Paper

Electromagnetic Field Analysis using a Parallel FDTD Algorithm in
Extremely Large Areas for Mobile Communication

Non-member Glen Rodriguez
Member Yasumitsu Miyazaki

(Toyohashi University of Technology)
(Toyohashi University of Technology)

This paper deals with the simulation of big problems using FDTD method. FDTD consumes a lot of
memory and computing time. Most research focuses on processing time, but memory is the first obstacle in
simulating big problems. The common FDTD equations are reformulated into a big system of linear equa-
tions. A new recursive algorithm is proposed for dealing with this problem, and the parallel version of the
algorithm is also introduced. Some numerical comparasions are done, and conclusions about the advantages

of the algorithm and the required improvements to make it practical.

Keywords: mobile communication, FDTD method, parallel processing, system of linear equations

1. Introduction

The growing use of wireless communications, espe-
cially cellular telephony, has created a new interest in
the study of the propagation and scattering of electro-
magnetic waves. This has driven the research about
the characteristics of wave propagation and scattering
in big areas. FDTD method should be convenient, but
it demands a great amount of memory and computer
time. Until now, work has been done to improve the
speed by using FDTD parallel algorithms, but no effort
has been made in being able to solve problems needing
more memory than available in parallel computer en-
viroments. This limit the size of problems FDTD can
deal with. This paper presents the initial research ac-
tually done regarding this matter. A big size FDTD
solver could allow the simulation of many interesting
behaviours in realistic size models. The main objective
is to solve the problem of the memory, by adding mem-
ory in different computers and lessening the amount of
memory needed.

2. Yee’s Formulation of FDTD

The Finite Difference Time Domain method (also
known as FDTD) is a computational method for solving
numerically different electromagnetic phenomena. It is
based in the Maxwell equations in differential format.
In linear, isotropic nondispersive materials (materials
with field independent, direction independent and fre-
quency independent properties) the simple constitutive
relationships can be used, obtaining:

oH
VXE__u_a_t_ (1)
JE
VXH_EE_{_UE. (2)

With a central difference, leap-frog scheme, the
FDTD formulation is obtained. The present research

Hx(i+1/2,j+1)

E2(i+1/2+1/2)

Ay| ¢ @ """"""""" * Hy(i+1,+1/2)
Y Hy(ij+1/2)

Hx(i+1/2,)
Ax
X

Fig.1. Fields in the 2-D, TM problem

deals with the 2-D case, which can be obtained from
the above mentioned equations. Assuming that there is
no variation in the geometry, the materials nor in the
electromagnetic excitation field in the z-direction, then
all partial derivatives with respect to z become zero.
This 2-D problem will use the TM formulation. The
Maxwell’s curl equations (1) and (2) would be converted
into the following (also see fig. (1)):

0H, 10E,

ot pu oy 3
0H, 10E.

ot Oz ‘ “)
0B, _ 1 0H, 0OH, OB, ceeenrene (5)

ot ¢ Oz Oy

The standard formulation of the Yee algorithm for
this case is:

T. IEE Japan, Vol. 121-C, No. 12, 2001

Analysis Using Parallel FDTD Algorithm in Large Areas

= G ot et Bl

At/esw,A .i[ntl/2 _ pntl/2 =
1+cr_2.i,:;_kt Ag y+1/2,5) T y(z 1/2,5)
At/ez,],At'i[n+1/2 grtl/2] --- (6)
1+0_2=;;:.x;_k Ay @(i,j+1/2) w(w 1/2)
B = Hi’

Gionm) B)~ Elporym) oo (7)
Hyis) = i)+

(;Aifﬁ)wﬁ(iﬂ/w) - Ez"(i_l/z,j)] (8)

From this point, the constant coefficients of these
equations will be defined as: C,, C, and C, are the
coefficients in eq. (6), D, is the coefficient in eq. (7)
and D, is the coefficient in eq. (8). These constant co-
efficients only depend on the material m in each cell, for
example: D,(m) =
material number m.

3. Reformulation as a Field System of Linear

Equations

The Yee’s formulation, with the appropiate modifica-
tions, can be expressed as a matricial equation. The
system is shown in eq. (9)-(11), X; is a vector with
all the variables E., H,, H, in time step i, and in most

_simulations Xy = 0. The coefficient matrix A can be
expressed as a block banded matrix with two block com-
ponents, matrix I and the sparse matrix A;, see eq.(3),
and the constants’ matrix b consist of small matrices ¢;

where ¢; = [0,0, ..., fx(iAz),...,0]', 0 < i < T, f is the
E. field in the emitter k at time step 1.
X = [H:c 1,1,t5 Hy 1,1,t) E, 1,1,k «=3 Ezp,q,t]l ' (9)
Let be A, fixed matrix = X;41 = 4:X; -- (10)

Equation (10) shows the well proven fact that, with
the exception of the boundary conditions, all the vari-
ables H;, H, and E, of time step t+1 are dependant
only of the variables of time step t. And the set of op-
erations that is done from one time step to the next
always is the same, represented by the multiplication to
matrix A. If the eq. (10) is expressed for all t=0,1,...T-1,
we get a serie of operations X; = A; Xy, X,

» X7 = A1 X1_1, that can be expressed as a system
of linear equations:

AX g b Where (11
I 0 0 0
~A; T 0 0
A= L (12)
‘ 0 0 I 0
0 0 -A I
TBHMC, 1214128, FHI3F

wm)Ae ,ﬁtAw if the material in the cell is

= A1 Xy,

1827

X1
X
X7
X

&
o2
11
or

In eq.(9), p is the number of cells in the x direc-
tion, and q is the number of cells in the y direction.
In eq.(11), T is the number of time steps through the
simulation, and ¢; = A1 Xp.

If we use the equations (7) and (8), matrix A would
not be triangular, and that would mean a process of
factorization should be necessary. To avoid these bur-
den, we must change both eq. (7) and (8) in order to
get a triangular matrix. For cells that are not in the
boundaries of the simulation domain, we substitute the
values of the various E7*! using eq.(6), and then eq.(7)
and (8) become as eq. (15),(16). Where m; is the ma-
terial of cell (i,j), m is the material of cell (i,j-1) and
ms is the material of cell (i-1,j). In the case of cells near
a boundary, the application of the 1st order Mur ABC
generates 13 other equations of the same type 9.

HI(6,§) = H2 (6, §) — Dy (my)[Ca(ma) B2)
+C(ma) (HJ (i + 1,9) — H} G, 5))
Gy (ma)(H2 (6,5 + 1) — H2(G, 1))
—~Ca(ma) B2, j - 1)
~Colma)(HJ (i + 1,5 — 1) — H2(i,j — 1))
+Cy(ma) (H2(6,5) = H2 (i, — 1)) -+ (15)
HJ(6,5) = H} (6, 3) — Da (1) [Ca(ma) B2, 5)
+C(ma) (HJ (i + 1,9) — HI G,)
Gy (ma)(HZ (5,3 + 1) — H2(i,)
~Ca(me) B2(i — 1,5)
~C.(mg) (HJ (6,5) — HE(i — 1,))

+Cy(me)(H (i — 1,7 +1) — H (i - 1,5))] (16)
The inclusion of point-source antennas in the grid is
done using the soft source approach. A soft source is
a superposition of the source waveform (in the electric
or magnetic components) with the fields existing in the
source region. Soft sources let propagating signals nat-
urally pass through the source region without abnormal
reflections. For example, if the signal is expressed as an

electric field, the equation for the component should be:
E7"(i,j) = Ca[E7(i,)]
+Cu[Hy (i + 1,5) — Hy (i, 5)]
—Cy[H2 (6,5 + 1) — H7 (i, 5)] + f(nA?) --- (17)

Where the function f is the signal expressed in the

same units as E (V/m), operating in this special point
(i,j). In this research, the antenna has been modeled as
a single point soft source. In our case, we will define
the source as a current Js,., so our function f becomes:

E’n = Tt = t{n/\t) = —_J._ (n/\f) -+-+++

src

f(t) = f(nAt) = %—t-.]src(nAt)

4. Algorithm of Field Analysis

As mentioned before, a problem with the parallel
FDTD using spatial partition is the inconvenience for
large problems because it has to communicate a lot of
data across processors at the same time. But the other
problem is the need for memory; this kind of paralleliza-
tion does not change the need of about 130 Gb of mem-
ory for a 2-D problem with size 100,000 x 100,000 cells
(120 Gb for components or field variables and around
10 Gb for material, boundary conditions, etc.). Even
using parallel processing and the memory in all proces-
sors, this amount is far from the possibilities of most
researchers. At the present time, most computers (PC
and workstations) normally have a 256 Mb memory,
and they can upgrade to 1 Gb, but it is very expensive.
That means we would need more than 100 very expen-
sive computers, or 10 high performance computers to
get the neccesary memory. The memory available in all
the facilities where our programs run, are only 18.5 Gb.

" After considering this, a different approach was cre-
~ ated, that is, the formulation of the FDTD method like
a huge system of linear equations. At first, it will be
explained as a sequential algorithm.

From this point, the unknown components of E and
H will be represented as x variables, and the following
notation is defined: z; ;. represents HZ(i,j) if ¢=0,
H;(i,j) if c=1 and E.(5,j) if c=2. Other notation
will be , which is equivalent to some =z ;;., where
L = (t — 1)(3pq) + 3qz + 3y + c; this formula has a in-
verse, that is, given some £, the values of t, x, y and ¢
can be calculated by division and modules. The equa-
tion solver deal with the second notation.

The sparse equations (the rows of A) are represented
by arrays, containing information about the column, the
row and the coefficient (value in A or any related ma-
trix). Some of these arrays are shown in fig. (2), where
the array ”column” stores the number of the column
associated with the ”coeflicient” inside the matrix, and
the array ”value” stores the value of the variable after
it is solved. These arrays are big and are stored across
the processors. The row and some auxiliar arrays are
smaller and do not require special storage. This special
method to store sparse matrizes does not keep any zero
(most of the elements of the matrix are zeros) but the
price is that the access to any element of the matrix is
not direct.

The substitution is carried from the equation for z, =
ZTiq,j0,co (Ereatest time step T), many times, changing
the original equation of the following type, where each
xy arethe equivalent to some variable z7_,; ;. and cj
are constant coefficients: ‘

1
21

=b}:

T +cizy + gy + ..t T

1828

processor 1 processor 2 processor P

(Y) e
INDEX 1 2 3 4 z-1| z
COLUMN sp(1)|sp(2) sp(3)|sp(4) i sp(2)
COEFFICIENT | (1)} ¢(2) | e(3) | c(4) c(z-1) e(2)
VALUE v(1) | v(2) |v(3) | v(4) v(z-1) v(2)

Fig.2. Sparse arrays in the algorithm

Into an equation of type:

2,2 2 .2 2
To+ L) + ry + ..+ Eyxl, = b

Where all 2 are variables of the kind z7_5; ; ., as ex-
plained. It must be noted that the number of terms in
the last equation is greater than in the first: zx41 > 2z.
This process is carried many times, until the equation
becomes:

T+l +cyry + ...+ xr =by

For some "n”, the size of the array (2, = 6n%+4n—1
for H, or Hy and 6n® — 2n — 1 for E,) representing
this equation becomes very large, and then we take the
variables z7_, ; ;. one by one, create a new array and
process this variable in the same way as we processed
z.. Each stage of processing is called a level, where
the stage processing z until getting all the TT—n,ijc 8
called level 1; the stage beginning with the processing
of any z}is level 2, and so on. Each level uses a distinct
array to represent the respective equations.

The algorithm is recursive in nature, that is, a pro-
cess that repeat itself. The pseudocode of the algorithm
called “solution” is as shown in fig. (3). The initial call
would use the parameters (T,i,j,c). The implementation
as a recursive program in most programming languages
(C, Fortran) is inefficient, so it was implemented as an
equivalent non-recursive algorithm controlled for many
conditions and counters, simulating the flow of the re-
cursion.

5. Parallel Algorithm of FDTD

5.1 Previous research and the most common
Parallel FDTD Most common parallelization is
achieved by spatial partition or decomposition. There is
a lot of research in this kind of parallelization (7~®. We
have also done experiments with 3D problems and spa-
tial parallelization, simulating the scattering of a small
sphere, and the table (1). shows the results in time and
speed-up. The 180° simulation was too big for only one
processor, so the speed up has been calculated respect
the speed using 4 processors and then multiplied by 4. It
was run using a network of workstations attached with
a LAN Ethernet 100 Mbps and the message passing li-
brary MPI (Message Passing Interface), over TCP/IP.
It can be observed that, for any number of processors,
there are some very small problems that need very few
computations and relatively more communication per

T.IEE Japan, Vol. 121-C, No. 12, 2001

Analysis Using Parallel FDTD Algorithm in Large Areas

Solution(t,i,j,c)

¥
[Initialize for time=t; , level=1 HT-t)n|

Generate equation for time=ts-n

n n

nn nn n
+ + +.ot =
X¥CyXy+CyX C ZlevelX Zlevel

171 7272 b

Compute i'j',c” where x; i c-=x] |,

PartialSolution= PartialSolution=0
Solution(tg-n,i',j’,c")

¥ v

Solution=Solution+
PartialSolution

" T<Zlever—

NO
[Return Solution|

Fig.3. Flowchart of the recursive algorithm

time step. These problems have a very bad speed-up.
There is also a range of medium size problems, and they
have a good speed-up. Finally, there are relatively big
problems where again the speed-up is not good, because
each time step all processors try to transfer and to re-
ceive a huge amount of data almost at the same time;
this causes a busy network, collision of IP packets and
slowdowns in the process.

From this data, it can be shown that the most
common parallel FDTD method used until now can
not scale conveniently for large problems in a network
of workstations using a slow network as the ethernet
100Mbps. For better networks (for example, Myrinet)
better speed-up for big problems should be expected.
So, a secondary objective should be to improve the scal-
ing and, if possible, the processing time.

There are super-linear speed-up but also very poor
speed-up. We think that the better explanations for
these unexpected results are:

(1) Virtual memory access when running in only
one processor, because the problem with 1443
cells (more than 71 Mb) is big for a worksta-
tion with 128 Mb of physical memory. Generally,
the free physical memory after the loading of the
operating system and other basic software is be-
tween 50 and 60 Mb in this workstation. But
when the work is distributed among 4 or more
processors, virtual memory is not required.

For the small problem of 60° cells, we suspect
that there is cache miss because the memory re-
quired is 5.1 Mb. In only one processor, the data
cache size available is only 1 Mb and the RAM
should be accessed 6 times by time step. But the
group of four processors has to store only 1.3 Mb

(2)

C, 121% 128, F134F

1829

per processor, and it has to access the RAM only
2 times by time step.

(3) For small problems but more processors (603
cells and 16 processors), the speed up is worse
because the ratio computation/communication is
low.

(4) For the bigger problem, the cause of the poor
speed up appears to be the network. The speed of
the networks is 100 Mbps, and when he problem
is big (180% cells = 139.9 Gb) and we use 16 pro-
cessors, the amount of data being interchanged
between one processor and the surrounding pro-
cessors is 6 x 4 x (4 x 45 x 90+ 2 x 90 x 90)=777.6
Kb. That is, a total of 12 Mbytes = 96 Mbits is
interchanged per time step. This generates can
create a bottleneck in the network, but packet
collisions, timeouts, etc.

Table 1. Results for spatial-parallel FDTD
(*) Estimated using 4 processors’ time
16 cpu 12 cpu 4 cpu
Size Time | Speedup | Time | Speedup | Time | Speedup
180% | 1hlim *3.67 | 1h34m *2.76 | 1h5m n/a
144% | 25.8m 18.20 | 12.9m . 36.56 | 32.2m 14.61
60° 4.6m 4.60 | 1.32m 16.16 | 2.96m 7.20

5.2 Parallel FDTD solving the big System of
Linear Equations The parallelization is done by
distributing the variables in the sparse arrays between
the different processors. Each processor stores one sub-
set of variables, as shown in fig. (2). As the solution of
the system of equations progresses, the eq. (21) for solv-
ing variable z; can be expressed as eq. (22), with p=
number of processors, where the each small summation
inside of the big summation is performed by a separate
processor, and later the parallel program gathers all the
partial additions.

wr = (o + GTF + o+ €8) + b

Zn
=- E crxy + constant
k=1 ‘

»
p Zn

- c’,’:m}: + constant
2 (> ciai)

r=1 k=1

The solution process and the point when the paral-
lelization is done is shown in fig. (4), where the verti-
cal axis is the time, and the initial process is to solve
the value of x4, ; ; .; as it is shown, after n time steps,
the solution is broken down into the solution of many
other variables z, ; ;., where t, = t;, — n, and at this
point the distribution of variables begins. The commu-
nication between processors is low compared with the
common parallelization of the FDTD method. For this
parallelization to be effective, it is better to distribute
the work load proportionally to the speed of each pro-
cessors. This is an important advantage of this method
when used in Network of Workstations, where not all
the processors are the same type. If the speed of each
processor is S;, for 1 < ¢ < p, then each processor should
be in charge of approximately:

S; .
=5 5 Zlevel Variables

Each processor has the information about the speed of
all the processors in the parallel environment. Then, for
any summation, they can calculate the lower and upper
index of their respective sub-summation. Finally, the
master processor gets the partial summations and hav-
ing the constant being calculated beforehand, gives the
solution for z ..

Variable required at (i, j, tb)
. ¢

t normal
solution
of the
| inear
equations

\ ta<to
X

recursive
solution

t=0 /
Fig.4. Parallelization and partition of the data

This algorithm has been improved using some tech-
niques in order to avoid repeating some calculations, by
storing some results from one step of the calculations in
one level to the next calculation of the same level, and
copying these results instead of recalculating them. For
example, in solving the variable z.; = ET(i,5), and
after that, the variable z;o = ET(i,j + 1), for some
time step 7' >> 1, using our algorithm with a number
of time steps calculated at each level n=100, it would
be necessary to run the recursive solution at first for
many variables, around 6 x 10* for each z., but all
these variables are the same except around 400. The
improvement has been to store the values of the com-
mon variables of z; with x5, then from z 3 with z .3,
etc. Some improvement has been achieved, but yet,
this algorithm is slower than normal FDTD. The goal
of further revisions of the algorithm is to improve the
processing time.

In our algorithm, the number of components of cells
of the FDTD simulation (the field variables) are not
changed, but not all the cells are calculated at the same
time and the algorithm reduces the memory for the
working variables. The algorithm can work without all
the 120 Gb of field variables, only with a subset of field
variables at different time steps. The algorithm only
needs to store data for no more than 6n? + 4n — 1 vari-
ables z per level, and the number of levels is T /n, where
T=greatest time step in the computation (that is, du-
ration of the time in the simulation). Each variable
is stored using sparse matrices techniques, and requires
basically 3 variables in the program, for column, co-
effcient and value (see fig. (2)). With single precision
floating-point variables, total basic memory use is in
the order of 24T'n. For simulations as large as 105 x 10°

cells, a reasonable duration of the simulated wave prop-

“agation should be 10° time steps. If each level computes

. ting a signal like eq. (26), f=950 MHz,

1830

n=>50 time steps, it should be necessary to have 20000
levels, and each level should be able to store a little bit
more than 4 x 3 x (6n? +4n — 1) = 182388 bytes. Mak-
ing some conservative approximations about the extra
variables, this 182388 bytes increase to 200 kb and this
algorithm needs:

Memory required = 20000 x 200 kb = 4 Gb (24)

For the small model of next section (100 x 100 cells),
normal FDTD requires 120 Kb of memory. Our algo-
rithm uses a level with n=30 time steps, with 1 level,
then we have 4 x 3 x (6n? +4n — 1) = 66228 bytes (plus
extra variables, around 70 kb) per level and:

Memory required = 1 x 70 kb = 70 kb

This amount of memory for the small model is
70/120=58.3% of the memory required by the com-
mon parallelization of the FDTD method, but it is only
4/130=3.08% of the memory for the big model of size
100,000 x 100,000. These amounts of memory are the
memory directly used by the algorithm, not the to-
tal memory needed in the computers, because there is
some amount of memory not available for computations
(OS memory, devices, daemons, services); not available
memory depends on the machine and OS configuration.
The principle in which this method is based is to “de-
crease something by increasing the computational band-
widt” (See (4),(11)). In other areas of numerical simu-
lation, this principle has been used to decrease the num-
ber of operations and the processing time by modifying
the algorithm, including a new process that reduces the
number of time steps or increases the time of the cell,
but that requieres some pre or post-processing. In our
case, this principle means that memory used can be re-
duced by a modification in the FDTD algorithm.

6. Numerical Field Results

For the simulation of electromagnetic propagation, we
assumed an source antenna as a point source, with a si-
nusoidal current in the z direction as follows:

i,n __ Tt
Jz’ - J mazx

sin2m ft; for t < tmae

where t is the time elapsed, J?,,, is the amplitude
and f is frequency. The current stops after some t,,4, =
30At. The parameters are:

¢ Frequency of source : 850 or 950 MHz

e Cell size, é: 0.02 m

e Time increment At: 37.7 ps

¢ Relative permittivity(building): 3.0

e Conductivity of building, o: 0.005 S/m

o Current amplitude: 1000.0 A/m

¢ Pulse duration: 1.81 ns (for Gaussian pulse only)

To test the correctness of out algorithm, we simu-
lated a small 2-D problem, as shown in fig. (5), with
propagation from the antenna at point (20,50) emit-
Ji e = 1000,
tmaez=30At=1.131ns, and a block of concrete in the cen-
ter. The objective for the continuation of this research

T.IEE Japan, Vol. 121-C, No. 12, 2001

Analysis Using Parallel FDTD Algorithm in Large Areas

is to simulate big models like shown in fig. (6), with
the same parameters as the small one, the same kind
of dielectric (concrete) and rectangular shapes. But for
doing this, further improvements must be made in the
algorithm.

A Iy
35 cells
» Antenna
= (50,20)
8 x 30 cells
o
o
35 cells 30 cells 35 cells
‘ 35 cells
Y y
¢

100 cells
Fig.5. Small model

The distribution of buildings in the medium and big
models was chosen in order to compare with results in
(2). The buildings are hollow structures, the walls have
a thickness of 25 cm. and the inside is free space. Only
the medium size problem has been similated in that pa-
per, and the time it took to simulate it was about one
week, with the common, non-parallel FDTD. Those re-
sults can be used as reference. ‘

The propagation of the wave by the small cube made
of concrete is shown from fig. (7) to fig. (9) for differ-
ent times. The propagation through the concrete at a
different speed is shown in all these figures, and the re-
flections are more notorious at time=60At=2.262ns. In
fig. (10), the normal, sequential, FDTD method is com-
pared side by side, showing that there are very good
agreement between both results.

7. Conclusion and future directions

We have introduced a new parallel 2D FDTD algo-
rithm for the simulation of big areas, beginning with
the mathematical foundations of our algorithm and the
parallel solution of huge sparse systems of linear equa-
tions. It is important to remark that our algorithm,
from the point of view of the formulas, is exactly equiv-
alent to the Yee formulation, but expressed in matricial
way and with an aditional process to change the matrix
into a triangular one. The algorithm allows us to define
soft sources of the emmiting antenna.

The main advantage of this algorithm is that it needs
less memory than the normal parallel FDTD algorithm,
only 3% of memory. It is very convenient for parallel en-
vironments with different kinds of processors, because
the load balancing is very simple and effective, while
the normal FDTD algorithm generally must divide the
simulation in similar domains, being more restricted to

TEFMC, 12158128, FR13E

1831

A Buidings. T m
16 m
Rx :
Antennax X xRx2 :14m
116 m
80 m I
Antenna x Rx3 x 14 m
A
545.10] X 16 m
< Bla Sia <>
2m iq =~ £ 2m
! 18m Z 18m = 18m
80m
Model (a)
A [Buidings' Y om
R>)<(2 R>)£4170m
Rx1 RX
Antenna X X - x 20 m
170 m
630 m I
Antenna X v20m
Y
R 170 m
E 40m
\ 4 4Om170m 170mR 170 m

b

630 m. <

Model (b)

Fig.6. (a) Medium and (b) Big urban area models

Ex (V/n)

4. 160 to 200
120 to 160
B0 to 120
40 to 80
0 to 40
40 to 0
~80 to -40
-120 to -80
-160 to -120
-200 to -180

p
e
158
£
oA
el

Fig.7. E, in time=30At=1.131ns

a completely homogeneous systems, with the same pro-
cessor speed and memory. Our method has been vali-
dated against a small model; the behaviour of the wave
corresponds to the expected, and the results are also

(¥/n)

200+

154 to 200
108 to 154
82 to 108

16 to 62

-30 to 18
-78 to -30
-122 to -78
-168 to -122
-214 to -188
-260 to -214
-306 to -260

vy s
UE s,

i

10 20 30 40 50 60 X

Fig.8. E. in time=45At=1.6965ns

Ez (V/a)
220+
180 to 220
1 140 to 180
100 o 140
60 to 100
20 to 60
-20 to 20
—60 to -20
-100 to —60
-140 to -100
-180 to -140
-220 to -180

" Dielectric

70 X

Fig.9. E. in time=60At=2.262ns

Y

B (V/m}
204
180 to 220

1 140 to 180
100 to 140
60 to 100
20 to 60
-20 to 20
60 to -20
~100 to 60
~140 to ~100]
~120 to -140|
-220 to -180

i Concrate

L I O B . ™ w4 om e X

”

Normal FDTD Parallel FDTD

Fig.10. Comparison for E, in time t=2.262ns

consistent when they are compared to a sequential, nor-
mal FDTD simulation.

The main disavantage of our method is the time it
takes for practical values of T. That is, the processing
time grows (apparently) in an exponential way with the
duration T of the simulation. This increased process-
ing time is in exchange for saving memory, because the
algorithm does not store all the data it computes per-

1832

manently; instead it stores it and later must discard it
to make space for other data, but some data already
calculated is needed some time after it was discarded.
Another reason for the slowness is the binary search it
executes as part of the operations in a storage struc-
ture for sparse arrays. Some steps have been taken to
address this problem, but have not been enough. That
is the reason for not presenting simulation of medium
or big areas. More research will be done in the future
to cope with this problem. There are some promising
alternatives like the hybridization of the normal FDTD
method inside of the process that solves the linear equa-
tion, or the factorization of the matrix A in many sim-
pler matrices.

(Manuscript received March 26, 2001, revised August
16, 2001)

References

(1) K.S.Yee, ”Numerical Solution of initial boundary value prob-
lems involving Maxwell’s equations in isotropic media”, IEEE
Trans. Ant. & ‘Prop., Vol.14 N.4, 1966, pp.302-307
P.Selormey, Y.Miyazaki,” Electromagnetic Interference Char-
acteristics by Group of Buildings in High-speed Mobile Com-
munication” EMCJ99, 1999, pp. 71-78.

G.Rodriguez, Y.Miyazaki, ” Analysis of Electromagnetic Scat-
tering in Large Areas using a Parallel FDTD method”, Proc.
2000 Japan-China Joint Meeting on Optical Fiber Science and
Electromagnetic Theory, OFSET 2000, Dec.2000, pp.163-166
A.Fijany, M.Jensen and others, ” A massive Parallel Compu-
tation Strategy for FDTD”, IEEE Trans. Ant. & Prop. Vol.43
N.12, Dec.1995, pp.1441-1449

M.Osano, K.Nakajima, M.Tanimoto, "A Partially Solving
Method (PSM): A new efficient method for a large system
of linear equations”, Bulletin of the Electrotechnical Labora-
tory, Vol.60, No.2, Feb.1996, pp.93—101.

K.Morgan, P.Brookes et al, ”Parallel processing for the sim-
ulation of problems involving scattering of electromagnetic
waves”, comput. Methods Appl. Mech. Engrg. 152, 1998,
pp.157-174 :

D.Rodohan et al, ”A Distributed Implementation of the Fi-
nite Difference Time-Domain (FDTD) Method”, Int. Journal
of Numerical modelling: Electronic Networks,
Fields, Vol.8, 1995, pp.283-291

U.Anderson, "Parallelization of a 3D FD-TD code”, Proc. 4th
International Workshop of Applied and Parallel Comp. ’98,
LNCS pp.12-19, 1998

Z.Liu et al, "Techniques for Implementation of the FDTD
Method on a CM-5 Parallel Computer”, IEEE Ant. & Prop.
Magazine, Vol.37 N.5, Oct.1995, pp.64-71

G.Mur, ”Absorving boundary conditions for the finite-
difference approximation of the time-domain electromagnetic
field equations”, IEEE Trans. Electromagnetic Compatibility,
Vol.23 N.4, Nov.1981, pp.377-382

E.Miller, "Solving bigger problems- By Decreasing the oper-
ation count and Increasing the Computational Bandwidth”,
Proceedings of the IEEE, Vol.79, No.10, Oct.1991, pp.1493—
1504 .

(2)

(3)

(4)
(5)
(6)
(7)

Devices and

(8)
(9)

(10)

(1)

T. IEE Japan, Vol. 121-C, No. 12, 2001

Analysis Using Parallel FDTD Algorithm in Large Areas

Glen Rodriguez (Non-member) Was born in Lima, Peru,
on March 27, 1974. He received the B.Sc.
degree in Systems Engineering from National
University of Engineering, Peru, in 1994, and
the M.E. degree in Information and Computer
Science Engineering from Toyohashi Univer-
sity of Technology in 2001. His research inter-
est are Parallel Processing, Mobile Communi-
cation and Electromagnetic Waves Propaga-
tion and Scattering.

Yasumitsu Miyazaki (Member) Was born in Nagoya,
Japan, on February 4, 1941. He received the
B.E. M.E. and D.E. degrees in Electronic En-
gineering from Nagoya University, Nagoya, in
1963, 1965 and 1969, respectively. He has
engaged in research in the field of electro-
magnetic waves including waves in milimeter
waveguides, optical fibers, integrated optics,
electromagnetic scattering and difraction. He
also studies biological phenomena of electro-
magnetic fields and optical neural computing. He is presently Pro-
fessor of the Department of Information Engineering, Toyohashi
University of Technology, since 1981. From January 1973 to Jan-
uary 1975, he stayed in Institute of High Frequency-Technics,
Technical University of Braunschweig, West Germany, and en-
gaged in research on electromagnetic fields for optical communi-
cations. In 1996, he was a guest Professor in IHFT of Technical
University of Berlin, Germany. He received Yonezawa Memorial
Paper award in 1970. He is a member of IEEE, IEE of Japan,
Japanese Society of Medical Electronics and Biological Engineer-
ing and the Japan Society of Applied Physics.

BEWC, 1215125, FHI3HF

1833

