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A multiport representation of the step junction of two circular dieleqtric waveguides of different size and its

application to the stepwise approximation of a tapered dielectric waveguide are presented. Continuous

spectral modes of the circular dielectric waveguide are discretized at a terminal plane by means of expressing

their mode amplitudes in the form of infinite series of orthonormal Gaussian Laguerre functions. Applying the

standard mode matching technique at the terminal plane, a rigorous multiport representation of the step

junction of two circular dielectric waveguides is derived. Using the multiport representation, a stepwise

approximate solution is given for the tapered dielectric waveguide. Numerical examples are given where the

results are tested for the conservation of power. Also the numerical results are compared with those from

Marcuse’s approximate methods.
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1. Introduction

A tapered dielectric waveguide is an electromagnetic
wave-guiding system used as a matching. component
connecting two waveguides of different size or dielectric
antenna in lightwave and microwave engineering.
Because of the practical importance of this configura-
tion, it has been subject to several investigations®~®,

A tapered dielectric waveguide such as a conical di-
electric waveguide has a non-separable boundary sur-
face by which we mean that the method of separation of
variables can not be applied for the posed boundary value
problem. Hence there is no analytical solution for this
wave-guiding system except some approximate solutions.

So far typical approaches to the problem are Synder’s
coupled mode method®® and Marcuse’s radiation loss
method™.

limitations. The former method is formulated under the

These methods are effective but have some

condition that the flare-angle of the cone is very small
and the latter one with some assumptions for the
simplification purpose that the scattered power can be
neglected while cascading an infinitesimal step junction
of two circular dielectric rods. Therefore, a comprehen-
sive and rigorous analysis on the tapered dielectric
waveguide is really needed.

One of the approximate methods for a tapered
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dielectric waveguide is a stepwise approximate method.
However the publications on this subject have not been
found in the technical literature so far. In order to
achieve an analytical solution using a stepwise approxi-
mate method, first a rigorous analysis on the step junc-
tion of two circular dielectric waveguides of different -
size is necessary.

In this paper, first, a comprehensive and rigorous
multiport representation of the symmetric step junction
of two circular dielectric waveguides of different size is
derived and the next, a stepwise approximation to the
circular conical dielectric Wéveguides is presented using
the multiport representation of the symmetric step junc-
tion of two circular dielectric waveguides of different size.

The electromagnetic modes of discrete spectrum
(called as discrete modes) and those of continuous
spectrum (called as continuous modes) are reformulat-
ed in accordance with the transmission line equation.
Thereby the normal mode amplitudes of discrete and
continuous modes are formulated through the transmis-
sion equations.

The amplitudes of the continuous modes are expanded
into an infinite series of complete orthonormal Gaussian
Laguerre functions at the terminal plane, and thus
discretized mode amplitudes are obtained. Such a tech-
nique has once been employed by Mohmoud and Beal®



in the analysis of a dielectric discontinuity of a planar
waveguide. However, the concept of the port represen-
tation has not been used and the multiport representa-
tion also has not been given. Also a multimode network
formulation of a step discontinuity has been given by M.
Guglielmi et al.®, but the formulation is applicable only
to a rectangular waveguide.

Applying the boundary conditions at the terminal
plane of the step junction, a comprehensive and rigorous
multiport representation of the symmetric step junction
of the two circular dielectric waveguide is derived. It is
also noted that expanding the mode amplitude in the
space function, T. E. Rozi has given a method of solution
by a port representation for the step junction of planar
dielectric waveguides™.

Using the multiport representation of the step junction
of two circular dielectric waveguides, a tapered
dielectric waveguide has been analyzed by the stepwise
approximate method, where a tapered dielectric
waveguide is approximated as the cascading of step
junctions and short sections of a cylindrical waveguide
section. The overall transmission matrix has been given
by the multiple products of each multiport stages.

Numerical examples are given for the single step
junctions using multiport representation and the results
Also the

results are compared with those of Marcuse’s approx1-

are tested for the conservation of power.

mate methods.

Numeérical examples are also given by cascading up to
4 stages when an incident field of HE; is applied. Once
again, the numerical results are compared with those
obtained from Marcuse’s radiation loss method.

2. Mode fields of a circular dielectric
waveguide ‘

<2+1> Discrete modes The transverse electric
field vector Ey» and magnetic field vector Hyp of the
discrete spectrum for a circular dielectric waveguide of
radius d are defined in the circular cylindrical coordi-
nate system (7, ¢, z), as follows :

Eyp="Vi(2)éw

ﬁtp:[p(z)ﬁtp
and the longitudinal electric field components E. and
magnetic, ﬁe]d components Hz are defined, as follows :

Ezp: ]61)6 e ]p(Z)Vt (htpx lz)

Vo(2)Ve+ (12X &)

Hap= /C!)ﬂ

where p is an integer specifying the mode and 7. denotes
the unit vector in the z direction. Vectors éx and %y are
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mode functions which are determined in a manner so
that Eqs. (1)~ (4) satisfy the field equations subject to
the boundary condition at the surface of the dielectric
rod. Also; éw and 7w satisfy the orthonormal relation at

the entire transverse plane S (outside as well as inside
the rod) :

j;étpxlzz‘q.;zdS:apq ................................. (5)

where %% denotes a complex conjugate of %, and Opq is
Kronecker’s delta, and also p, ¢ indicate the arbitrary
Ve(z) and Ip(z) are the p-th mode
voltage and p-th mode current, respectively, and they

mode numbers.

satisfy the transmission line equations :

WD g, 701, (z), AD) — oy o)

where f» is the propagation constant of the p-th mode
and Zo(=+/eo) is an intrinsic impedance of the free

‘space. We denote the quantities in the region 0< 7 <d

(inside the rod) as
80 7D, &
and those in the region d <7 (outside the rod) as
u) hgg) E
Thus, the cylindrical components of & and 7 are

expressed as follows :
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(ino)__Bp 517 ZEOY(pLD0),,
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.................................... (7)
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_ 2/2; 2 TR0 2 0y, Lm (k) o-ims
» ; I
+ WD) Z 0V (pidt0) )
.................................... (8)
(1),(0) (4),00)( 1,():(0)
hgr),(o): 1 Us k()(o) BAORO A (/3 ) o—im?
2
+ WO Z 0V (piiito) )
.................................... (9)
. U@ ZLD-0Y (piid0) )
h§f (0) — = —Jm-‘/’
27| W /e(” (o> Z O (o))
.................................... (10)

where m is an integer and k%9 = PO kE— 5% and ko=
weotn.  Moreover Zi'=], and Z{'=HP are the
Bessel function and Hankel function of the second kind,
0, U and W2
are evaluated from the boundary conditions at the sur-

respectively. The coefficients US?,

face of a dielectric rod. The time factor e’ is assumed
and suppressed throughout the equations.
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Transforming Va(z) and In(z) into normal mode
amplitudes a»(z) and b»(z) through
’ Vio(2)=ap(z)+ bx(2), Zolp(2)=ap(z)— bp(2) -+ (11)
we obtain uncoupled equations of mode amplitudes :

ddiiz)* — iBpas(2), dbP(Z) =7Bpbp(2) +rrneee (12)

Eigenvalue equation for the discrete modes of - cylindri-
cal rod as follows® :

X o (1) __ ~(0)) 2
(&7~ e BT~ ) =[ " |

Tulk9d) (D)
= DdkGay 4 H=76 imeire gy

The dispersion curves obtained from Eq. (13) is shown

where J=

in Fig. 1.

<2+2> Continuous modes The transverse electric
field vector E¢ and magnetic field vector H, of the
continuous spectrum for a circular dielectric waveguide
of radius d are defined in the circular cylindrical coordi-
nate system (7, ¢, z), as follows :

E.=VH3z ey, ¢, I+ V(2 e ™ (r, ,T)

and the longitudinal electric field components . and
magnetic field components H- are defined, as follows :

= 1
EZ_]CUE& IH(Z F)Vt (hH<7’ ¢ F)Xlz)
+st o 12, )V, CR¥E(r, ¢, T)X i)
.................................... (16)
H.= ]a)/zo VE(z, IV, (izX e %7, ¢, "))
i/ HE AT s S HE
+ja)/lo 1% (2, F>Vt (sz €y (7’, (ZS, F))
.................................... (17)
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Fig.1 Dispersion curves of a circular delectric
wagvuide (e7=2, =1 and m=1).
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where I" is the normalized transverse propagation con-

“stant defined by

I=r0d=dJe?ki— B
Two kinds of mutually orthogonal continuous spectral
mode functions :

(et hy; (e, ni®)
are selected and those are determined from the field
equations and the electromagnetic field boundary condi-
tions at the surface of the dielectric rod. They are also
subject to the orthogonality relations :

| ’g Tl b Py T () 4. T .48

B B R Fe=1(8: real)
fﬂa( ke ko ) {fﬁ—ij(ﬁz imaginary)

as well as the mutually orthogonal conditions :

fét(HE)(r 4, F)Xh( V(. g, 1) Fuds=0

where the integration is performed on the entire trans-
verse plane S (inside as well as outside the rod), and I
=R d=d P R—B7. 5( ) denotes the delta function.
The mode voltage V(z, I') and mode current [ [(z,T)

satisfy the transmission line equations :

%ﬂ: — (I ZI (2, T')
. T (20)
dl%zz,: rn_ Bg ) (2, )

where V(z, I') and I(z, I") imply V¥(z, I') or V*(z,I")
and I%(z, I") or I (2, I'), respectively. Transformation
for V(z, I') and I(z, I') into @(z, I") and 5(z, I") through
Vg, IN=alz, I'+b(zI)
ZoI(z, )= a(z, I —b(z, F)}
yields the uncoupled equations of mode amplitudes as

follows :

da(z,I')

o =—jBNaz,I), db(z r

=jB(I"Nb(z, I")

where @(z, I') and &(z, I') imply @“(z, I') or @™ (z, I')
and 6%(z, I') or 6" (2, I'), respectively.
The cylindrical components of vector mode functions

are as follows:
Inside the rod (0<#»<d):
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FTOH, m i
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.................................... (26)
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where k'=yePki— 2 and Jn, HY and HP are the

Bessel function, Hankel function of the first kind and
second kind, respectively. Further, the coefficients
(U(z’)H’ W(i)H, U(O)H’ U(G)H, W(D)H, W(D)H) and (U(z’)HE,
W(i)HE’ U(O)HE’ U(O)HE, I/T/(O)HE7 W (O)HE) ha'v'e tO be
obtained from the boundary condition at »=d, the
normalization condition given by/ Eq. (18) for each
modes (named as H and HE) and the orthonormal
condition between H and HE modes given by Eq. (19).
Here it is also defined that U‘“#=(, since the
coefficients can be determined infinitely many ways“®,

3. Multiport representation of the step
junction

Fig. 2 shows the symmetric step junction of the two
circular dielectric waveguides. Total field expressions
for the transverse fields in the waveguide I and II are
given by the summation of discrete spectral modes
expressed by Egs. (1) and (2), and the continuous
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spectral modes expressed by Eqgs. (14) and (15) in each
region, as follows : ‘

L1

E‘I,n:]\%(al,n( Y-+ bI,II( )) “I,II( $)
3 & \as z v \Z))€ewp \7,

® SHILHIT I,1I
+£ (@ (z, ™M)
+I;HI'H"(Z, FI’H))Q:g{(V, ¢’ FI,II)d[ﬂ,II
+fm<dHE.I,HEII(Z I"I,II)
0 b
_|_ Z;HEI,HEH(Z FI'II>)€:HE<7’ ¢ FI,II))d]‘VI,II

. AL N
ZoH"= 3 (a}(2) — b () g, 8)

+ (@ m(z,

— Gz, ), §, TP

+ [“(amrmen(z, pry

— G, L) FEE (5, PR

where superscript I and II stand for the quantities in

the waveguides [ and II, respectively. Ni"

indicates
the number of discrete modes of propagation in the
waveguides either 1 or II.

Using Egs. (31) and (32) and applying the boundary
condition at the terminal plane T,, integral equations of
mode amplitudes can be derived. However, solving
those integral equations are the most difficult barrier.
So, expanding continuous mode amplitudes which are
continuous functions of normalized transverse propaga-
tion constant (I") by the complete orthonormal function
of I', we obtain the discretized modes at a terminal
plane. We adopt the set of Gaussian Laguerre functions
as the complete set of orthonormal functions as Goubau
et al."” do. Thereby those integral equations are trans-
formed into algebraic equations. The mode amplitudes,

a@(z, I'), etc. are expanded by Gaussian Laguerre

functions :
VA =e 2L, (AT (n=1,2,3,...)
as follows :
Z=Z;  2=z,=z,+
]
1
. 2d,
B A/
v EUSTFIIAE PEVINH FSITRanp) ¥ SN _>
. . z
. el
A A8
@A) & /AT
T 7l Vs
b, B, H B
'[‘[' T,

Fig.2 Step junction of two circular dielectric
waveguides.
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@(z, I)=2 A% @) Ca(AI)
"z, F”):%‘.Aﬁ”(&) T AT

where the superscript X stands for H or HE and
La(AI') is the Laguerre function of order #. 2 is also a
scale factor. In case of 5*(z, I'"), etc. we replace @ and
An for b and Ba, respectively.

The unknown mode amplitudes Ax’s and B’s are
determined by matching the transverse fields at terminal
plane 7i. Applying Eq. (33) in Egs. (31) and (32) and
using the boundary conditions E'=E" and H'=H" at
terminal plane 73, we obtain that

3 () + ia))eb(r, 6)
+ S (AF () + BI)EE (7, ¢)
+ (AL () + BE (), §)
= S atae s spae e, o)
+ SAZEEH (r, )+ 2 BI@)EL (7, §)
+ 3 AP () EE 4 (7, )
+§()B§EH(ZZ)(§§EH—_(,,, B) weeeeeeeeneeiens (34)
for transverse electric field, and
3 (aa)— bia) il )
+ 2 (AF ()~ B ) (7, )
+ S AL ()~ BE )L (7, §)
N
= 2 (@) e = b)Yy, 9)
+ 3 AF () LI (r, 9
= R BI ) L (7, §)+ 3 AR ) T 1, )

—gOBﬁEII(ZZ)fﬁE”‘(V, RO (35)

for transverse magnetic field, where (&% CHFL L£Hll+
6 5II~, (9 gEII#», 8 InfE117> and (uy {'{I’ UygEI, ﬂﬁl[-}—’ uy ZII~,

LHEns ZHEU-Y are the transforms used for the simplic-

ity of the equations in electric and magnetic field expres-
sions, respectively. The expressions for the transforms
are given by replacing & and § for € and € or ¥ and
i, respectively, as follows.

GH(r, §)= [ BQGU, v, @ar
g)‘fllﬁ-(’,y ¢>:Awejﬁ(Pll)lgfn(/lpll)ji((]—vll, r, ¢)dFH
CH(r, )= [ e M IBQIGT™, 7, gdr

where X stands for H or HE. Using the orthogonality
between the discrete and continuous spectral modes as

EEMA, 1225818, E14E
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0,2 b, ) {" —o }apf«zz),bp"(z?)

Az \ Y 4,7,

B,z Qe Bz,

A"”E'f(zl) AnHE”(ZZ)

B,,”E[(Z]) > I— B,,HE”(Zz)
T, T,

Fig.3 Multiport representation of the step junction of
circular dielectric waveguides.

well as the mutual orthgonality between the Continuous
spectral modes, Egs. (34) and (35) are simplified as a
multiport representation of the step junction as follows :

Max(Z)] T [[ap(z)]

[AZY (z)] [AT(2)]

LAZ ()] | _ (A=)
] |2 rapca) (36)
[BI(2)] (B2 |

Bl L)

The matrix form given above is a complete and rigorous
representation for the step junction of a circular
dielectric waveguides. [12u] is the transmission matrix.
The port representation is rigorous in principle only if
an infinite number of expanding terms are explicitly
included. However, for engineering applications, one
can truncate the transmission matrix to a finite size as
shown later.

4. Stepwise approximation of a tapered
dielectric waveguide

A circular conical dielectric waveguide used as a
tapered waveguide has a non-separable boundary sur-
face that rejects the application of the method of separa-
tion of variables to the posed boundary value problems.
Therefore we have to rely on the approximate method
for an analysis of such guiding system. We here adopt
the stepwise approximation method that the tapered
dielectric rod is approximated by the cascading of the
step junction of two circular dielectric waveguides foll-
owed by a short section of the waveguide. Here, we
define two terminal planes 71 and 73, as shown in Fig. 2,
in order to include the short sections of the waveguide
II. In this case, the length of the short section can not
be selected arbitrarily since it effects the numerical
convergence of infinite integrals. Thus the stepwise
approximation can be represented as a multiple cascad-
ing of the multiports of each stage as shown in Fig. 4.
Therefore, the overall transmission matrix [2] for a

multistage is given as follows:
['Q]:[I-QII]'[II.QHI]""



Fig.4 Cascading of the mulitiport of each stage.

5. Numerical results

<5°1> Single stage (step junction with a short
waveguide section) To perform the numerical cal-
culations, we truncate all the infinite series to a finite
series. The size of the series is determined by the
accuracy required for the numerical computation.

The matrix elements of the transmission matrix are
numerically computed for two cases. One is for db/di=
1.05, and the other for d»/di=2.00. Both cases are being
selected with in the range where the existence discrete
mode is only dominant discrete mode (HEu). F urther,
the number of terms in the series of discretized continu-
ous spectral modes (4 and HE) have been limited to 10
each. The data for convergence of mode amplitudes are

given elsewhere®?,

Normalized powers of the discrete as well as continu- '

ous modes in both transmission and reflection sides are
also determined separately and tested for the conserva-
tion of power as given in Table 1. Throughout the
tables 7" and R indicate the transmitted and reflected,

respectively. The error in the conservation of power is

noticed 0.0029 for db/di=1.05, and 0.8% for d/di=
2.00, which can be improved by increasing the number
of expansion terms while trading with the computation
time.

The comparison of various power components with
those from Marcuse’s approximate “mode matching”
and “radiation loss” methods is given in Table 2 and
Table 3, respectively.

In Table 2, the transmitted power and reflected power

of discrete modes calculated by Marcuse’s mode- °

matching method are denoted, where the reflected com-
ponents of continuous modes are neglected as done by
Marcuse. In Table 3, the transmitted power and
reflected power of continuous modes calculated by
Marcuse’s radiation-loss method are denoted, where the
reflected components of discrete mode are neglected as
done by Marcuse. Numerical results calculated from

Marcuse’s method and present method have good
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Table 1. Test of conservation of power (kd1=0.05).

Power spectrum dy/d=1.05 dy/d,=2.00

T | Discrete 0.983883 0.430957
Continuous 0.160898*10! 0.559534

R | Discrete 0.528545*10° 0.304118*10™ '
Continuous 0.446487*10% 0.136037*10°2

Total 0.992155

0.999978

Table 2. Comparison of present method with
marcuse’s mode matching method (kdi=

1.00 and ko/=0.05). .

Power in the dy/d,=1.05 dy/d,=2.00
discrete spectrum :
T | Present 0.983883 0.430957
Marcuse 0.981920 0.117789
R | Present 0.528545*10°¢ 0.304118*10°
Marcuse 0.734241*10" 0.294801*10%

Table 3. Comparison of present method with
marcuse’s radiation loss method (k=di=
1.00 and 40/=0.05).

Power in the dy/d;=1.05 dy/d=2.00

continuous spectrum

T [ Present 0.160898*10™! 0.559534
Marcuse 0.176586*10! 0.584920

R | Present 0.446487*10% 0.136037*102
Marcuse 1 0.553715%10° | 0.299040%10 2

agreement for the small step junction (db/di=1.05), but
vary around 49 for large step junction (dz/di=2.00).
For the large step junction (d»/di=2.00), the error in
total power calculated from two methods of Marcuse
based on the two different assumptions each is 0.89,
which is almost coincident with those from the present
method.

Marcuse’s methods is effective for small step junction
but moderate for a large step junction. Moreover, there
is no way of improving the accuracy in his method. In
the présent method, the accuracy of numerical results
could be improved by increasing the number of expan-
sion terms taking for the computation.

<5+2> Multi-stages (tapered dielectric waveguide)

As an example, we describe the numerical charcteris-
tic of the cascading stages to 4, where each stage con-
sists of the single step junction of two different dielectric
waveguide followed by the short waveguide section.
The dimension of each transmission matrix is selected
so as to be the same. According to Eq. (37), [12u],
[I-QII][IIQIII], [I-QII][H.QIII][IIIQIV], [IQII][IIQIII][IIIQIV]
[rvQy] are numerically calculated. Using these transmis-

and

sion matrices, we can obtain the expansion coefficients
of mode amplitude each. The normalized power trans-
ferred into the continuous mode is calculated when the
dominant mode HE is applied in the waveguide at kod
=1.00.

Fig.5 shows the comparison of the results by the
present method with those by Marcuse’s approximate
radiation loss method. According to Fig.5, radiation

T.IEE Japan, Vol. 122-A, No. 1, 2002



Stepwise Approximation of a Tapered Dieletric Waveguide

T 4 stages
M thod
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el
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o =
= . © - Single stage (k,d=1.05)
0 1 - n i
1 1.05 1.1 115 12
kod,
Fig.5 Normalized radiated power vs number of stages

(koch=1.00, kol=0.05, cone-flare angle 457).

from the cascaded stage is reasonably increasing with
the number of stages when cone-flare angle is constant.
Fig. 5 also shows that the present method and Marcuse’s
one predict almost same radiation loss in the case of the
single stage and two stages. However, when the number
of stages is increasing, the discrepancy of the results
from both methods is greater. It is considered that this
is due to the cause of several assumptions in Marcuse’s
method in order to treat the problem easily.

6. Conclusions

A rigorous multiport representation for a symmetric
step junction of two circular dielectric waveguides was
given and tested numerically for the power conserva-
tion. Present results were compared with those obtained
Both
results showed agreement in the case of a small step size

from approximate methods given by Marcuse.

but showed considerable variation for the large steps. It
is due to facts that Marcuse has neglected the reflected
components of the continuous mode while formulating
the mode-matching method, and in his radiation-loss
method, he has made further assumptions in addition to
neglecting the reflected component of discrete modes.
The present method is included many time-consuming
calculation processes compare to Marcuse’s method but
it is a comprehensive and rigorous method, because in
the present method the req/uired accuracy for computa-
tion could be achieved by increasing the number of
expansion terms taking for the computation for any
kind of symmetric step junctions.

A tapered dielectric waveguide was analyzed by step-
wise approximation usiﬁg the multiport representation
of the symmetric step—junction of circular dielectrivc
waveguides. The comparison of the present method and
Marcuse’s radiation-loss method was also given. The
present stepwise approximation method is applicable to
any symmetric tapered dielectric waveguide and gives
fundamentals of the design of such a waveguide.
(Manuscript received Jan. 29,2001, revised July 30, 2001)
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