Paper

Overlapped Multi-Neural-Network and Its Training Algorithm

Member
Member

Jinglu HU ‘
Kotaro HIRASAWA

Non-member Qingyu Xiong

(Kyushu University)
(Kyushu University)
(Kyushu University)

This paper presents an overlapped multi-neural-network (OMNN). An OMNN consists of two parts: main

part and partitioning part. The main part, structurally, is the same as an ordinary feedforward neural net-
work, but it is considered as one consisting of several subnets. All subnets have the same input-output units,
but some different hidden units. The partitioning part divides input space into several parts, each of which
is associated with one subnet. An improved random search algorithm called RasID is introduced to train
the OMNN. Numerical simulations show that such an OMNN has superior performance in that it has better
presentation ability than an ordinary neural network and better generalization ability than a non-overlapped

multi-neural-network.

Keywords: Neural networks, multiple models, overlap, brain-like model, random search

1. Introduction

In an ordinary neural network, individual units do not
have any special relations with the input patterns. How-
ever, according to recent knowledge of brain science, it
is suggested that there exists function localization in
a human brain, which means that specific neurons are
activated corresponding to certain sorts of sensory in-
formation the brain receives (. Therefore, a brain-like
neural network should have the capabilities of function
localization as well as learning. Such a brain-like model
may be more efficient because its individual units are
mainly used to remember certain input patterns. To
obtain such a brain-like model, the main problem is
how to guide a training algorithm to realize the function
. localization. Learning Petri Network is a brain-like
model. However, it is rather difficult to train it, further
study is needed. :

In this paper, we consider a simple implementation
of such brain-like model by using a so called overlapped
multi-neural-network (OMNN). An OMNN consists of
two parts: main part and partitioning part. The main
part, structurally, is the same as an ordinary feedfor-
ward neural network; but it is considered as one consist-
ing of a class of subnets; all the subnets have the same
input-output units but some different hidden units. The
partitioning part divides input space into several parts,
each of which is associated with one subnet. Various
clustering or classification methods and algorithm may
be used to implement the partitioning part. As an ex-
ample, we use a competitive network that has the same
number of outputs as the number of parts of the in-
put space divided. Each output of competitive network
represents one input space part. For an input pattern,
only one of competitive network outputs gives 1, and
only nodes of the subnet associated with this output
are fired, while all other nodes remain inactive. This

EBHHC, 1215125, FRI3E

1949

realizes function localization of OMNN.

On the other hand, viewed from a viewpoint of multi-
ple network, the main part of OMNN is a multiple net-
work with overlapped units; when the number of over-
lapped units is zero, it becomes an ordinary multiple
network, while it is an ordinary feedforward neural net-
work when the number of overlapped units is equal to
the total hidden units. In this sense, an OMNN can be
seen as a learning network between an ordinary feed-
forward neural network and an ordinary multiple net-
work. Figure 1 shows an image of such relationship.
Moreover, it is well-known that multimodel approach is
based on a divide-and-conquer strategy ® . The bias-
variance trade-off is an important issue for the divide-
and-conquer strategy. In general, dividing the training
data set into subsets for process identification tends to
increase the variance and decrease the bias. In mul-
timodel approach, soft or fuzzy splits of data are of-
ten used to ease the bias-variance dilemma ® ., In
the OMNN, the overlap of units between subnets is ex-
pected to have the same functions.

Backpropagation (BP) is the most popular algorithm
to train an ordinary neural network. However, it has
been found that it is difficult to apply a BP to train
efficiently our OMNN, especially for batch training, be-
cause in an OMNN different input patterns correspond
to different subnets. To get around this difficulty, we in-
troduce a random search algorithm called RasID. RasID
is first presented in Refs. (7) (8), but in this paper we
have made some modifications to the RasID so as to
improve its efficiency. :

This paper is organized as follows: Section 2 intro-
duces the overlapped multi-neural-network; Section 3
describes the training algorithm; Section 4 carries out
some numerical simulations; Section 5 gives some dis-
cussions on OMNN; Finally Section 6 presents conclu-
sions.

two neural nets

AY
\ overlapBeii neural net »
/// ""*---.\

[
|
[
[
[
[
[
[
[
[
[
I
\ main part of / :
[
[
[
|
|
|
|
!
i
|
|

Fig.1. Multiple network, overlapped-multi-network
and ordinary feedforward network

Fig.2. An OMNN consisting of two parts: main
part and partitioning part. !

2. Overlapped Multi-Neural-Network

An OMNN has the capabilities of both learning and
function localization. As shown in Fig.2, it consists of
two parts: main part and partitioning part. The main
part realizes the capability of learning and the parti-
tioning part classifies the input space so as to realize
the capability of function localization.

2.1 Partitioning Part The role of this part is
partitioning of operating region. Let us consider prob-
lems such as system identification and pattern recogni-
tion. The operating region is defined as Z. An oper-
ating point z € Z is a vector of variables. The operat-
ing region is partitioned into M operating regimes Z;
(1 =1,..., M) which is a subset of Z, on the basis of cer-
tain prior knowledge. The input and output vectors of

the model are called & and y and consist of n and m dif-
ferent variables respectively, where & = [z 22 ... z,,] and
Y = [Y1Y2-...Ym]. Various clustering or classification
methods and algorithms may be used for the partition-
ing, see e.g., (3) (9). But in our OMNN, we also use neu-
ral networks for this part. Candidates are the networks
of competitive learning and self-organizing maps *® ¢,
In our simulations, we simply use competitive learning
network.

As shown in the lower part of Fig.2, the competitive
learning network has one layer of input neurons and
one layer of output neurons. An input pattern z is
a sample point in the n-dimensional real vector space.
Binary-valued (1 or 0) local representations are used for
the output nodes. That is, there are as many output
neurons as the number of classes (M) and each output
node represents a pattern category. The network serves
the important role of selecting winner, via a competi-
tive learning process, highlighting the “winner-take-all”
schema. That is, the output unit receiving the largest
input is assigned a value of 1, whereas all other units
are suppressed to a 0 value.

2.2 Main Part The main part, structurally, is

- an ordinary feedforward multi-layer neural network, but

it is considered to consist of M overlapped subnets. If
we denote the set of input units by Z, the set of out-
put units by O and the set of ith hidden layer units by
N; (i =1,2,...), then the jth subnet can be described
by {Z, S1;, S2j, ... , O} where the set of ith hidden
layer units, S;;, is a subset of A;. That is, S;; C N
(j =1,2,...,M). These M subnets are associated with
the M operating regimes. For the input and output
vectors {x, y} of operating regime Z;, only the units
corresponding to the jth subnet of OMNN are active,
while all other units are inactive and have zero output.
The sets of hidden layer units of subnets, S;;, are deter-
mined based on the prior knowledge used in operating
region partition such that all hidden layer units avail-
able in the sets N; are used in subsets S;;.

There are several parameters to be determined: the
number of subnets; the number of hidden units for each
subnet; the number of hidden units that overlap or the
number of total hidden units. The values of these pa-
rameters are certainly problem depended. However,
how to determine them is still left as an open prob-
lem. Only some heuristic results are available, further
research is needed.

(1) The number of subnets. It is equal to the number of
parts of input space divided. In many cases, prior
knowledge is available for determining the number
of input space to be divided. According to our ex-
prience on several classification and system identi-
fication problems when there is no prior knowledge
available, dividing the input space into 4 to 6 parts
gives better results.

(2) The number of hidden units for each subnet. This
depends on the complexity of each part of input
space. When no prior knowledge is available, the
same number may be used for all subnets. It is
found that when the number of hidden units for

T.1EE Japan, Vol. 121-C, No. 12, 2001

HELZ N EETLYAFEB R Y b

competitive network

Fig.3. An example of OMNN showing the rela-
tionship between partitioning part and main part.

2

each subnet is equal to % to 3 of the total number
of hidden units, OMNN gives better results.

(3) The number of hidden units that overlap. This is
rather difficult to determine. It seems that it is eas-
ier to determine the total number of hidden units
first, then the number of hidden units that overlap
by assigning the number of hidden units for each
subnet based on the ‘% to %’ rule.

2.3 An Example Here we give a simple exam-
ple to show the relation between the partitioning part
and the main part in an OMNN. As shown in Fig.3, in
the example, the main part has 2 input units, 6 hidden
units and 1 output unit. It is divided into two subnets
with the same input-output units; the first subnet con-
tains the 1st to 4th hidden units, and the second subnet
contains the 3rd to 6th hidden units. The partitioning
part is a competitive network containing two output
units. It divides the input space into two parts. The
outputs of the competitive network control the firing of
the hidden units of main part. When an input set from
the 1st part of input space appears, the competitive net-
work gives O; = 1 and Oy = 0. This fires hidden units
1 to 4, while hidden units 5 and 6 contribute 0 to the
output of OMNN. When an input set is from the 2nd
part, then only hidden units 3 to 6 are fired, and hidden
units 1 and 2 will kept inactive. From this example, it
is clear that OMNN has not only learning capability,
but also function localization capability.

2.4 OMNN Training OMNN training consists
of two steps: the training of partitioning part and the
training of main part. The former usually must be done
before carrying out the latter training. In this paper,
a competitive network is used as partitioning part. A
competitive learning algorithm is therefore used for the
training. In our simulations, we simply use the com-
petitive learning algorithm provided by Matlab Neural
network toolbox “*. We here only discuss training of
the main part.

The main part, structurally, is a feedforward neural

network. Similar to ordinary neural network training, .

the training of the main part of OMNN is formulated
as a nonlinear optimization defined by

BEHC, 12145125, PR 13E

1951

© = argmin{£},

where E is the criterion function, © is the parameter
vector and W-denotes a compact region of parameter
vector space. Let ¢ is the OMNN output corresponding
to the input vector . Then the criterion function E is
defined by

E=Y (ly@) - 9@l).

i€D

where D is the set of training data.

In neural network literature, back propagation (BP)
algorithm is the most popular one for network training.
However, such a popular BP algorithm is not easy to
be applied to solve (1) efficiently, especially for batch
training. The reason is that the input vectors from dif-
ferent operating regimes correspond to different subnets
of OMNN, hence different gradient computations. To
get around this difficulty, we shall develop a modified
random search algorithm for OMNN training.

3. Training Algorithm

3.1 Basic Structure of Algorithm The ran-
dom search algorithm is modified from an ordinary ran-
dom search method ®® @Y and was first presented in
Refs (7) (8). But some improvements have been made
to increase its efficiency.

Let ©(k) = [A(k),...,N(k),..]* be the param-
eter vector ©® € W given the value of the k-th
search, and A©(k) be the random vector AG(k)
[AX1(K), ..., AN(K),...]T generated based on a proba-
bility density functions (PDFs) after the k-th search.
Then the random' search algorithm can be described as
follows.

Step 1: Choose an initial value ©(0) € W, calculate

E(©(0)) and set k = 0;

Step 2: Generate a random search vector AG(k). If
O(k) + AO(k) ¢ W, then let ©(k + 1) = ©(k) and
go to Step 3, else

e calculate E(O(k) + AO(k)). If E(O(k) +
AO(k)) < E(6(k)), the current search is said
to be success and then set y(*) = 1 and
Ok +1) = O(k) + AO(k), else

ecalculate E(O(k) — AO(k)). I E(6(k) —
AB(k)) < E(O(k)), the current search is said
to be success too and then set y*) = 1 and
Ok + 1) = O(k) — ABO(k), otherwise '

o the search is said to be failure and then set
y*) =0 and

]T

(k) If kf. > ker
and k_. > ker
If bt < ko

If kX >k,

Ok+1D =1 o)+ a6k

O(k) — AO(k)

where ke, > 1 is the maximum error ratio, k7,

and k_, are defined by
E(O(k) + AO(k))

kd =

7T Bem)
L _ Ber) - 26()
S IO

Step 3: Stop if pre-specified conditions are met, else
set k =k + 1 and go to Step 2.

3.2 Strategy-for Generating A)\; In a con-
ventional random search algorithm, A); is usually gen-
erated by using a Gaussian probability density function
(PDF). It is reported that the search efficiency is im-
proved by tuning the average and dispersion of Gaussian
PDF &2 0% However, it is found that the improvement
is very limited since the range of tuning the average and
dispersion of Gaussian PDF can not be very large ® 09,

To solve this problem, in the modified random search
algorithm we introduce a new sophisticated PDF that
is more tunable, and then develop a scheme tuning the
PDF so as to improve searching efficiency of the algo-
rithm by controlling the searching range and directions
using local information.)

3.2.1 New Sophisticated PDF
is defined by

The new PDF

(1 — q)BePion
e N

If AN <0

f(A)‘l):{ If AN\ >0 (3)

where ¢; € [0,1] and §; are two adjustable parameters.
It follows that a random search variable A); is gener-
ated by

FO0<z<1—gq
A (Hl) If1—q <z<1.0

where z;’s are random values uniformly distributed be-
tween 0 and 1.

As shown in Fig.4, the parameter 3; can be used. to
control the local search range (the variahce of search
variable A;). The larger the §; is, the smaller the local
search range will be. On the other hand, the param-
eter ¢ can be used to control the search probability
in positive or negative direction. The larger the g; is,
the higher the search probability in positive direction is.
Typically, when ¢; = 0.5 there is the same search prob-
ability in positive direction and in negative direction.
In this way, we are able to realize an efficient searching
in network training by determining the parameters 3
and g; based on the past success-failure information.

3.2.2 Adaptively Determining 3; (; controls
the search range; the smaller §; is, the higher the pos-
sibility to generate a large random search variable. In
the algorithm £ is determined by the following heuristic
rule

Br=8+ (8- 5) e~ ®lar (5)

where [is a constant, and By, ¢ and I, ¢ are three ad-
justable indexes.

@ Generally speaking, parameter A; (I = 1,2,...) have
different scales and hence need different tuning sen-
sitivities. We use §; to determine the tuning sensi-
tivity of individual search variables. The larger the
B is, the smaller the tuning sensitivity will be. It is
clear that when a search fails in both positive and

t ran

AN

(1-4,) B, P q,p,e Bt

AN

Fig.4. New sophisticated probability density
function that is more tunable.

negative searching directions, the tuning sensitivity
in these directions should be reduced, otherwise, it
may be increased. Let us tune §; in the following

way

) Bi+silAn| i y® =0

Bi=12 Bi—saAN| if y® =1

- Bio . if k=pre-specified integers

where s;, sq4 are two coefficients assigned appropri-
ate positive numbers with s; > s4, and fj is ini-
tial value of f;. When no useful prior knowledge is
available, B9 = By is usually used, where Bo is an
appropriate value.

® In the area where it is possible to find a good so-
lution locally, an intensified search is performed.
Inspired by the scheme used in the evolution strat-
egy "9, the intensified search is performed with
keeping the success-failure ratio P, ¢, calculated in a
moving window, close to a pre-assigned value P, fof.
This is realized by fixing I,y and adapting ¢ in the
following way

Cigb If Psf > Pst and ¢ > d)min
b= ¢ If Poy = Pspo or ¢ < dmin

cd¢ If Psf<Psf0 and¢>¢min

¢o If k = pre-specified integers

where ¢; > 1.0, 0 < ¢4 < 1.0 are two coefficients
assigned appropriate values, ¢9 and ¢, are the
initial value and the minimum value of ¢, respec-
tively.

® When the intensified search finds the best solution
locally, the success-failure ratio Ps; becomes small.
Consequently ¢ is reduced to ¢ < ¢min. Then a
diversified search is carried out in order to escape
from the local minimum. This is realized by adjust-
ing I;5 heuristically in the following way

Ist If (gb > ¢min) or
(y(k) =1and Isy > Isfmax)
or k = pre-specified integers
I.sf - AIsfl If Z/(k) =1 and ¢ < ¢min
Ip+ Alpo I y® =0 and ¢ < ¢rin

fThe success-failure ration, Psy, is defined as Psy = Z—S where ng is

Iy =

the number of success in the past L searches, and ny the number of
failure.

1952 T. IEE Japan, Vol. 121-C, No. 12, 2001

HELZ N BETECLFEERAY b

where Igfo is the initial value of I¢, Alsp1, Algpo
are two appropriate positive values with Alyp <
Alspa. We can see from the above rule that I 5 is
fixed on the initial value I o during an intensified
searching period, while increases gradually in the
diversified search. When I > I, max and y<k) =1
becomes true, it is supposed that a prospective area
is found, then I,y is set to Is¢o and another inten-
sified search will be performed. In the above rules,
B, ¢ and I, ¢ are reset to their initial values periodi-
cally, which is introduced to increase the robustness
of algorithm. The period can be set to a rather large
integer, for instance, 50,000.

3.2.3 Adaptively Determining g The algo-
rithm can be greatly speeded up if the probability of
searching for prospective areas increases, especially in
the case where the searching space W is large. In
Ref. (14), this is realized to some extent by adapting
the mean of random search vector x based on the past
success-failure information. In our scheme, the same
function will be realized more efficiently by adapting
the parameter ¢;. Let us first give ¢; an initial value of
0.5 and adjust it only when the past search is success
(y*) = 1) in the following way

aq If AN(E) <O
qr = qr If A)\l(k,‘) =0
aq +(1—a) If A)\M/ﬂ) >0

where a € (0,1] is an appropriate value.

The rule shows that ¢ is adjusted such that the
searching probability on the direction of the past suc-
cessful search is increased. Statistically, the success-
failure of the past search describes the trend informa-
tion in the surface of criterion function to some extent.
It therefore can be considered as useful information for
improving the searching performance.

3.2.4 Typical Values of Parameters The al-
gorithm discussed in this section contains several pa-
rameters which should be determined a priori. Fortu-
nately, most of these parameters are not very sensitive
to problems. Table 1 shows a set of typical values of
these parameters, see Ref. (8) for a discussion of how to
determine those parameters.

4, Simulation Studies

4.1 Simulations on RasID Since the popu-
lar BP algorithm can not be applied efficiently to the
OMNN training, we instead developed a random search
algorithm called RasID. In Refs. (8) (15), RasID is com-
pared with the conventional random search that uses
Gaussian PDF . Tt is found that RasID has better
searching efficiency. The main reason is that RaslD
uses a more tunable PDF instead of Gaussian PDF.

We here use a popular object function called Gold-
stein and Price function ®7 to illustrate the intensified
search and the diversified search in RasID. The func-
. tion is a well-known benchmark problem, for which a
gradient-based algorithm, e.g. BP, usually be stuck at
a local minimum. We will show that RasID can escape
from local minima and find the global minimum. The

EHHC, 1215125, FHRI3E

1953

f(x.y)

1e3 2e3 3e3 4e3 S5e3 6
(a) Searching steps

intensified i
S intensified
search search

Beta_m

diversified divers
liversified
search search

T T T
3e3 4e3
(b)

T
le3 2e3

5e3 6e3
Searching steps

Fig.5. Simulation results of the Goldstein and
Price Function: (a) value of function f(z,y), (b)
value of parameter (;

Goldstein and Price function is described by

f(z,y) =1+ (z+y+1)%(19 — 142 + 32* — 14y
+62y + 3y%)][30 + (2 — 3y)%(18 — 322
+1222 + 48y — 36zy + 27y?)]

The parameters of RasID used are shown in Table 1
except that 8; = 100, Alspe = 0.5, 5, = 0 and s; = 0.
We modified the parameters because this is a rather
simple problem. We have run the algorithm many times
and show the worst cases, in the sense that more local
minima reached. The results are shown in Fig.5.

From Fig.5, we can see that the searching begins with
an intensified search. At the beginning of an intensi-
fied search, the success-failure ratio is large, thus 3 is
adjusted to be smaller so that the local search range
becomes larger in order to speed up the search. When
the algorithm comes near a local minimum, the success-
failure ratio becomes small, then 3, is adjusted to be
larger so that the local search range is smaller in order to
have an intensive search. When better solutions can not
be obtained, it is considered that the algorithm reaches
a local minimum. The algorithm then begins a diver-
sified search so as to escape from the local minimum.
After the escaping succeeds, another intensified search
begins. In this way, the algorithm not only can find
global minimum definitely, provided sufficient searching
steps, but also has satisfied convergence properties.

4.2 Simulations on OMNN Let us consider a
benchmarch problem: Two Nested Spirals. The task is
to use OMNNSs to separate two nested spirals.

The training sets consist of 152 associations formed by
assigning the 76 points belonging to each of the nested
spirals to two classes. This is a nontrivial classification
task, which has been extensively used as a benchmark
for evaluation of neural network training ®®. We use
the example to discuss generalization ability and repre-
sentation ability of OMNN.

The OMNN used in the simulations is denoted by
Npor—m X M/ng where Nyp_,_,, is a subnet with n

"Table 1. Typical values of parameters
80 B o $0 | Pmin | Isyo | Psro.| ker
0.1 2000 | 0.995 0.1 |0.001| 10 0.3 | 1.0001
Algpy | Algypo | Isfmax | Ci ¥} 54 sq
0.02 0.1 100 1.01 | 0.995 5 10

input units, r hidden units and m output units, M is

the number of parts of input space divided, and np is -

the total number of hidden layer units. Since all sub-
nets have the same number of hidden units, obviously
when np = r % M, that is, there is no overlapped units,
the OMNN becomes a multi-neural-network, and when
np = r the OMNN is equivalent to an ordinary feedfor-
ward neural network.

4.2.1 Generalization Ability In multi-model
approach, soft or fuzzy splits of data are often used to
ease the bias-variance dilemma . In this simulation,
we will show that overlapping hidden units has the same
role so that it improves generalization ability of multi-
neural-network. ‘

Let M =3, np =30,r=10,n=2,and m = 1. Then
we have a multi-neural-network with 3 subnets. Using
a competitive learning algorithm, the competitive net-
work is trained so that the input space is divided into 3
parts. The symbols € in the Fig.6(b) and (¢) show the
feature vectors of three parts. Then we use the algo-
rithm described in Section 3 to train the OMNN. The
dashed line on Fig.6(a) shows the sum squares error for
training data. We can see that the training error is very
small, but the performance of classification is not satis-
fied because some areas are misclassified, see Fig.6(Db).

Next, we reduce ny = 30 to ny = 22, but keep
r = 10. That is, the three subnets overlap. Subnet
1 overlap with Subnet 2, Subnet 2 overlaps with Subnet
3, each of which has 4 overlapped units. The OMNN
is then trained with the same algorithm. The solid
line in Fig.6(a) shows the training curve and Fig.6(c)
show the classification results. We can see that in the
network with overlapping, although the training error
becomes larger, the performance of classification is im-
proved. This means that the overlap in an OMNN im-
proves the generalization ability. The results seem easy
to understand because the latter OMNN is more com-
pact with fewer total number of hidden units than the
former OMNN. The former one has 30 hidden units,
while the latter has only 22.

4.2.2 Representation Ability In this simula-
tion, we will show that the OMNN has better repre-
sentation ability than an ordinary feedforward neural
network. We will reduce the number of total hidden
units ny to a value such that an ordinary neural net-
work with this number of hidden layer units is not able
to solve the problem. In this way, we are able to illus-
trate the role of function localization in an OMNN.

It is found from simulation studies that a neural net-
work with one hidden layer of less than 16 units failed
to solve the above two-nested-spiral problem. We there-
fore let np =15, M =6, n =2, m = 1, and r varying
from 5 to 15. Obviously, when » = 15 = ny the OMNN

1954

Overlapped multi-neural-network

I .
16] /
12 -

10

Multi-neural-network

T T T T T I‘ T T 1

2e5 3e5 4e5 Se5 6e5 7Te5 8e5 e5 10eS
Training steps

T
0 1e5
(a) Sum squares error (SSE) for training data

0380 - - -
N + featurc vectors

0.228

0.076

x2

-0.076

0228

-0.380

T
04
x1

05 04 -03 02

(b) Result using non-overlapped multi-neural-network

0.380

0.228

0.076

X2

-0.076 .

-0.228

(c) Result using overlapped multi-neural-network

Fig.6. Comparisons of the OMNN to non-overlapped
multiple net

reduces to an ordinary neural network that will be too
small to solve the two-nested-spiral problem.
Similar to the former simulation, the competitive net-

T. IEE Japan, Vol. 121-C, No. 12, 2001

HEBEa= b R2ETLIOLTEG LY b

Table 2.
overlapped units

Sum squares error (SSE) of OMNNs consisting of different subnets and different

|N2‘T_1><6/15Ir:5‘7":6Ir:?lr:BIr:Q|?":10|T:12|'r:13|r:14|r:15|

[_Average SSE] 3.005 [2.083 [1.729]0.003 [0.021 | 0.448 | 1.003 | 1.351 [1.670] 1.783]

work is first trained by using a competitive learning al-
gorithm. The competitive network has 6 output units,
which divides the input space into 6 parts. Then for
each given r = 5 to 15, we train the main part of OMNN
three times with random initial values for 750,000 steps
each time, and then average the results. Table 2 and
Fig.7(a) shows the sum square errors (SSE) of various
cases. Since the number of total hidden units and the
number of of the parts of input space divided are fixed,
the larger the number of subnet hidden units, the more
the overlapped units. From Tab.2 and Fig.7(a), we can
see that the OMNNSs whose subnets have 8 or 9 hidden
units have the best representation ability. When the
number of subnet hidden units is 15, the same as the
number of total hidden units, the OMNN becomes an
ordinary neural network. An optimal OMNN has ob-
viously better representation ability than an ordinary
neural network with the same size.

Figure 7(b) compares the results of the ordinary neu-
ral network (r = 15, dotted line and dashed line) to the
OMNN whose subnets have 8 hidden units (r = 8, solid
line). It shows that the optimal OMNN has smaller
training error than the ordinary neural network. On
the other hand, since for an ordinary neural network,
it is easy to apply backpropagation (BP) algorithm,
we also show ‘the result of a fast BP with momentum
implemented by using Matlab neural network toolbox
(trainbpx.m) @®. Comparing the results of BP and the
modified random search algorithm, RasID, shows that
RasID used in this paper is efficient and comparable to
an ordinary BP.

We have applied the OMNN to several other problems
of system identification and classification. We found
that when the input space is divided into 4 to 6 parts,
and the subnet hidden layers have % to % of the total
units of the corresponding hidden layers, the OMNNs
have better representation ability. This result is inter-
esting because it means that function localization in a
neural network may improve the efficiency of individ-
nal neurons, hence improve the performance of neural
network.

5. Discussions

One of distinctive features of a brain-like model to an
ordinary neural network is that it has function local-
ization capability. Simulation results show that func-
tion localization may improve the efficiency of individ-
ual neurons, hence the efficiency of the whole network.

5.1 Key Problems It is clear that a key prob-
lem in a brain-like model training is how to guide the
training algorithm to realize function localization. In
this paper, we introduced a competitive network for the
purpose and manually realized the function localization.
However, how to automatically realize the function lo-

EHHC, 1214128, FR13E

1955

B 30
2.8
24
@
220
v
&
8 1.6 -
g
<
1.2 4
0.8
0.4
c T T T T T T T T T l
5 6 7 8 9 10 11 12 13 14 15
the number of hidden units in subnet
(a) SSE for different OMNN
P,
10
Modified random scarch
1
10
53]
7] o
@« .
. 10 Ordinary neural nctwork
g
s
<

Overlapped multi-neural-network
N2gy x 6/15

3 T T T T T T T
les 2e5 3eS 4e5 5e5 6e5 7es5
Training steps

—1
8e5

(b} SSE for OMNN and ordinary neural network

Fig.7. Results of OMNNSs consisting of different
subnets and different overlapped units

calization is still left as an open problem.

5.2 Possible Solutions In order to realize the
function localization, two steps are needed to consider.
One is to extract the features of the problem from the
available input-output sets. The second is to localize
these features in the brain-like network. Self-organizing
map (SOM) networks seem to be suitable for this pur-
pose. This will be investigated in our future research.

6. Conclusions

Neural network is a simplified brain model which can
learn any nonlinear mappings. However, human brain
has the capability of function localization as well as the
capability of learning. An ordinary neural network does
not have the function localization ability. Inspired by
recent knowledge of brain science, we try to develop a
brain-like model that has both function localization ca-
pability and learning capability. This paper discusses a

simple implementation of such brain-like model: over-
lapped multi-neural-network. The structure and the
learning algorithm have been discussed. The results
of simulation studies show that function localization
in a neural network improves the efficiency of individ-
ual neurons. Our future study will be directed toward
to developing more sophisticated function localization
scheme that may extract and then incorporate prior
knowledge from input-output patterns.

(Manuscript received April 12, 2000, revised Septem-

ber 19, 2001)

References

O R, FEORMIEE C &L, T, 1989,

K. Hirasawa, M. Ohbayashi, S. Sakai, and J. Hu,
Petri network and its applications to non-linear system con-
trol”, IEEE Trans on Systems, Man and Cybernetics, Part
B: Cybernetics, vol. 28, no. 6, pp. 781-789, 1998.

Tor Arne Johansen, Operation Regime Based Process Model-
ing and Identification, PhD thesis, University of Trondheim,
Norway, 1994.

A.S. Weigend, M. Mangeas, and A.N. Srivastava,
gated experts for time series: Discovering regimes and avoid-
ing overfitting”, International Journal of Neural Systems,
vol. 6, pp. 373-399, 1995.

C.M. Bishop, Neural Networks for Pattern Recognition, Ox-
ford, Uk: Oxford University Press, 1995.

B. Eikens and M.N. Karim, “Process identification with mul-
tiple neural network models”,
72, no. 7/8, pp. 576-590, 1999.
THE ZAER B FOSE- W) BE - Kbk IEE-BR & AT A —, «
Ty b= DML T ¥ 5 AEERELFE— RasID —7,
SHBl B B2 S5R3CEE, vol. 34, no. 8, pp. 1088-1096, 1998.
J. Hu, K. Hirasawa, and J. Murata, “RasID— Random search
for neural networks training”, Journal of Advanced Compu-
tational Intelligence, vol. 2, no. 4, pp. 134-141, 1998.

T.A. Johansen and B.A. Foss, “ORBIT - operating regime
based ‘modeling and identification toolkit”, Control Engi-
neering Practice, vol. 6, pp. 1277-1286, 1998.

T. Kohonen, Self-Organization and Associative Memory,
2nd Edtion, Springer-Verlag, 1987.
T. Kohonen, Self-Organizing Maps,
1995.

H. Demuth and M. Beale, Neural Network Toolboz: for use
with MATLAB, The MATH WORKS Inc., 2000.

J. Matyas, “Random optimization”, Automation and Re-
mote Control, vol. 28, pp. 244-251, 1965.

F.J. Solis and J.B. Wets, “Minimization by random search
techniques”, Mathematics of Operations Research, vol. 6,
pp. 19-30, 1981.

J. Hu, K. Hirasawa, J. Murata, M. Ohbayashi, and Y. Eki,
“A new random search method for neural network learning
-RasID-”, in Proc. of IEEE International Joint Conference
on Neural Networks (Alaska), 5 1998, pp. 2346-2351.

I. Rechenberg, FEvoluitons Strategie: Optumaerung Tech-
nisher Sysytem Nach Prinzipieren der Biologischen Evo-
lution, Stuttgart: Frommann-Holzbooz, 1973.

L.C.W. Dixon and G.P. Szegd, Eds., Towards Global Opitr-
mization 2, North Holland, 1978.

S.A. Solla and M. Fleisher, “Generalization in feedforward
neural networks”, in Proc. of the IEEE International Joint
Conference on Neural Networks (Seattle), 1991, pp. 77-82.

“Learning

“Nonlinear

Int. Journal of Control, vol.

D R

(7)

(8)

Heidelberg:Springer,

(16)

(17

(18)

1956

Jinglu HU (Member) He received the M.Sci. degree in
15 1986 from Zhongshan University, China and
the Ph.D degree in 1997 from Kyushu Insti-
tute of Technology. From 1986 to 1993, he
. was a Research Associate and then a Lecturer
in Zhongshan University. Since 1997, he has
been Research Associate at Kyushu Univer-
sity. His current research interests are learn-
ing network theory, system identification and
their applications. Dr. Hu is a member of the
Society of Instrument and Control Engineers.

Kotaro HIRASAWA. (Member) He received the M.S. de-
gree in Electrical Engineering from Kyushu
University in 1966. From April 1966, he served
in Hitachi Lab. of Hitachi Ltd., and in 1989
he was a vice president of Hitachi Lab.. From
August 1991 to November 1992, he served in
Omika Factory of Hitachi Ltd.. Since Decem-
ber 1992, he has been a professor in the fac-
ulty of Engineering, Kyushu University. Now
he belongs to the Graduate School of Informa-
tlon Saence and Electrlcal Engineering, Kyushu University. Dr.
Hirasawa is a member of the Society of Instrument and Control
Engineers, a member of IEEE.

Qingyu Xiong (Non-member) He received the Master de-
gree in 1991 from Chongging University,
China. Since April, 1999, he has been a doctor
course student in Kyushu University.

T.1EE Japan, Vol. 121-C, No. 12, 2001

