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In this paper, the scattering problems by columnar dielectric gratings with elliptically layered media are analyzed using the

combination of improved Fourier series expansion method and the multilayer method. Numerical results are given for the

transmitted scattered characteristics for the case of incident angle and frequency by varying the grating shape whose profile is

the elliptic cylinders, and whose interior distribution of permittivity is an elliptically layered medium for both TM and TE

waves. The influences of the incident angle and frequency of the transmitted power are compared between inhomogeneous

case and homogeneous case.
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1. Introduction

Dielectric gratings have found applications in various areas
such as integrated optics'™ and acousto-optics, optical filters, and
holography. Recently, the refractive index can easily be controlled
to make the periodic structures such as fiber grating and photonic
crystal waveguide by the development of manufacturing technol-
ogy of optical devices. Thus, the scattering and guiding problems
of the inhomogeneous gratings have been considerable interest,
and many analytical and numerical methods which are applicable
to the dielectric gratings having an arbitrarily periodic structures
have been proposed. In the multilayer method®*], as the inho-
mogeneous region is divided into an assembly of stratified thin
layers with modulated index, the order of the matrix depends on
the number of layers. However, in our approach, the order of char-
acteristic matrix equation depends on the modal truncation num-
ber, but does not depend on the number of layers. Therefore the
range of applicability to periodic structures is much wider! than
that of other method, and our method can be applied easily to the
guiding problems, such as planar slanted gratings!”"®),

In this paper, the scattering of electromagnetic waves by dielec-
tric gratings with elliptically layered media® are analyzed using
the combination of improved Fourier series expansion method™*”!
and the multilayer method!™!,

Numerical results are given for the transmitted scattered char-
acteristics for the case of incident angle and frequency by dielec-
tric gratings whose shape of grating is an elliptic cylinder, and
whose interior distribution of permittivity is an elliptically layered
medium for both TM and TE waves. The influences of the inci-

dent angle and frequency of the transmitted power are compared

. 28

between inhomogeneous case and homogeneous case.

2. Method of Analysis

We consider the columnar dielectric grating with elliptically
layered media as shown in Fig.1(a). The grating is uniform in the
y-direction and the permittivity £(x,z) is an arbitrary periodic
function of z with period p. Fig.1(a) shows the configuration who-

se shape of the grating is an elliptic cylinder with the cross section
of axd / 2,

[(x +d/2)/(@d/2)F +(z/a)’ =1 W
and whose interior distribution of permittivity £(x,z) is ellipti-
cally layered medium
& [1-b{(2(x +d/2)/d) +(z/a)"}] ;

b=1-¢ /e, :inside of elliptic cylinder (2)
£ :outside of elliptic cylinder.

e(x,2) =

The permeability is assumed to be y,. The time dependence is
exp(—iwt) and suppressed throughout. In the formulation, the
TM (the magnetic field has only the y-component) case is dis-
cussed. For the TE (the electric field has only the y-component)
case, only numerical results are presented.

When the plane wave is assumed to be incident from x >0 at
the angle @, , the scattering fields in the regions S, (x = 0) and
S,(x < —d) are expressed® as

S(x=0) :
i i i i ¥ i{k{Vx+27nz,
H)(,l) - elk, (2sin8y-xcoséy) + elklzsmgo r”(l)e [k,, 2 /p) (3)
n=-N
. ik zsi ud - kY -2z
S,(xs—d) : Hf) = phiesingy 2 t,(f)e {k,. (x+d)-2 /p} @)
- n=-N
-1 .
E? =(-iwe,)” (aHY [ox) )
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H, orE (e @UAx
N

(b) Approximated inhomogeneous layers.

kD 2 J ~ (k,sinG, +27n/p)’ 3k, £2a/A, j=1,3,

where A is the wavelength in free space and ' and £ are
unknown coefficients to be determined from boundary conditions.
In inhomogeneous grating region S, (-d < x < 0), the permittiv-
ity profile £(x,z) of Eq.(2) is generally not separable with respect
to the x and z coordinates. Therefore, it is difficult to obtain the
analytical solution , such as Mathieu function , in the inside of
columnar dielectric gratings. However in our method, the region
S, is divided into thin layers d,(=d/M), as shown in Fig.1(b),
so that the dielectric distribution of thin layer is approximated to
step profile with respect to z.

eV(2) 2 e[ -05)d,,z) ;1 =1~ M]. (6)

It is important to notice in Eq.(6) that the electromagnetic fields
in inhomogeneous grating region S, can be obtained the eigen-
value equation as follows.

In each layer (I = 1 M), the magnetic field can be written as
H(’ 2) H(l)(z) e
the x-direction, and H’(z) must satisfy the following wave

, where ") is the propagation constant in

equation!®!
d’H"@z) 1 de®(z) dHO(2)
dz* D) dz dz
+[ k2e ey -] h<’>}2]H<’>(z) -0

Taking into account the Floquet's theorem, H"’(z) can be ap-

™)

proximated by the finite Fourier series as

H(I)(Z)_etklzsmﬁﬂ E u(l) i2znzfp (8)
Frasey Y

1f £ (2) is expressed as £(2) 2 £©(2)/g®(2), substituting

Eq.(8) Eq.(7) by
g(2) f([)(z)'e'iz”"z/ 7 and rearranging after integrating with

into ‘and multiplying both  sides

respect to z in the interval 0.< z < p , we get the following eigen-

value equation in regard to £ 16

AU® ={ h(,)}z AU ©)
A =[], A R[E0] I=1-M,

where
u® A[ ul) oo ul) u(l)]T, T : transpose, _
e 2kED -y y O, + 2w (n-m)n, /o -9}
WYHA, 122815, FR14F

(b)

Fig.1 Structure of the columnar dielectric grating with elliptically layered media. (a) Coordinate system,

&

f { ")(z)g")(z)}e”"(""")z/”dz ’

nm

o & ZP;J‘D f(l)( y—= { (l)( )} gl 2n(n-mzle 1 ,

E(’) A 1f {f(l)( )} zh("—m)Z/PdZ’

v &(k,sin6, +27n/p), mn=(-N,-,

It is also important to notice in Eq.(9) that Fourier coefficients

o L0
UM 0 (pn,m

For example, £ (z) = g, sech(l+z/p) = 250/(e]”/" +e 7)) he
and g%¥(z)
= ('el"zl Py elr )} . Therefore the range of applicability to peri-

0, N) i
and & ,5'31 can be obtained without numerical integration.
analysis is made easy to put f 0 (2) =2¢,

odic structures is much wider than that of other methods!*?.
However for the case of Eq.(2), f(z) [or g (z)] contain

discontinuity such as the step function , so that , (n m)ﬂ(l) does

0
17!1 n

|n-m|—>°0 [n{ |is less than K/|n—m|, where K is inde-

not is as

converge,because ;R m)

pendent of |n —m |], therefore the solution of the Eq.(9) also does

not converge to the correct value (1]

. To solve this difficulty in
our method , the function containing the discontinuity is approxi-

mated by Fourier series of N terms

N, )
fO@Lorg@1= 3wl (10)
n=- f

N s in Eq. (10) is related to the modal truncation number
N by N =0N,(0>1) For the step function case ,we have
obtained that & =1.5 is sufficient to get the proper solution when
Nand N, are increased!' M1,
Substituting Eq.(10) into 7", o) of Eq.(9), the elec-
tromagnetic fields using the solution of Eq.(9) in each layer are

and &

nm

expressed as

S,(-d <x<0) :
1,2) st () ilx‘f”{x+(l—1)dA} ([) zh() x+ldy ()
H! =E[Ave +BYVe ] 9@,
v=1
dy,=d/M ,l=1~M, (1)
E®? = {—ic:)z;(l)(z)}_1 aH“’Z)/ax ;
fv(l)(z) A zk,zsmeﬂ 2 u(l) tZrmz/p (12)

n=-N
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Fig.2 Convergence of |7™ [ and |T,™ F for 1/M with fixed N in inhomogeneous case. (a) TM wave, (b) TE wave.
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Fig.3 Mode power transmission coefficients |7 [ and |7.” [ versus incident angle 6, for the case of [0]th-mode

with the elliptical layered media. (a) TM wave, (b) TE wave.
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Fig.4 Mode power transmission coefficients |7 P and |TY® [ versus incident angle 6, for the case of -[1]th-mode

with the elliptical layered media. (a) TM wave, (b) TE wave.

where AV(I) s Bv(l) are unknown coefficients to be determined by
boundary conditions.

From the boundary conditions at x=0 , x=-[-d,
(I=1~M -1), and x =-d , we. get the following homogene-
ous matrix equation in regard to A by matrix algebral™!

W-A® =F

w = [lel + QZS3 - (lez + QZS4 ) ;le] ’

where the elements of matrix W and F are obtained by refer-

(13)

encel®l whose matrix order has been reduced to the modal trun-
cation number (2N +1)., but is independent of the numbers of
layers rather than that of other methods!P],

The mode power transmission coefficients |T (™) |2

n

is given by

30

|77 P2, Re{ £} F /().
where superscript (TM) indicates TM wave case.

3.

(14)

Numerical Analysis

We consider an elliptically layered medium for Eq.(2) in the

_ grating region. The shapes of gratings are the elliptic cylinder in

Eq.(1). In this case, we put g(z) =1 and fP(2) =P (z).
The values of parameters chosen are & =¢; =&, d / p= 2/ 3
and ¢,/&, =3[£(0,2)/e, =1~ 3], because the aim of this paper
is to provide inhomogeneous and homogeneous medium.,

First, we consider the inhomogeneous case (b = 0 in Eq. (2)).

Figures 2(a) and 2(b) show the convergence of the [0]th-mode
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Fig.5 Mode power transmission cocfficients |T/™ F and |T/™ P versus a normalized frequency p/A for the case of
[0]th-mode with elliptical layered media. (a) TM wave, (b) TE wave.
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Fig.7 Mode power transmission coefficients |7 [ and |77 F versus a normalized frequency p/A for the case of
-[1]th-mode with elliptical layered media. (a) TM wave, (b) TE wave. \

power transmission coefficients |7, O(TM )P and |T0(TE) P versus
1/M for the case of p/A=1.0, 2a/d =1.0 and -6, = 30° with
fixed N. For the TM and TE wave, the results are computed with
N=9 (N;=6),M=30, and N=10, M =20, respec-
tively. Because, the relative error and energy error in Fig.2 are less
than about 0.1%, 107, respectively.

Figures 3(a) and 3(b) show |T™" [ and |T,"™ } for various
values of incident angle 6, at 2a/d = 0.8, 1.0 and 1.2 for
' p/A=1.0. The case of circular cylinder is 2a/d =1.0. Figure
4(a) and 4(b) show the —[1]th-mode power transmission coeffi-
cients | 7™ P and | T F.

BERA, 1225818, FRUE
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In general resonance occur at two particular anglest®, first is
Wood’s anomaly at ‘
oM 2 sin[n/(p/A)F1], n =1, £2,---. (15)
The second is the strong resonance due to the coupling with the
* [|n]]th-mode at
oM £ sin[{=(Bp/2)F |n [}/ (p/ )], = £1, £2,--, (16)
where £ is propagation constant in the free modes. For the case of
Figure 4, 6, appearsat 6, =20 .

From in Figure 3 and 4, we note the following features:
9.23°,12.59° and 16.96°) of

coupling resonance curve for TM wave moves toward larger

(1) the minimum points (6, =
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Fig.8 Mode power transmission coefficients |7,  and |T,” [ versus incident angle 8, for the case of [O]th-mode

with elliptical layered media. (a) TM wave, (b) TE wave. -
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Fig.9 Mode power transmission coefficients |7, [ and |7 [ versus a normalized frequency p/A for the case of

[0]th-mode with elliptical layered media. (a) TM wave, (b) TE wave.

6, [(Bp/2m)>1] as 2a/d increases as well as TE wave
for 6" =10.44°, 15.70° and 22.3° . This is attributed to
the effect of grating shape, so that when the equivalent per-
mittivity connection with the propagation constant [ in the
grating region is larger at 2a / d increases.

For the |T{™ F ,the discrepancies are large than that of
|T™ P around 6, =30° because of Bragg angle at
p/A =1.0n the other hand, for the TE wave, |T P has
also a symmetric shape around 6, = 30° as well as | ;"™ [ .
Therefore, the 6, dependence at coupling resonance is more
significant for the TE wave than that of TM wave,

It is interest the peak of | T [ at 2a/d =1.0 moves to-
ward at 8, =90° only for TE wave. )

Figures 5(a) and 5(b) show | 7™ [ and |T™ J for various
values of normalized frequency (p/A) at 6, = 30° with the
same parameters as in Fig.3. Figures 6 give the magnified view
for the range of 0.56 < p/A < 0.64in Fig.5 as the same scale
both TM and TE wave. Figure 7(a) and 7(b) show the —[1]th-

. . . . 2
mode power transmission coefficients |T _(1TM> [* and | T _(lT DE.

Comparing the TM wave with the TE wave, from in Figure 5, 6

and 7, we note the following features for the effect of grating

shape :
(1) the characteristic tendencies . are approximately same at

p/A<0.7, but for about p/A > 0.7, the effect of the grat-

ing shape is more significant for TE case.
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(2) the minimum points (p/4);" =0.609, 0.621 and 0.634 of

)

coupling resonance curve for TM wave moves toward larger
p/A [(Bp/27)<1] as 2a/d decreases as well as TE
wave for (p/A)Z =0.570, 0.590 and 0.611 . This is at-
tributed to the effect of grating shape, so that when the
equivalent permittivity connection with the propagation con-

stant B is smaller (p/A) [(Bp/27)<1] as 2a/d in-

-creases. The coupling resonance curve for TM wave is shaper

than that of TE wave. This is attributed to the effect of an at-
tenuation constant in the free mode!*].

[T F and [T P have a population as 2a /d de-
creases. But for p/A >1, the effect of the grating shape is
more significant at -2a/d = 1.0 than that of 2a/d =1.0.

Next, we consider the homogeneous case (b =0 in Eq. (2))

comparison with the above inhomogeneous case at Za/ d =1.0.
Figures 8 and 9 show the |T\™" F and |T\™ | when ¢, /e,

is 2, 2.5 and £(0,2)/g, =1~ 3 respectively under the same con-

dition Fig.3 and Fig.5 for both TM and TE wave. From in Figure 8

and 9, comparing the inhomogeneous case with homogeneous

case, we note that the following features:

(1)For the TM wave in Fig.8(a), the characteristic tendencies
for the inhomogeneous case are approximately the same at
€,/€, =2.5 . The -minimum points 96'1 of coupling resonance
curve are 7.33° (g,/e,=2) , 11.61° (e,/e, =2.5) and
12.59° [£(0,2)/g, =1~3] as the equivalent permittivity in
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creases. On the other hand, for the TE wave Fig.8(b), the charac-
teristic tendencies for the inhomogeneous case are approximately
the same around 6, =30° at £,/¢; =2.0. The minimum points
Hc-l of coupling resomance curve are 8.58° (g,/¢,=2) ,
13.63° (¢, /¢, = 2.5) and 15.62° [£(0,z)/e, =1~ 3]. It is also
interest for TE wave the peak of |7"®) [ only appears at near the
6, = 90° in inhomogeneous case. This is attributed to the effect of
inhomogeneous media. However it will be investigated more de-
tailed numerical results for the distribution of power flow density ,
and for the case of guiding problem in the next time.

(2)For the TM wave in Fig.9(a), the characteristic tendencie for
the inhomogeneous case are approximately the © same
about p/A <1.15 at homogeneous case ¢,/e, =2.5 .The mini-
mum points (p/ A)Z' of coupling resonance curve
0.637 (¢,/5,=2) , 0621 [£(0,z)/e,=1~3] and
0.620 (e, /¢, = 2.5) . For the TE wave in Fig.9(b), the charac-
teristic tendencies in inhomogeneous case are approximately the
same at £,/g, =2.0 about 0.7 < p/A <1.1 . The minimum
points (p/A)Z of coupling resonance. curve
0.624 (¢,/2, = 2) ) 0.597 (,/€, = 2.5) and
0.590 [£(0,2)/e, =1~3]. The effects of the inhomogeneous
media are more significant on the grating shape than those with
homogeneous media.

4.

are

are

Conclusions

In this paper, we have analyzed the scattering of electromag-
netic waves by columnar dielectric gratings with elliptically lay-
ered media using improved Fourier series expansion method and
multilayer method. Numerical results are given for the transmitted
scattered characteristics for the case of incident angle and fre-
quency for both TM and TE waves between inhomogeneous case
and homogeneous case. It is shown that the influences on the grat-
ing shape are more significant for the inhomogeneous case than
homogeneous case. Finally, This work was partially supported by
a Nihon University Provisions Research Grants G00-079 in 2000.
The authors also would like to thank Mr. Ryuji Terada at graduate
student of Nihon University. (now he is Fujitsu Ltd.)for help with
making graphics in this work.
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