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We propose a new method to design 3-branch optical power dividers. According to the scalar Helmholtz
equation, if a complex field distribution is given, then one corresponding refractive index distribution is de-
termined uniquely. On the basis of this relationship, we first make up an ideal field which ensures smooth
power division in the branching region, and next derive the refractive index distribution from this ideal field.
Since the derived refractive index distribution has non-zero imaginary part and a complicated profile, it is
almost impossible to fabricate the index distribution as derived. We discretize the real part into several
levels and set imaginary part zero from a practical point of view. Three-branch waveguides designed by this
procedure accomplish very low loss and equal division.
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1. Introduction

Three-branch optical power dividers are one of the
key elements in optical circuits. However, designing
3-branch élements is more difficult than designing Y-
branch elements because we must pay attention not only
to loss reduction but also to equal division. It is known
that a simple fork-type 3-branch waveguide, as shown in
Fig. 1, distributes more than half of the incident power
to the center branch ™. Therefore, special structures
are necessary to divide optical power into three equal
parts 3~®),

In the previous studies, 3-branch waveguides are de-
signed on the same concept where the main attention is
directed to inventing a special structure. .

On the other hand, we take quite a different ap-
proach. We first consider an ideal field which propa-
gates through the branching region losslessly. Then the
refractive index distribution is derived from this ideal

Fig. 1. Structurel of simple fork-type 3-branches
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field by solving the Helmholtz equation inversely. Fi-
nally, low-loss 3-branch structures are realized by the
practical trimming -of the derived index distribution.

2. Design method

For the sake of brevity and saving calculation time,
we treat a 2-D problem. Suppose that TE waves prop-
agate along the z direction in the slab waveguide which
is uniform along the y direction. We also assume time-
harmonic fields with the e/“* dependence. The com-
plex amplitude ¢ representing E,, satisfies the following
scalar Helmholtz equation.

We consider the 3-branch waveguide as shown in
Fig.2 where the branching region is illustrated as a
black box. It is assumed that we excite the dominant
mode in port I. Since the input waveguide has a con-
stant width and a constant refractive index along the z
direction, the field ¢1(z) at z = 0 also represents the
dominant mode.

The complex field ¢5(z) at z = [ realizes the lossless
equal division when it propagates toward the positive z
direction. We can synthesize such a special field in the
following procedure: As shown in Fig.3(a), we inject
lightwaves into ports O; and Ogz in phase and each port
is assumed to carry one third of the power of ¢;(z). We
then carry out BPM calculations toward the negative
z direction. Taking complex conjugate of the resultant
field at z = I, we obtain ¢5(z). Next, we inject light-
waves having the same power into port O3 and carry

‘out BPM calculations toward the negative z direction

as shown in Fig. 3(b). Taking complex conjugate of the
resultant field at z = I, we obtain qﬁg(z)
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Fig.2. Concept for 3-branches.
z=1

(a) Excitation of both side branches

0,

z=1
(b) Excitation to the center branch

Fig.3. Superposition in order to make ¢»(z).

Superimposing these two ﬁelds,fwe obtain the field
@P2(z) as

¢a(w) = {65 () + ¢5 (2) exp(j&)} exp(jor) -+ (2)

which not only propagates toward the positive z direc-
tion losslessly but also is divided equally into ports Oy,
0y, and Os regardless of the values of ¢ and a. This
is based on the following two principles: (1) If we find
out a solution of the Helmholtz equation, its complex
conjugate is also a solution which expresses lightwaves
propagating toward the inverse direction. (2) Because
the Helmholtz equation is a linear equation, (2a) any
field made by a linear combination of two solutions is
also a solution; (2b) any solution multiplied by a con-
" stant is also a solution. ‘

In the viewpoint of field, the black box in Fig.2 is
considered to be a field transformer from ¢; to ¢, along
the distance {. Designing 3-branch waveguides is finding
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a realizable refractive index distribution n(z, z) which
accomplishes the above transformation.

Incidentally, if we solve the Helmholtz equation (1)
for the refractive index distribution n(z, z), then n is
determined uniquely in terms of the field distribution
by the following expression:

EYEY
"o %{Wfﬁ}

Using this principle, we propose the following design

method: We first make up an ideal field distribution
¢(z, z) in the black box in Fig.2 artificially, following
which the index distribution n(z, z) is derived from the
ideal field distribution by using (3). ‘

For the ideal field, we assume the distribution

¢(CL‘, Z) = 1,b(113, z) eXp{—jk()TLe(Z)Z}

where 1)(z,z) varies moderately along the z direc-
tion while exp{—jkon.(z)z} varies rapidly. The term
exp{—jkone(z)z} works merely to shift the refractive in-
dex up or down as a whole along the x axis. It is ¥(z, 2)
that yields the index variation of significance. The func-
tion 1(z, z) is constructed by interpolating ¢;(x) and
¢2(z) linearly as

¥(z,2) = {(1 — a)¢1 + ag} b(2)

where a = z/l. In (5), b(z) is introduced to keep the
power invariant along every z location. Thé b(z) is so
determined as to keep the following equation invariant:

PG [ 1{(-a)di+ad}bz)? s ©
— 00

The linear interpolation of (5) is carried out on the
complex plane. In this case, relative phase angles be-
tween ¢1(z) and ¢o(z) are of great significance. For
example, if we change « in (2), the interpolation leads
to a different result.

Here, we suppose the following: The phase angle of
¢1(x) has 0° anywhere on the z coordinate; the phase
angles of ¢5 and ¢S take 0° at z = 0.

In (2), there are two parameters ¢ and o to adjust the
phase angle of ¢2(z). For the sake of visual understand-
ing of the parameter ¢, we introduce a new parameter
Tp in stead of using a. The parameter x, expresses the
special point where the phase angle of ¢»(z) becomes
180°. After giving the value of ¢, we make the phase
angle of ¢ equal to 180° at z = +x,, by setting a prop-
erly.

Since the phase difference between ¢ (z,) and ¢o(z))
is 180°, the ideal field made by interpolating ¢; and
¢2 becomes zero somewhere on the z coordinate deter-
mined by the line z = +x,. How to determine the value
of z, and ¢ is described later.

Substituting the ideal field of (4) into (3), we obtain
the refractive index distribution. If we could realize such
an index distribution, lightwaves would propagate loss- ‘
lessly and be divided into three equal parts. However,
the index distribution n(z, z) obtained by (3) is almost
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impossible to fabricate. The n(x, z) has non-zero imag-
inary part which means gain or loss in the material.
Gain, in particular, cannot be realized by any passive
material. In addition, the spatial profile of the real part
of n(z, z) is very complicated.

Therefore, we must trim the index distributions ob-
tained by (3) to make it feasible. Following two trim-
ming schemes are necessary.

(1) .imaginary part of n(z, z) is set to be zero.

(2) real part of n(x,z2) is discretized into several

values. ‘

In practice, we employ triple-valued discretization
from a fabrication viewpoint. As three values of in-
dex, we take the core index ny, clad index ng, and third
one ng which is higher than the core index. We deter-
mine trimmed indices ng having only real values by the
following simple rule:

ny Re(n) e —2}—n2
ng =< no n1t na < Re(n) e ;_ngv (7)
‘ N % n3
N3 5 < Re(n)

The trimming operation in (7) usually reduces the
performance of the 3-branch waveguide severely. Actu-
ally, the key point of this study is how to construct the
ideal field which is not severely influenced by the above
trimming operation.

Suppose that the waveguide width, clad index, core
index, wavelength, and branching angle 6 are given. In
order to minimize the influence of the trimming opera-
tion, we optimize the following factors.

(1-1) 1 length of the black box in Fig. 2.

(1-2) w space between the branches in Fig. 2.

(1—3) nsa
discretization in (7).

(1-4) ¢

(1-5)

and ¢5(x) in (2).
Tp

2

) { [ ey s
i@ P [ 160 P

where ¢4 () expresses the field obtained by the follow-
ing procedure: We set the field ¢;(z) at z = 0 and carry
out BPM calculations in the black box in Fig. 2 with the
index distribution derived by applying (5),(4),(3), and
(7) in turn. The ¢5(x) is the resultant field at z = [.

In order to evaluate F» once, we first solve 1-D op-
timization problems as many times as the longitudinal
steps to obtain n.(z), and then run the BPM coding
once from z =0 to [.

Eq. (9) expresses the correlation between ¢5(z) and
¢2(z), which should take the maximum value when the
influence of discretization of the real part and neglect
of the imaginary part of the refractive index is mini-
mized. In order to determine a set of optimum values
for w, 1, £, xp, and ng, we use conjugate gradient method
in the 5-D searching space. Among these 5 parameters,
Zp, &, and ng are more crucial than the remaining two

Eq(l,w, &, zp,ng)

9)

 parameters.

value of the third refractive index for
relative phase difference between ¢ ()

location where the phase angle of ¢2(z)

becomes 180°. This is adjusted by set-

. ting « properly in (2)
(2)  ne(z) function of z in (4).

When a set of parameters [, w, ng, &, and x, is given,
the function n.(z) in (4) is so determined as to minimize

the following evaluating function E; at any z location:

E(z) = /TRG{H(%Z)} ~ na(z, 2)]” ¥ (=, 2)| dz (8)

— 00

The right-hand side of (8) expresses a sum of the
square of error between the original and discretized in-
dex distributions with the ideal field as a weighting func-
tion. Decreasing values of F; will reduce the influence
of discretization.

All of 5 parameters [, w, na, &, and z, are so deter-
mined as to maximize the following evaluating function:
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For saving the calculation time, it is assumed that
the four parameters except w take continuous values
whereas w alone takes discrete values such as w/\ =
1,2,3,

3. Numerical results

3.1 Parameters fixed in numerical simulations
The parameters fixed in the following numerical sim-
ulations are as follows: The core index is 1.503, clad
index 1.5, and waveguide width 4\. This waveguide is
under single-mode operation with the normalized fre-
quency v = 0.7597/2. The index distribution in the ‘
black box in Fig.2 is given by a bitmap format whose
resolution is such that Az = 0.1\ and Az = A. There-
fore, ne(z) that minimizes (8) is determined at discrete
points z/A =0,1,2, [ by solving a problem of min-
imum value searching in one dimension. Numerical sim-
ulations are carried out by FD-BPM based on the pade
(1,1) approximation ™ ®. Sampling steps in FD-BPM
are taken as Az = 0.1\ and Az = 1), and the reference
refractive index of BPM is set to be 1.5.

3.2 Results when the branching angle § = 6°
We show a result when the branching angle § = 6°.
Maximizing the evaluating function (9), we have ob-
tained the optimum values as w = 1A, [ 69X,
ng = 1.5155, z, = 6.4), and £ = 73° by the conju-
gate gradient method. The value of evaluating function
E5 in (9) is 0.9811 in this case.

In the above situation, the fields ¢1(z) and ¢ao(z)
at the entrance and at the end of the black box, re-
spectively, are shown in Fig.4. The solid lines express
absolute values of the complex field while the broken
lines express its phase angle. The gray regions express
the core regions. The phase angle is expressed between
—180° ~ 180°. In Fig.4(b) the phase angle of ¢o(x)
becomes 180° at z = £6.4A(= xp).

Fig.5 shows absolute values of the ideal field ¢(z, z)
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Fig.5. Ideal field obtained by interpolation.

synthesized by (5). The absolute amplitude of the ideal
field becomes zero at x = +6.4\(= z,) and z >~ 10A.
Substituting the ideal field into (3) and trimming the
resultant index distribution by (7), we have obtained
the index distribution shown in Fig.6. The darkest re-
gion expresses the area of highest index. The value of
index of this area is 1.5155 ( = ng ). In this case, ne(z)
obtained has values as shown in Fig. 7.

Exciting the input port with its dominant mode, we
obtain the result of BPM as shown in Fig.8 which is
expressed by absolute values of the field. There exist
some differences between the ideal field of Fig. 5 and the
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Fig.6. Synthesized index distribution when 6 = 6°.
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Fig.7. Values of n. versus z/)\\

BPM results of Fig. 8 in the region z = 0 ~ 69\. How-
ever, a value of evaluating function Ej in (9), expressing
correlation between the ideal field and BPM result at
the end of the black box, is 0.9811, which is considered
to be a very high score. Therefore, this structure can
achive high performance with a power distribution ra-
tio of 32.2% : 33.6% : 32.2%. The remaining 2.0% are
accounted to be loss.

3.3 Numerical results when the branching an-
gle 6 =4...8°  In the same manner, we design for
the cases where the branching angle 8 = 4,5,6,7, and
8°. Table 1 lists the optimum 5 parameters and values
of evaluating function (9) at the optimum point.

The parameters shown in Table 1 give the structures
shown in Fig. 9(a)~(e). The structure of Fig. 9(c) is the
same that described in Fig.6.

In the case of the simple three-branch shown in Fig. 1,
the length of the branching region becomes shorter as
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Fig.9. Design for the branching angle 6 being 4° ~ 8°
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Fig.8. Result of BPM simulation.

the branching angle gets wider. This is the case with al-
most all branching waveguides because a wider branch-
ing angle requires that lightwaves bound to both side
arms have to leave from the center axis more quickly.
Our structure is not an exception at all: The wider the
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Table 1. Converged values of optimized 5 param-
eters and values of evaluating function.
O [wN [IA] ng | =p M| E[°]] Byin (9)
4 2.0 | 100 | 1.5070 [ 7.0 70 | 0.9949
5 1.0 72 | 1.5125 | 6.4 50 | 0.9802
6 1.0 69 | 1.5155 | 6.4 73 | 0.9811
7 1.0 65 | 1.5182 | 5.7 90 | 0.9694
8’ 1.0 59 | 1.5229 | 5.0 97 | 0.9598

branches expand, the shorter the length of black box {
becomes, as shown in Table 1.

In the black box, lightwaves targeting both side arms
have to be turned smoothly and be injected straight to
both side arms. It is expected that we need a distance
somewhat longer than that of the simple three-branch
for this purpose. Every value of [ in Table 1 is 15X ~ 25
longer than that of the simple three-branch.

It is also observed in Table 1 that a higher contrast
of refractive index is necessary as the branching angle
becomes wider.

The structures shown in Figs.9(b) and 9(c) might
look somewhat different each other. However, injecting
lightwaves into the input port and carrying out BPM
calculations for both structures, we have very similar
field distributions which concentrate tightly around the



Table 2. Power distribution ratios and losses

0 °1 | P 1% | P (%] | Pr [%] | Loss (%]
4 33.1 334 33.1 0.4
5 33.9 30.2 33.9 2.0
6 32.2 33.6 32.2 2.0
7 33.3 30.5 33.3 2.9
8 31.2 33.4 31.2 4.2

center axis of the black box. Hence, differences in the in-
dex distribution which lightwaves actually feel are much
smaller than their appearances. Indeed, the index dis-
tributions before trimming for Figs. 9(b)and 9(c) look
very similar to each other. It is considered that the
index trimming has exaggerated the differences of the
structures.

Above discussions suggest that the structures of Fig. 9
have the following properties in common: The center re-
gion with lowest index accelerates lightwaves while re-
gions on both sides with the highest index retard them.
These effects produce such a convex wave front at the
end of the black box as shown in Fig.4(b).

For the structures in Fig. 9, we have excited the domi-
nant mode at each input port and carried out BPM cal-
culations. Power distribution ratios in three branches
and losses are summarized in Table 2 where P, P,, and
P, express the power distributed to the left, center, and
right branches, respectively. The remaining is consid-
ered to be loss. For every branching angle, equal divi-
sion and low loss property are realized satisfactorily.

The values of E3 in Table 1 express the correlation
at the end of the black box between an ideal field and
a field obtained by a BPM calculation. As mentioned
previously, lightwaves are divided into equal three parts
losslessly when the evaluated value E, is unity. When
Ej5 is less than unity, Tables 1 and 2 indicate what fol-
lows:

o We have losses, the amount of which is nearly equal

to 1 — Es.

e We have slight power imbalance in the output ports

but any regularity is not recognized. .

4. Summary

In order to design 3-branch optical power dividers,
we have proposed a new method which have a different
concept from the previous studies. Using the proposed
method, we have synthesized 3-branch waveguides of
low-loss and equal division. )

The proposed method can be applied to the design of
3-branch waveguides having an arbitrary distribution
ratio. In addition, this method have a possibility to de-
sign some other optical elements: 4-branch waveguides,
asymmetric Y-branch waveguides and so on.

(Manuscript received January 26, 2001, revised July
16, 2001)
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