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Two-dimensional phase unwrapping is a key step in extraction of digital elevation models (DEMs) from
interferometric synthetic aperture radar (IFSAR) data. Least-squares (LS) algorithm is one of major ap-
proaches to phase unwrapping, and weighted LS algorithm offers great potential if weights are appropriately
obtained. However, the determination of weights is still a critical problem. As noise increases, binary weights:
becomes more difficult to be determined, because of high possibility of coexisting of noise pixels and non-noise
pixels in same histogram bin. Hence instead of determining binary weights, this paper presents an effective
approach to determining continuous weights by incorporating weighted LS algorithm into a minimization
method. The continuous weights are estimated by minimizing a norm of the differences between real values
and calculated ones. The proposed approach is illustrated through a simulative example in which the input
data are corrupted by both uniformly distributed noise and scattered noise. By comparing errors of phase
unwrapping by binary weights and those by continuous weights, the latter turns out to be superior to the

former.
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1. Introduction

Synthetic aperture radar interferometry is a technique
for the generation of high-resolution DEMs. Phase un-
wrapping is a key processing step in extracting DEMs
from IFSAR data®™ ®®_  The main processing steps
of IFSAR are shown in Fig.1. An IFSAR image (i.e.,
phase difference image) can be formed by multiplying
the complex reflectivity at each point of one image (i.e.,
master SLC image) by its conjugate value in the sec-
ond image (i.e., slave SLC image). The information of
ground elevation is involved in this phase difference im-
age. However, the phase difference is only in modulo 27
(wrapped form). To estimate the elevation at each point
of the image, the correct integer number of 27 phase
cycles must be added to each wrapped phase value.
This processing in which 27 ambiguity is solved is called
“phase unwrapping”. Phase unwrapping algorithms can
be organized into two main classes : path-following
algorithms ® ® and minimum-norm algorithms (7~09,
The path-following algorithms use localized operations
that follow paths through the wrapped path; while the
minimum-norm algorithms take a more global approach

that seeks to minimize some measure of the difference .

between the gradients of the wrapped phase and those
of the unwrapped phase. Both algorithms can work well
if the images do not contain noises.

‘When certain phase values are corrupted due to noise,
the corrupted phase values should be properly weighted
in order that they do not affect the unwrapping re-
sults. Ghiglia® assumed that if we have some addi-

-tional information that allows us to define a correspond-

ing weighting array, we could prevent the noise phase
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value from having any influence on the results by as-

signing a weight of zero to this inconsistent data. In
his study, the weighting array is defined in the case of
uniformly distributed noise. Pritt(® introduced an al- -
gorithm of defining the initial phase weights not only for
uniformly distributed noise but also for scattered noise.
In the algorithm, the weighting array was defined based
on the standard deviations of phase partial derivatives
and the threshold was determined as the minimum lo-

‘cation of re-mapped histogram bins.

The weighting array mentioned above is binary
weights. The challenge of defining a good binary weight-
ing array is to define the threshold so that total num-
ber of zero-weighted pixels is small but the corrupted
phases can be picked out. Otherwise, if the threshold
is too low, not enough pixels will be mask out, which
causes many low-quality phase values to corrupt the un-
wrapped solution; on the other hand, if the threshold
is too high, then too many pixels will be masked out,
so that regions will be isolated from one another. In
binary weight determination, the threshold, which di-
vides pixels into noise pixels and non-noise pixels, is de-
cided by standard deviation values. The pixels of same
standard deviation values may properly be included in
same histogram bin; for example, the noise pixels and
the non-noise ones, which have same standard deviation
values, may coexist in the same bin. Thus, if one bin
is determined as zero, some non-noise pixels will simul-
taneously be regarded as noise pixels, vice versa. The
stronger the noise is, the higher the possibility of coex-
isting of noise pixels and non-noise pixels in the same
bin is. Therefore, it is not always easy to simply decide
one bin to be zero or unity as noise increases, and it is
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desired that each histogram bin needs a suitable weight
between zero and unity.

In Ref.(8) and (9), the authors mentioned real
weights(or true weights). Ghiglia ® indicated that one
can have full confidence that the converged solution
will be correct in true weighted least-squares sense and
Pritt  pointed out that there is no reason one can-
not use real-valued weights. Therefore, the present
paper attempts to propose a practical approach ¢ of
determining the weight values by incorporating least
squares algorithm into NLSSQP method in which Se-
quential Quadric Programming method is employed to
solve Nonlinear Least Square optimal problems with
constrained conditions. Theoretically, each pixel needs
a real weight. However too many real weights will cost
much computation time in NLSSQP method, so the
real weights will be calculated in ten levels in this pa-
per. Hereafter, these weights will be called continuous
weights. In the approach, the low-quality pixels can be
masked as zero; the high-quality ones can be masked as
unity and other pixels can be masked as suitable weights
between zero and unity. Strictly speaking, the binary
weight phase unwrapping is only one special case of the
present approach. ‘ ‘

2. Methods

2.1
ping

The least squares algorithm to phase unwrapping ob-
tains an unwrapped solution by minimizing the dif-
ferences between the discrete partial derivatives of
wrapped phase data and the discrete partial derivatives
of the unwrapped solution. Given the wrapped phase
;; defined on a rectangular grid by 0 = ¢ = M and
0 = j= N, we seek an unwrapped solution ¢;; on the
same grid. The partial derivatives of the wrapped phase
data are defined to be row and column differences as

Weighted Least Squares Phase Unwrap-

A;'Ej = WYij — Pisq,j wrrrrrr e (1)
DY = vij — i1 (2)

Because these differences must be computed as
wrapped phase differences, so the value 27 is added
or subtracted as necessary to ensure the differences lie
in interval [—m, 7). The differences are defined at the
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boundaries by means of the boundary conditions:

T _ATAT AT (3)
A L BMy1,j M
y = y y = y DR
Dip==051, Binp1=—Liy (4)

The differences between the partial derivatives of the
solution and the partial derivatives described by Eq.(1)
and Eq.(2) must be minimized as follows

Zw%(% — i1, — OF)?
ij

+ Zwiyj(@j — ijo1— Agj)ﬁ N T,

if

x Yy 3 3
where wf; and w; ; are weighting arrays expressed by

;ﬂj = mrlln(ng’ w’?—l,j) ..................... (6)
w% = min(w?j,w?’j_l) ..................... (7)

The least squares solution to this problem is defined
by the equation

Wiy (Piv1,; — ij) — wiz(Pis — di-1,5)
w7 541 (Pij+1 — Gig) — wii(is — dij—1)

where p;; is defined by

Pij = Wiy1; Biyry —wis OF
g A —wlAY
The classical Gauss-Seidel relaxation method solves
Eq.(8) by iterating on the following equation

bij = (Wiy1 ;0i+1,5 + Widi-1,5
Fwl i 1@i41 + widi -1 — pig)/vig - (10)

where v,; is defined by

Vij = Wiy 5+ Wi + Wy 54 + Wy

2.2 NLSSQP Method

NLSSQP method is one of the optimization methods
in which Sequential Quadric Programming(SQP) is em-
ployed to solve Non-linear Least Square (NLS) problems
with constrained conditions. The weight values are esti-
mated by minimizing a norm of the difference between
real values and calculated ones. The relationship be-
tween real values and the calculated ones is



#°: real value vector; ¢(w,v): calculated value vec-

tor; w: weight vector; %: known input data vector;:

r{w): error vector.
The most comprehensive function to be minimized in
the weight value estimation procedure is given as:

min{f(w)} =0 - e (13)
where
1 M M )
flw) = 3 Z Z(w(w)) ................ (14)
i = ¢?j —hig e (15)

Egs.(13) and (14) are commonly called Least Square
problem. Due to the complexity of the relationship of
weights and unwrapped phase values, the relation be-
tween r(w) and w is usually nonlinear; therefore the
problem described above is a NLS problem. In order to
solve such a problem, this paper employs the NLSSQP
method *?. The detailed procedure is described in the
following. ‘

First let’s see the following nonlinear least square
problem:

Constrained conditions:

g(w) <0, gw) = (g1 (W), - gm(w))" --- (16)

h(w) = 0, h(w) = (ha(w), - - hm(w))T -+ (17)

and the objective function is

S (rigw)?y oo (18)

j=1

M=

N
minf(w) = min{

1
2 4

.
Il
hy

Denoting the Lagrangian multiplier vectors of con-
straints g(w) < 0 and h(w) = 0 by X and u, the La-
grangian function is defined by:

L(w, A, )

= %r(w)Tr(w) +ATg(w) + pTh(w) - (19)

The Hesse matrix corresponding to w is given as:

MxN
szL = J(w)TJ(w) + Z i (w) VQ T (w)

j=1

m l
+Y XNV gi(w)+Y 1y 7P hy(w) - (20)
i=1 J=1 ‘

where J(w) stands for the Jaccobi matrix of r(w).
The B matrix in SQP method can be expressed as:
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B, = J(wk)Tj(wk) R o (21)

Then the algorithms of NLSSQP method can be de-
scribed briefly as follows:

Step 0: To set up initial wg, the matrix of Ay, Cy and
parameter 6 > 0, w € (0,0.5), 7 € (0,1), k = 0.

Step 1: When the wy, Ak, C are known, we can solve
the following QP problem with respect to d.

mimmize—lidT(J(wk)TJ(wk) + Ap + Cy)d

+T(wk)TJ(wk)d .............. (22)

subject to
g(wr) + Tgwp)d <O vee (23)
h(wk) + Vh(wk)d B T (24)

The solution of this problem is di by which we can
determine the searching direction. Correspondingly, La-
grangian multiplier vectors of constraints g(w) < 0 and
h(w) = 0 become Mgy and pgy1, respectively.

Step 2: If (wg, Ak+1, e+1) satisfy convergent condi-
tions, then stop; otherwise, go to step 3 to judge the
convergence.

Step 3: To determine oy in the following procedure
(Line Search):

Step 3.1: Let vpy =1 and j = 1.

Step 3.2: Regarding the following line search evalua-
tion function:

b5 (w) = f(w) + dmaz(0, g1(w)," - -, gm(w),
()], - -y [ (w)]) e oo (25)

if the next inequality is satisfied,

65(wk + I/kjdk) < Gg(wk) — wykjdg
(J(wk)TJ(w;c) + A + Ck)dk

then let oy = vy, and go to Step 4; otherwise, go to
Step 3.3.

Step 3.3: let vk j+1 = TVkj, J = j + 1, then go to Step
3.2 :

Step 4: Let wiy1 = wg + agdk.

Step 5: Renew the matrixes of A and Cj to produce
A}c-}—l and’ Ck+1.

Step 6: Let k =k + 1, go to Step 1.

The computation procedure is briefly summarized in
Fig.2.

3. Results and Discussions

3.1 The Results of Unweighted Phase Un-
wrapping

‘In order to illustrate the effectiveness of the present
approach, we begin with simulated phase data of a 256
X 256 pixels without noise as shown in Fig.3(1). These
phase data increase linearly from the upper left corner
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The flow chat of the proposed approach.
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Fig.3. (1) wrapped phase input without noise; (2)
unwrapped phase solution by unweighted LS; (3)
€rror map.

to the lower right corner. The unwrapped solution by
unweighted LS method is given in Fig.3(2). We could
not judge from Fig.3(2) whether the unwrapping is cor-
rect or not, because the range of the unwrapped solu-
tion is so large. Hence, error map, which shows the
difference between unwrapped phase solution and real
phase data, is used . Unlike path-following algorithms,
least-squares algorithms do not produce an unwrapped
surface that is congruent to the wrapped phase, so it
is necessary to make surface congruent by congruence
operation ¥ before making error map. Fig.3(3) is the
error map, where black indicates no difference. Because
the original input is noise free and totally consistent, the
unwrapped phase solution and real phase data are al-
- ways agreement and phase unwrapping by unw eighted
LS method is perfect.

Next, the noise free data depicted in Fig.3(1) are cor-

rupted with both uniformly distributed noise and scat- .

tered noise (Fig.4(1)); correspondingly the unwrapped
solution by unweighted LS and the error map are shown
in Fig.4(2)-(3). Because of noise, the differences (gray
level from grey to white indicates difference from small
to large) exist in most parts of the error map of Fig.4(3).
Therefore we can conclude that the unweighted phase
unwrapping is not effective for noise data, and that the
weighted phase unwrapping is necessary to improve such
unwrapped solution.

3.2 The Results of Bmary Welght Phase Un-
wrapping

Before we apply binary weight phase unwrapping, we
first explain the algorithm of Pritt  for automatic de-

WHC, 122818, FR14E
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Fig.4. (1) wrapped phase input with both uni-
formly distributed noise and scattered noise; (2)
unwrapped phase solution by unweighted LS; (3)
error map ‘

termining threshold. The algorithm can be concisely
described in the following three steps:

Step 1: The phase standard deviation values are cal- .
culated by Eq.(27)

Zn = \/Z(Ag. — Az, )2
2 — B2 /82

where A7, and Afj are the partial derivatives of the

phase defined as Eq.(1) and Eq.(2); A’”. and Ay are
the averages of these partial de11vat1ves in the kX k
windows.

Step 2: The histogram of the phase deviation values
is obtained, in which the values are scaled to range 0-1
and placed into ten histogram bins. Then the values
are re-mapped again into ten histogram bins in which
the first and last bins each contain about 5 percent of
re-mapped values. At last, the location of the minimum
is selected as threshold.

Step 3: The values larger than the threshold are de-
fined to be zero, and the remaining values are defined
as unity. ‘

Fig.5 shows the re-mapped distribution histogram
and the automatically selected threshold by the algo-
rithm of Pritt. Fig.6(1) shows binary-valued weight
data. In the figure, the black pixels are defined to be
zero and the remaining pixels are defined to be unity,
in order that the influence of noise phase data can. be
prevented by assigning a weight of zero to the inconsis-
tent. From error map of Fig.6(3), it is shown that the
differences still exist in the image, especially at the left
up corner and in the location of uniformly distributed
noise. But if Fig.6(3) is compared with Fig.4(3), it can
be found that binary weight phase unwrapping is bet-
ter than unweighted phase unwrapping. It is apparent,
however, that the binary weight phase unwrapping can
not work well. It is for this reason that the present
paper attempts to propose a continuous weight phase

unwrapping.

3.3 The Results of Continuous Weight Phase
Unwrapping

3.3.1 Definition of Initial Weights  Theoret-

ically, each pixel needs a weight, but it is impossible
for us to calculate the weight of every pixel because too
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Fig.5. Histogram of binary weight distribution

(3)

Fig.6. (1) binary-valued weight data; (2) un-
wrapped phase solution; (3) error map.

many weights will cost much computation time. Hence
after Step 1 and Step 2 as described in section 3.2, we
need to proceed the following Step 3,

Step 3: The initial weights of the pixels are defined
in ten parts (W1,W2,--,W10) according to ten his-
togram bins. For example the initial weights of pixels
whose phase deviation values are between 0.0 — 0.1 are
defined as W1.

3.3.2 Constrained Conditions In order to
make the NLSSQP method more effective, the following
constrained conditions of weights are defined:

gJ(W) =W, —1<0 oo, (28)

g; (W) = -W; <0
(t=1,2,---,10;7=1,2,---,m) (29)

gWi) — g(Wi1) > 0(i=2,--+,9) ----r0 v (30)

Without the constrained conditions, the computation
time will be considerably long; and sometimes, we will
obtain irrational results such as negative values or the
ones larger than unity.

3.3.3 Results
ous weights by the present approach. The first and the
last bins are defined as 0.0 and 1.0 which are the same
as binary weights, the others are defined between 0.0
to 1.0. Fig.8(1) shows continuous-valued weight data.

Fig.8(2) and Fig.8(3) show the results of unwrapped

data and error map.

Comparing the unwrapped solution and error map
by continuous weights with those by binary weights, we
can see that unwrapped solution and error map by con-
tinuous weights(Fig.8(2)-(3)). are better than those by

Fig.7‘ shows the selected continu- -
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Fig.8. (1) continuous-valued weight data; (2) un-
wrapped phase solution; (3) error map.

binary weights(Fig.6(2)-(3)). Not only the errors are
reduced at the left up corner but also the errors within
the location of uniformly distributed noise are greatly
reduced. ,

In order to estimate the approach quantitatively, we
use two Mean Square Errors:

| M-1N-1
€= 7 ' wii(¢i; — bi1,5 — OF)°
=1 j=0
9 M-1N-1
TN . wii(Big — ¢ig—1 — A%)? (31)
=0 j=1
| M-1n-1
042
e = = . (g = GO)2 +eeeeeens (32)
=0 35=0

where e; is a convergent error in phase unwrapping;
and e, is an absolute error in NLSSQP method. Table
1 lists weights, e; and e; of unweighted phase unwrap-
ping, binary weight phase unwrapping and continuous
weight phase unwrapping, respectively. As can be seen,
unweighted phase unwrapping does not work well for
noise input data, while weighted phase unwrapping is
effective. Comparing two kinds of weighted phase un-
wrapping, not only the e; of continuous weight phase
unwrapping is about 10 times smaller than that of bi-
nary weight phase unwrapping, but also the e; of the
former is about 30 times smaller than that of the latter.
The advantage of continuous weight phase unwrapping
is more evident, on the estimation of e3, which conforms
to the aim of phase unwrapping to obtaining unwrapped
data closest to real data. So it can be said that contin-
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Table 1. Analysis results

Unweighted | Binary Weight | Continuous Weight

PhU PhU PhU
wl 1.0 0.0 0.0
w2 1.0 0.0 0.031
w3 1.0 1.0 0.153
w4 1.0 1.0 0.417
wh 1.0 1.0 0.674
w6 1.0 1.0 0.765
w7 1.0 1.0 0.765
w8 1.0 1.0 0.828
w9 1.0 1.0 0.993
w10 1.0 1.0 1.0
€] 0.018 0.0037 0.0003
eg 73.77 40.53 1.48

p.s. PhU means Phase Unwrapping

uous weight unwrapping is obviously superior to binary
phase unwrapping on this aspect.

4. Conclusions

The unweighted phase unwrapping can work well only
in the case of noise free. When phase values are cor-
rupted due to noise(e.g., uniformly distributed noise
and scattered noise), the weighted phase unwrapping
become desirable, in which the weight values are usu-
ally treated as binary ones. However, the binary weights
do not always work well as noise increases. In order to
improve the weighted phase unwrapping, this paper has
developed an approach to searching for the continuous
weights by incorporating weighted phase unwrapping
into a optimal method. The continuous weights are
evaluated by minimizing a norm of the difference be-
_ tween real values and calculated ones. The results of
the illustrative example indicated that the unwrapping
solutions obtained by continuous weights were better
than those by binary weights.

This approach is not perfect yet, though it. has the
potential of determining continuous weights. However,
the advantage of this method is that the phase unwrap-
ping algorithm is only one of the subroutines of the
proposed approach, so other more effective phase un-
wrapping method can be incorporated into it.

(Manuscript received April 27, 2000, revised Novem-
ber 24, 2000)
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