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In the connection of two optical fibers, higher-order modes appear occasionally even for slight shift of the

two fibers.

In usual fiber, four higher-order modes, TEo1, TMo1 and two of HE21 modes, have slightly

different eigenvalues and field distributions of two-lobe patterns described by linearly polarized Ex and Ey,

respectively. Then in order to investigate precisely the occurrence mechanism of such higher-order modes,

accurate full-vectorial numerical method is required.

In this paper, Fourier series expansion method is

applied to the full-vectorial analysis of the connection problem. First, the eigenvalues and the field

distributions of the four higher-order modes in step-index type optical fibers are computed by the method, and

transverse shift of the two fibers is made clear.

their accuracies are examined. Then the occurrence mechanism of the higher-order modes caused by the

Keywords: full-vectorial analysis, field distribution, higher-order mode, optical fiber, connection problem

1. Introduction

of

increases the chance of connection of optical fibers.

Development optical communication system
Such a connection becomes a cause of occurrence of
higher-order modes even for slight shift between two
fibers. In practical weakly guiding fiber, there is the
case where the first higher-order mode LP11 can
This LPu

approximation of small refractive index difference An

: propagate. mode is defined under the
between core and cladding, and includes approximately
degenerated TEo1, TMo: and two of HEs21 modes which
have slightly different eigenvalues, and their fields are
described by two-lobe patterns of linearly polarized Ex
and Ey, respectively®~® " For a step-index type optical
fiber, exact solutions can be obtained ‘ by using
cylindrical coordinate system®®.  However, for the
precise analysis of the connection problem in which
reflected and radiation fields are included "and the
concerned higher-order modes are in approximate
degeneracy, efficient full-vectorial numerical method is
required.

The authors have applied a Fourier series expansion
method®~(D, in both

transverse directions is introduced, to full-vectorial

in which virtual periodicity

analyses of arbitrary three-dimensional waveguide

system®-(0_ In the method, Maxwell’s equations are
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lead to a set of linear equations for vectorized Fourier
coefficients in which any derivatives of permittivity of
the medium are not included. The solutions yield the
full-vectorial fields for the guided and discretized
radiation modes, propagating both in forward and
backward directions, even in the case of larger An.
The accuracy of the solution can be improved by
increasing the truncation number of the Fourier
expansions, and has been investigated in Ref. (9).

In this paper, we apply our method in order to make
clear the connection problem between the two step-index
optical fibers. First, the eigenvalues and the field
distributions described by linearly polarized Ex and Ey
are computed numerically for HE11, TEo1, TMo1 and two
of HE21 modes in the two typical fibers of An=0.6% (in ‘
approximate degeneracy) and An=10% (not in degen-
eracy). The accuracies of those results are examined.
Then the occurrence mechanism ‘of the higher-order
modes in the output fiber is made clear for the
transverse shifts along x- and y-axes and the oblique

axis titled by 45 degree between the two fibers.
2. Formulation of the method

First, we formulate our method for full-wave Fourier
modal analysis on the guided and discretized radiation
modes propagating both in forward and backward

directions along three-dimensional waveguide system.



In this paper we assume exp(jot) where o is angular
frequency of the incident wave. For convenience, we
normalize the coordinate variables by multiplying wave
number k(= (o\/TuO) in free space, the electric fields

(g, /1), and the magnetic field (u,/e,)!"*, respectively.
g, and p, are permittivity and permeability in free

space, respectively. Then the normalized electric and

magnetic fields satisfy the following Maxwell’s
equations :
Vx E(x,y,2) = -j H(x,y,2) (1)
VXH(X:Yv Z) = J S(X,y)E(X, Y, Z) (2)

where &(x,y) includes the whole relative permittivities
in the cross section of the waveguide system. To solve
Eqs. (1) and (2) by the Fourier series expansion method,
we introduce a virtual periodic boundaries with the
periods A, and A, in the x and y directions as shown in
Fig.1.

mated in terms of one period of the periodic waveguide

Then original waveguide structure is approxi-
arrays. For the assumed structure, each component of
the electro-magnetic field is approximated by the
following truncated double Fourier series expansion :

B0 = 33 e, explismoexp(-itny) ()

m=-M n=-N

M N
H, (x,y,2) = Z Z hy

m=-M n=-N

. exp(~jsmx) exp(-jtny) ---(4)

,» m and n are

where v=x,y,2z, s=27/A,, t=27/A
integers. H‘eie, the larger magnitude of A, (= Ay) is
better in order to neglect the reflected fields from the
virtual boundaries. However, for larger A (= A),) ,
larger M(=N) is needed to maintain a certain accuracy.
According to our experience, the magnitude of
A= Ay) larger than 3~4 times of the diameter of the
waveguide is seemed to be enough.

Eqgs. (3) and (4) are substituted into Egs. (1) and (2).
Then the
exp(jsm'x)exp(jtn'y)/A A, and integrated over 0<x
<A, and 0<y<A,.
complex Fourier series, these are lead to a set of linear
differential the

transverse expansion coefficients {e, ,(z)}, and {h  (2)}

resulting equations are

Using the orthogonality of the
form for

equations in vectorial

(v=x,y) as follows :

L) = -j Celz) e(5)
dz
4o = -j C;h(z) (6)
dz
e(z) =[e*(z) @], h(@)=[b*() W& (7
e () =[e"y y - enn - Ehn - eunlt  (8)
h'(z)=[h"y y - W'y - Wiy = iyt (9

multiplied by
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Fig.1. Connection of two fields (a) and first

period of virtual periodic array (b).

p— 2_—
L= I:IM M -A ...(10)
-N*+A NM
-1 _ -1
C, - MA-'N MA-"M+1I (1)
NA'N-1I -NA'M

where Iis unit matrix of order K (K=C2M+1)(2N+1)).
The diagonal matrices M and N of order K are
defined by ‘

M=[sm§,,6,.1, N=[tns, 5, .1 ~+(12)
respectively, where &, .. is the Kroneker’s delta. s,m,t

and n are defined in Eqs.(3) and (4).

matrix of order K which consists of the double Fourier

A is a cyclic

components of &(x,y) as follows :

AZ[SM], p=m-m', g=n-n' --(13)

1 " A . ‘
=—_AXAY . dyJ.O dx &(x,y) exp(~jspx) exp(~jtqy) .

8]3"]

-++(14)
The superscript “t” in Eqs. (7)~(9) indicates transpose of

vectors. .

The solution of Eqgs. (5) and (6) is obtained by solving
directly the following eigenvalue problem of matrix C
of order 2K :

2
%e(z)=—() e(z), C=C,C, -+(15)
zZ

h(z) is obtained from the solution of Eq. (15) using Eq.
(6.
can easily obtain eigenvalues and associated
eigenvectors Py (k=1,2,---,2K) of matrixC. It is noted

that quite same solution can be obtained using the

Then using standard calculational subroutine we

Ky

similar equation for h(z) instead of e(z) in Eq. (15),
because we solve Maxwell’s equation itself.
Introducing a new vectorial function a(z) of order 2K

which satisfy
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e(z)=Palz), P°=[P°, PP, - PL. | --(16) .

solution of Eq. (15) is obtained as follows :
e(z) = [P° P°]

i exp(—j\/a(z—zo))ék‘k, 0 “:a*(zo)}

0 exp(y/i, (z—2,))5,, a’(zp)
=(17)
a*=[af, a3, - sazclt --+(18)

Here the bracket [ ] in Eq. (17) indicates a diagonal
matrix of order 4K and a; is a complex mode
amplitude of k-th eigenmode propagating in the *+z
direction, respectively, and normalized propagation
constant 1is i\/a (=8, /k,) . Here we assume
Re\//ci 20 and Im.x, <0. The k-th mode satisfying
‘\/El > \/g is the guided mode and the case ’\/E‘ < \/Z
is the discretized radiation mode. In the case where
\/KT(‘ is imaginary, the wave 1is evanescent and
attenuates along +z-direction. h(z) can be obtained by
e(z) from Egs. (6) and (17). Thus

electric and magnetic fields can be obtained by

differentiating

substituting each component of

f(z) =[e(z) h(z)] -+(19)
into Egs. (3) and (4) for each normalized propagation
constant \/E in the k-th mode. The eigenvector P
is normalized so that the power carried by the respective

k-th mode equals to ’ak[z .
3. Application to the connection problem

Next, we apply the method to the connection problem
as shown in Fig.1. That is, a dominant mode is
incident from region I to region I . Expansion
coefficients in each region are expressed in vectorial
form as f'(z) G =1, II), by referring Eqs. (6), (17) and
(19), respectively. Eigenvalues, eigenvectors and
complex amplitude vectors in each region are expressed

as +Jk., P and al(z) G=1, II), respectively. Here

1 Pe Pe i+ i— h - e ...
P :[Ph _Ph}[P P, P' =k, C;' P*(20)

Then the boundary conditions for transverse electric

and magnetic fields at z =z, are satisfied by

£(z) = £'(z,) . (21)
As initial conditions, we consider the incidence of
dominant mode from z=0 in region I and no reflection
in the region @I due to the assumption of semi-infinite

waveguide. That is,

a"*(0)=[1,0,--,0]', a"(z)=0 -++(22)
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From Eqgs. (21) and (22) , following equation 1s lead :

[aﬂ+(zl):| _ [Pm PI-']"1 Plu expl~j \/’71] Z1):

a'(0) ey
B P exp(; ] 26

Then the solutions a"(z) and a'"(0) are obtained
from Eq. (23).
and discretized radiation modes are expressed as

The transmitted total powers of guided

Ky S K .
L= Z|a£*(zl)r, T, = Z ‘a?(zl)‘l -(24)
k=t k=Kj +1
and the reflected total powers as
51 P I 5
R, =Yl R,= > |aif ++(25)
k=l k=K, +1

respectively. Here T +T,+R,+R, =1, and K; and Ke
are the numbers of guided modes in the waveguides of

region I and region II, respectively.
4. Numerical results -

and field distributions of

Electrical field lines and inten-

4.1 Eigenvalues
eigenmodes
sity patterns of eigenmodes in a weakly guiding
step-index type optical fiber are described briefly in
Fig.2W~®  First higher-order mode LPi: includes so
called TEo;, TMoi, HE; and HE; modes, which
degenerate approximately, and their field intensities are
described by the two-lobe patterns of Ex and Ey,
respectively, as shown in Fig.2. In this paper, HEﬁ
and HEZE1 indicate two of HE,, modes which have the
similar two-lobe pattern of Ex (Ey) as TMo; and TEo:
modes, respectively. As such modes do not degenerate
perfectly, even in actual weakly guiding fiber, the
eigenvalues are slightly different, according to the
degree of degeneracy. For larger An, which is not in
degeneracy, those four modes also have the similar
two-lobe patterns of Ex and Ey, as shown in Fig.2.

In order to investigate such modes, proposed full-

LPo - Lby
wode 'HE, HE, | TE, TM, - HE. HE,
el [OESHCRS I
’h Oled b s
#2x D DD 2D
mmber | D @(® @ ® ®

Fig.2. Eigenmode and field pattern of weakly

guiding optical fiber®®
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Fig.3. Convergency of eigenvalue and field distri-

bution when truncation number M(=N) is increased

vectorial numerical method is applied for a step-
index type optical fiber with the core of radius r=3.46 1
and refractive index \/g=1.462, surrounded by the
cladding\/gzl.453 (An=0.6% as the case of weakly
guiding fiber) and 1.3158 (An=10% as the case on no
degeneracy). In the computation, A, =A,=3014 " and
20 A are chosen for An=0.6% and 10%, respectively.
First, examples of convergency of the solutions are
shown in Fig.3 when the truncation number M(=N) is
increased.  As for the eigenvalues of each higher-order
mode in the fiber with A n=0.6%, the accuracy of about
6~7 significant figures is expected from the curves of
convergencies in Fig.3(a), comparing with the exact
values. However, the accuracy of the field distribution
is largely decreased to about 2~3 significant figures.
It is confirmed that the curves of convergencies for Ex
and Ey ofHEfl mode almost lie on those for Ey and Ex

of TE, mode, respectively, in the case of An=0.6%.

‘On the HE:: mode, they also lie similarly on those of

TM,, mode. In the case of An=10%, the curves of
convergencies of HE; and HE];A1 modes vary similarly
near those of TE, and TM, modes, respectively. In
the computation of the field distributions in Figs.4~6,
although the smaller. numbers of M than the maximum
ones obtained in Fig.3 are chosen for the saving of
computational memory and time, the accuracy is
considered to be enough to explain qualitatively each
problem.

In Fig.4, computed eigenvalues and electric field
intensities of Ex and Ey of each mode are shown. First,
it is noted that the peak value of Ey component in HE],
mode is negligibly small, but becomes larger for larger
An.

Next, as for the TEo1 mode, it is confirmed that,
according to the obtained results computed from the
eigenvectors corresponding to the eigenvalue of original
TEo1 mode, the field distribution is expressed by the

similar two-lobe patterns as shown in Fig.2, but has

" slightly different peak values between the field

42

distributions of Ex and Ey as shown in the numerical
values in Fig.4(a). This seems to be caused by the
admixture of original TEo: mode with a small amount of
another mode HEZ'] which has the same two-lobe
pattern as the TEo: mode but has slightly different
eigenvalue. As the result, new mode TEo’ (= TEy +
OLHEZEI) appears, and the’ difference of peak values
between Ex and Ey in the new mode occurs according to
the small ratea. Due to the similar consideration,
there appear HE;' (» HEE1 —aTE,), TM,,' (= TM,,+
a‘HE:Vll) and HEzlvi' (~ HEg‘1 -o'TM,,). Here, itis
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Fig.4 FEigenvalues and electric field intensities for each mode in the fiber with the core
of r=3.46 A and nf=1.462. Numerical values in the parentheses ( ) of E. - Ef indicate
the value ((E; —E))/(E] +E])/2)x100.
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noted that the new modes TE,' and HE,' (or
TM,,' and HE,' ) have the same « (ora') but the
opposite sign, respectively, as shown in the numerical
examples in Fig.4(a). Referring to the results in
Fig.4, it is confirmed that the small ratios a and
o' are proportional inversely to the difference of the
eigenvalues between the two related modes, and as
the difference becomes larger, the difference of peak
values Ef—Es becomes smaller.

In the case of large An in which the modes are

already not in degeneracy, the new mode approaches
to the original mode itself (o =a'~0), then the
approaches to zero
(E:: —E:’ ~0). Results for An=10% (in Fig.4(b)) may

be approximately regarded as such a case.

difference of - peak values

Thus, the occurrence of the difference in peak
values between E. and E]\] in weakly guiding fiber
as shown in Fig.4(a) is considered to be caused by the
situation of approximate degeneracy between the
related two modes which have the same two-lobe

1.0 1.0 1.0 1.0
Te Tg Tg Te
0.8 0.8 ‘ 0.8f 1, 0.8{
Tg2 ng g gl \
0. 6 0.6 0.6 0.6
== i = =
0.4, " eoal N\ 1 =os L\ /] o T
Tea+Tes Tg3+Tgs . \ ® Tea+Tee
0. 2] 0.2 0.2 0. 21
~ 0. 04l 0. 065" ___ 0. 04 _ -
0T 5 3 0 1" 2 '3 4 0 1 2 3 0 1 2 35 4 01 2 3 4
Ax/ A Ay/ A Ax/ A Ay/ A Ar/ A
(a) ) (c) () (e)

Fig.5. Transmitted powers of each mode for transverse shifts along each.axis between two fibers with An=10%.

Parameters are the same as those of Fig.4(b). - Ar is the distance along oblique axis. T, and T,, are the

powers of HE], and HE], modes, respectively.

(2),(0) : HE], incidence, (c)~(e) : HE!, incidence.

Ax=252 TMor _HEZIMy
HE},
D@ > -@ D
. = N N% L/
nput  output 1.7465  1.7212 1.6776  -1.7024 3.4241  0.0188
(a) Tgs=0.1539 Tgs=0.1469 Teat Tge=0.3008
. output
TEor HE2*
vl @ ) & ) - & ()
& 4 = @
‘ " Cinput 17228 1.7074 17113 -1.7265 3.4341 -0.0191
()] Te3=0.1512 Tg5=0.1505 Teat Tes=0.3017
~TEor HEq,®
%% = * %@ = = %@ =
output 1.1967 -1.2075 12206  1.2098 24173 0.0023
Ar=25 \’V\ Te=0.0742 Tes=0.0752 Tgs+ Tgs=0.1494
HE‘y‘input TMor’ HE"
© L @B + Wé @B = W @B
| 11992 12168 12326 -1.2146 24318  0.0022
Te=0.0770 Te=0.0747 Teut Te=0.1517

Fig.6.

Schematic explanation of the occurrence mechanism of higher-order modes in the output fiber for transverse

shifts of Ax, Ay and Ar=2.521, referring to the obtained results in Fig.5. Numerical values of under side of the

two-lobe patterns indicate calculated peak values of each field.

It is noted that the order of higher-order mode

in the case of An=10% is @ TE,,, @ HEzAl , ® HE; , ®TM,, (differ from the order in weakly guiding fiber of Fig.2).
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pattern. However, exact solutions for original modes
do not have such a difference between Ef and Ez,
even in the weakly guiding fiber. These phenomenon is
considered to be peculiar one due to the method used in
the present paper, limited to the analysis of thé modes
in approximate degeneracy. L Of course, in the case of no
degeneracy, the present method does not have such a
problem. We are now trying to obtain the field
distribution in the separate original mode, taking the
parity, the symmetry of the field distribution and so on
into consideration.

4.2 Connection problem of two fibers

In order to explain qualitatively the connection
problem between two optical fibers, we choose the
step-index type fiber with An=10%, which is regarded
approximately as the case of no degeneracy and the
effect of mode admixture can be neglected (a,a'~0 in
Fig.4(a)) within the computing accuracy obtained by the
present method. II% Fig.5, the computed transmitted
powers Tgx ='a£+(zl)‘ (k=1,2,---,6), Tz and T; given by
Eq.(24) are shown, when the same two fibers with An
=10% investigated in Fig.4(b) are shifted along x- and
y-axes and the oblique axis tilted 45 degree in Fig.l.
Here the reflected powers expressed by Eq.(25) are Rg
<10 and R: <10, and omitted in Fig.5.

confirmed that Rg becomes smaller for smaller An. In

It is also

the case of An=10%, many higher-order modes exist.
However, in the
guided modes, except for TE,, TM,, HE; and HEZ
modes, are negligibly small in the output fiber for

connection problem, higher-order

dominant mode incidence.

In Fig.6, schematic explanation of the occurrence
mechanism of the higher-order modes in the output fiber
is tried for dominant mode incidence, referring to the
obtained peak values E., E{ and powers of each mode
for the shifts of Ax, Ay and Ar=254A.

Figs.5 and 6, the occurrence mechanism of the higher-

Referring to

order modes is explained qualitatively as follows.

First, for HE; mode (Ex : dominant) incidence and
shift along x-axis, illumination to the half side of the
cross section of the output fiber excites the two modes
TMor’ and HE.I;‘ which have the same two-lobe pattern
of Ex with null line along y-axis, and they are admixed
so that the admixed Ey field vanishes. It is noted that,
in the numerical results, the sum of Ey field in the
output fiber is not zero due to the computing error, but
can be neglected practically comparing to the sum of
Ey fields. As the result, only the admixed new mode of
two-lobe patterh‘ of Ex with null line along y-axis

appears in the output fiber with the power of Tga+Tes as

BERA, 1220518, PHUE

The other two modes TEor’
and HEEI' do not have the null line along y-axis in the
field of Ex (see Fig.6(b), Fig.2), then they can not be
Next, for the
shift along y-axis, according to the similar consideration,
TEo1” and HE;:I' are admixed, and the two-lobe pattern
of Ex with null line along x-axis appears with the power
of Tga+Tgs (see Fig.5(b), Fig.6(b)).

For HE], mode (Ey : dominant) incidence and shift

shown in Figs.5(a) and 6(a).

excited in the output fiber in this case.

along x-axis, similarly, TEo:’ and HE;:l 'which have the
same two-lobe pattern of Ey with null line along y-axis
are admixed so that the admixed Ex field vanishes.
Then the two-lobe pattern of Ey with null line along
y-axis appears with the power of Tgs+Tgs (see Fig.5(c),
upper part of Fig.6(c)).

Lastly, for HE], mode incidence and shift along
oblique axis tilted 45 degree, due to the illumination to
the third quadrant of the cross section of the output
fiber, two sets of admixed modes are excited in the
output fiber. That is, TEe:’ and HESI' which have the
same two-lobe pattern of Ey with the null line along
y-axis, and TMo:/ and HE;vi' which have the safne
two-lobe pattern of Ey with null line along x-axis are all
excited and admixed with the powers of Tgs+Tg and
Tea+Tgs, respectively (see Fig.5(e), Fig.6(c)).

5. Conclusion

Fourier series expansion method is applied for
full-vectorial analysis of optical fiber and connection
problem of the two fibers. First, accuracy for obtained
results is examined briefly = Then the computed
eigenvalues and field distributions of higher-order
modes obtained by the proposed method are shown in
detail for the two cases of An=0.6% (weakly guiding
fib>er) and An=10%. In the former case, it is confirmed
that the field distributions of each mode in LP11 mode
obtained by the present method are admixed with a
small amount of another mode which has the similar
two-lobe pattern, according to the degree of degeneracy.
Then different peak values appear between Ex and Ey.
These differences approach to zero as A n becomes
larger. Such a phenomenon in the weakly guiding fiber
is considered to be a peculiar one to the present method,
limited to the analysis of the LP11 mode which is in
approximate degeneracy. For further investigation of
such a case, we are now trying to improve our present

method to separate such an admixture of the related two

. modes in approximate degeneracy, taking the parity and

45

symmetry of the field into consideration.
In the connection problem of the two fibers with A



n=10%

in which the effect of the degeneracy mentioned

above can be neglected, mechanism of the occurrence of

the higher-order modes is made clear in detail, for the

transverse shifts of the two fibers.

It is confirmed that

the kind of the higher-order mode which appear in the

output

fiber can be predicted qualitatively according to

the polarization of the incident wave and the direction of
the shift between two fibers.

(Manuscript received January 26, 2001,

revised

manuscript received August 1, 2001)
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