divided the resultant subtraction
by the right hand side of Eq.(8) and we average the
results through 10 incident angles of 6.

From Table 2, we can confirm the validity of the code
used in this paper, since the results are almost the same
and the values are significantly small as shown in Table
2.

4.3 Evaluation of Iterative-Solutions The
dependence of the convergence characteristics of each
iterative-method on the relative permittivities is inves-
tigated. The dependence on the relative permittivi-
ties (e,) is shown in Figs. 2(a),(b),~(d) for the case
of ex.1 in Table 1. The abscissa represents the num-
ber of iterative operations and ordinate represents the
residual-norms. In Figs. 2(a),(b),~(d), each residual-
norm represents the worst case among them of § =
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Fig.2. The dependence on the relative permittiv-
ities of each iterative-method. (ex.1 in Table 1)
(a) e&r = 2.0, (b) & = 4.0, (¢) & = 6.0, (d) &, = 9.0

0,10,20,...,90 deg and ¢ = 0 deg in each iterative-
method.

Fig. 2(a) shows the characteristics in the case of
small number of unknowns and rather small relative
permittivity (e, = 2.0, N = 2700) as ex.l in Table
1. In Fig. 2(a), it is found that the methods based
on Lanczos process i.e., CGS, Bi-CGSTAB, GPBi-CG
converge about two times faster than those based on
Arnoldi process i.e., GMRES, GCR, Orthomin. The
convergence characteristic of CGS is irregular, and the
method Bi-CGSTAB and GPBi-CG are improved to be
stable compared with CGS in the convergence process.
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£r=90. N=2700
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12 . , .
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iterations
Fig.3. The dependence on the incident angles of 6

and the polarizations of incident waves by GMRES.
(ex.1 in Table 1, e, = 9.0)

The methods based on Arnoldi processi.e., GMRES and
GCR, show similar characteristics in the convergence
process. These characteristics agree well to the theory.
It is found that under the condition of small number of
unknowns and small relative permittivity, the conver-
gence characteristics of the methods based on Lanczos
process are superior to those based on Arnoldi process
in our numerical results.

Under the same condition as that used in Fig. 2(a),
the convergence characteristics are investigated by in-
creasing the relative permittivity from 4.0 to 9.0 in Figs.
2(b),(c) and (d).

From the results in Figs. 2(b),(c) and (d), it is found
that the convergence characteristics become worse in
the case of increasing the relative permittivity. Un-
der the condition that the relative permittivity becomes
larger than 4.0, the residual-norms of CGS are not con-
verged. In addition, under the condition that the rel-
ative permittivity becomes 9.0 and the number of un-
knowns becomes 2700, it can be seen that the residual-
norms of all methods except GMRES and GCR are not
converged within 1000 iterative operations. These re-
sults show the superiority of GMRES and GCR based
on Arnoldi process to solve the volume integral equa-
tion. Furthermore, the convergence of residual-norms
of GMRES is guaranteed theoretically in any condi-
tion Y. So, we conclude that GMRES is the most effec-
tive iterative-method for the volume integral equation,
and we concentrate our investigation on the convergence
characteristic of GMRES hereafter.

4.4 Evaluation of GMRES In the evaluation
of GMRES, we investigate the dependence of conver-
gence characteristic on the relative permittivity, the size
of rectangular plate, and the conditions of incident wave
i.e., polarization and incident angles.

Fig. 3 show the convergence characteristic under the
condition of ex.1 in Table 1, and the relative permittiv-
ity is given by 9.0. The incident angle of # is changed
as 0, 30, 60,90 deg.

From Fig.3, it is found that the residual-norms of TE
polarization are converged generally faster than TM po-

WA, 1215108, FRI13E
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Fig.4. The dependence on the numbers of un-
knowns and the relative permittivities by GMRES.

larization. In the case of § = 90, the residual-norms of
TM polarization shows rapid convergence.

Fig. 4 shows the dependence of the convergence char-
acteristic by GMRES on the relative permittivity (e;)
and the size of cubic cells (kod).

The sizes of the plates are the same as those of ex.1
in Table 1 (koa = kob = 6.0, kgc = 0.27). The con-
ditions of ex.2 and ex.3 are improved conditions in the
approximation of electric-field. Under the condition of
ex.2, the size of small cubic cells obtained by the dis-
cretization of dielectric region is a half of that used in
ex.1l (kod = 0.27/2), and under the condition of ex.3, it
is one third of that used in ex.1 (kod = 0.27/3). Each
residual-norm represents the worst case among them of
6 = 0,10,20,...,90 deg (¢ = 0 deg). When the size
of rectangular plate is maintained to be constant, it is
found that the number of iterative operations is mainly
affected by the relative permittivity, and it is not af-
fected by the number of unknowns from Fig. 4. There-
fore, under the condition of the small relative permit-
tivity, it is expected that we can solve the large-scale
problems that have large number of unknowns by rea-
sonable number of iterative operations when GMRES is
used.

Fig. 5 shows the dependence of the convergence char-
acteristic of GMRES on the size of rectangular plate
(koa, kob) under the conditions of ex.1, ex.4, ex.5 and
ex.6 in Table 1. The size of cubic cells and the rel-
ative permittivity are maintained to be same (kod =
0.2, ¢, = 2.0), therefore the number of unknowns (V)
is proportional to the volume of rectangular plate.

From Fig.5, it is found that the larger size of rect-
angular plate requires larger number of iterative opera-
tions. However, the increase of the number of iterative
operations required is not proportional to the volume
of rectangular plate i.e., the number of unknowns. For
example, we can expect that the number of iterative
operations increase only 2 times even if the volume of
rectangular plate is enlarged 16 times from Fig. 5.

Fig. 6 shows the computational time and the compu-
tational memory depend on the number of unknowns.
The computational memory represents the size of al-
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Fig.6. The computational time and the computa-
tional memory by GMRES.

location memory used per 1000 iterative operations of
GMRES. Since each component of impedance matrix
can be generated in each iterative process one by one in
our codes which use pulse function and point matching
(collocation) method, the memory for the impedance
matrix which requires O(N?) memory is not contained
in this calculation.

In Fig. 6, we used a Personal Computer (PC) which
have the Alpha21264 processor of 667MHz and 2GB
RAM on the board. The solid line and the dotted line
show the approximate functions of the computational
time and the computational memory. It is found that
both measured results obey to the approximate func-
tions well as shown in Fig. 6. These characteristics
are reasonable by considering theoretical basis of GM-
RES which requires O(N) memory and O(N?) opera-
tions. From these results, it can easily anticipate that
the maximum number of unknowns is about 130,000 and
that the computational time is about 3,000 seconds (50
minutes) per iterative operation when full-size memory
2GB RAM is used in this system. When we calculate
the large-scale problems by the volume integral equa-
tion with GMRES such as scattering of large-sized com-
plicated composite materials, we can understand that
the requirements for the computational environment are
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rather severe from above discussions. So, in order to
perform the calculation of the large-scale problems, we
must consider the methods of saving the computational
time and the computational memory in addition to the
investigation of improvement on the convergence char-
acteristic.

5. Conclusions

For the numerical calculation of the scattering prob-
lem by the volume integral equation, we investigated the
convergence characteristics of various iterative-methods
numerically. We adopted the pulse function and the
point matching (collocation) method in the discretiza-
tion of the problem. The iterative-methods of GM-
RES, GCR and Orthomin based on Arnoldi process,
and CGS, Bi-CGSTAB and GPBi-CG based on Lanc-
zos process were evaluated concretely. It was found that
GMRES is the most effective iterative-method in solv-
ing the problem by the volume integral equation under
reasonable and practical situations.

The evaluation of GMRES in detail was performed.
Maintaining the size of rectangular plates or the rela-
tive permittivities of rectangular plate to be same, we
have found that the convergence characteristic of the
residual-norms of GMRES is mainly affected by the rel-
ative permittivity and it is not affected by the number of
unknowns i.e., the larger relative permittivity requires
larger number of iterative operations. From the evalu-
ation of GMRES, the maximum number of unknowns
that can be treated by the conventional PC with on-
board memory is not sufficient in order to solve the prac-
tical large-scale scattering problems when GMRES is
adopted as the most effective iterative-method for solv-
ing the volume integral equation. So, we will investigate
how to solve the volume integral equation that improves
the computational time and the computational memory
hereafter.

(Manuscript received January 15, 2001, revised May
28, 2001)
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