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A new

approach to emulate the driver’s decision making mechanism is proposed. This approach uses the powerful
techniques of fuzzy reasoning to deal with uncertainty and to smoothly blend behaviors induced by simultane-
ous goals, while being aware of the long history of equation based modeling. Moreover, an original algorithm'
is implemented in this system to imitate the driver’s self-learning from his on-road dr1v1ng experience and
to mimic his maneuvers over the brake and the accelerator pedals which reflect his approximation of the

appropriate acceleration for the actual situation.
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1. Introduction

Traffic congestion is a rising problem from which suf-
fer many cities around the world. Many solutions that
fall under the umbrella of Intelligent Transportation
Systems (ITS) have been proposed to help solve this
frustrating problem, including Advanced Traffic Man-
agement System (ATMS) for traffic assignment, Ad-
vanced Traveler Information System (ATIS) for dy-
namic route guidance and Automated Highway System
(AHS).

Traffic network is a highly dynamic, complex and un-
certain environment. A variety of approaches have been
developed to modelize this system in an attempt to sim-
ulate and evaluate the effect of using ITS technologies
before their costly implementation in real world .

Classically, in traffic modeling theory, these ap-
proaches can be categorized to two main levels: macro-
scopic and microscopic . Researchers who incorporate
individual behavior of vehicles in their simulation mod-
els (microscopic), the main components of which are
acceleration and lane changing, have achieved more re-
alistic results compared to those who model traffic as
fluid flow through a network (macroscopic)®. Since
the 1950s, researchers interested in simulating the traf-
fic at the microscopic level, have extensively studied
the modeling of the driver’s acceleration behavior, com-
monly referred to as the car-following model; they have
been focusing on equation based modeling (EBM). To
see some examples, refer to ¥, ®~ (&),

These efforts have proved some successes in simulat-
ing a real-world traffic network. However, they do not
faithfully emulate the complex and multi-ruled behav-
ior of the driver in an uncertain and partially known
environment such as traffic roads, as it was pointed out
by S.Kikuchi et al.¢”. In fact, the driver’s behavior is
influenced by a vague perception of the surrounding en-
vironment {(approximate velocity, headway, etc.) and
his decision making mechanism is driven by fuzzy rules.
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To overcome these deficiencies, new ideas have been
proposed throughout recent years, by using the pow-
erful inference mechanism in fuzzy logic which allows a
human-like reasoning and knowledge base to be directly
implemented in the model. The difference between the
two approaches is that, in EBM, the target system is for-
mulated as an accurate mathematical model, whereas in
fuzzy based modeling, an experienced human operator
of the system is modeled. To see some examples, refer
to (7) o (10) i .

This paper is concerned with the development of a

car-following model for traffic simulation environment.
A novel approach is proposed to imitate the driver’s
behavior and decision making mechanism. While con-
sidering the equation based modeling, the proposed ap-
proach takes advantage of the techniques used in fuzzy
set theory to manipulate uncertainty and to smoothly
blend behaviors induced by simultaneous goals.
Many developed models in the literature of traffic simu-
lation capture variety between drivers and classify them
as beginners or experts using some predefined param-
eters. In this paper however, a learning algorithm is
developed and incorporated in the system to emulate
as 'naturally’ as possible the learning process of the
driver from his on-road driving experience. This algo-
rithm allows also to mimic the driver’s manipulation of
the brake and the accelerator pedals, which reflects his
approximation of the appropriate acceleration for the
actual situation.

The proposed fuzzy logic controller is detailed in sec-
tion 2, the architecture of the system is sketched in
section 8, and description of the learning algorithm is
given in section 4. In section 5, simulation results are
presented along with their related discussions. The con-
clusion includes a short description of the ongoing work.

2. The Fuzzy Logic Controller

Our car-following model has been originally inspired
by the model proposed by Qi Yang®, which uses an’
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equation based approach to calculate the acceleration
for different regimes: 1) Free-flowing regime: the head-
way is larger than a defined threshold h“PP", there is
no interaction with the front vehicle ; 2) Emergency
regime: the headway is smaller than a defined thresh-
old htower the driver decelerates to avoid collision with
the leading vehicle and keeps a safe headway; and fi-
nally, 3) Car-following regime: the headway is between
Rurrer and hlower'

Unlike the original model, the proposed model deals
with these regimes in a fuzzy context. This section is a
detailed description of the design of a fuzzy logic con-
troller (FLC) for these 'fuzzy regimes’. The FLC con-
sists of three inputs, one output and some 20 rules.
Notation in the following paragraphs uses the index ; for
Leading vehicle’s variables and ; for Following vehicle’s.

2.1 Input variables ‘

Speed (V§):  Velocity of the following (subject)
vehicle.

Linguistic terms: { slow, medium, fast, less (than)
des(ired), desired, more (than) des(ired) }. Member-
ship functions (MFs) are generalized bell functions.

The desired speed is mainly dependent on the traffic
condition, driver skills and trip motivation. Its MF is
defined mainly by its position, i.e., its center c¢. A fuzzy
inference system (FIS) is used to compute c.

First, a normalized score in the interval {0,1] is given
to the traffic condition as follows:

Vs Td

TC =50~ 35

where: T'd is the traffic density, [0,180] Veh/Km/Lane.

Vs is the visibility, {0,5] Km, measured with no obstacle
ahead (e.g. car or building).

TC is then fuzzified using the terms “good”,
“medium” and “bad” with MFs centered respectively
at 0, 0.5 and 1.

Rules of this fuzzy inference system (FIS) are:

(traffic condition==good)=(des_speed=fast)
(traffic condition==medium)=-(des_speed=medium)
(traffic condition==bad)=(des_speed=slow)

Where “fast”, “medium” and “slow” have the same MFs
defined for speed variable.

Finally, c = COA(des_speed) + k, where COA stands
for centroid of area and k is a relatively small random
number used to capture the variety between drivers in
trip motivation.

The decision curve for desired speed, the overall input-
output curve of this system, is given in Fig.1.

Relative Speed (R):  Relative speed of the lead-
ing vehicle, R =V, — V. :

Linguistic terms: { neg(ative), zero, pos(itive) }. MFs
are trapezoidal functions. ‘

" The relative speed perceived by the driver is a func-
tion of the headway, i.e., when the driver is too close
to the front vehicle, “zero” tends to be a singleton [0],
while “neg” and “pos” tend to be crisp sets, [-50,0] and
[0,50] respectively. For a larger headway, the member-
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Fig.1. Decision curve for desired speed

ship function “zero” tend to have larger core! and larger
slope. “neg” and “pos” MFs move accordingly satisfy-
ing the condition of € — completeness with € = 0.5.
Headway (H):  Distance to the leading vehicle.
Linguistic terms: { small, medium, large, not_safe }.
MF's of the three first terms are generalized bell func-
tions. .
The term “not_safe” corresponds to the minimum dis-
tance such that, if the front vehicle brakes with its max-
imum deceleration rate (M DR;) for any reason and the
following vehicle does so to avoid collision, the following
vehicle will stop at an arbitrary stopping distance Stop
to the front vehicle, (e.g. Stop = 2m).The minimum
safe distance is calculated using the following equation:

V2 Vi

8= 3 MDE, ~ 7+ MDE,

+ Stop

The “not_safe” MF is a trapezoidal function with pa-
rameters {a,b,c,d}, where: a =b =0, c= S, and d has
an arbitrary value. The distance d—c will be called safe
distance offset.

A fourth variable, the leading vehicle’s acceleration
(Al), is omitted: it takes the téerm “any” in all the rules.
Use of this variable will be explained in the next section.

2.2 QOutput variable

Acceleration (Ay):
ing vehicle. ‘

Linguistic terms: { (brake) hard, normal (decelera-
tion), neg(ative) med(ium), zero, pos(itive) med(ium),
max (imum) }.

® When “max”, the acceleration is equal to the max-

imum acceleration rate (MAR) which depends on,
the actual speed, see Tab.1.

Acceleration of the follow-

Table 1. Acceleration Rates'?
Speed(m/s) | <6 | 6-12 | 12-18 | 18-24 | >24
MAR(m/s*) | 3 24 | 1.7 | 1.2 | 1.2
MDR(m/s*)| -3 [-2.80|-2.74 | -2.59 [-2.43
NDR(m/s?) |-2.57 [-2.21 | -1.58 | -1.58 | -1.58

® “hard” is the acceleration when the driver decel-
erates to avoid collision with the front vehicle or
extends his headway to a safe range in emergency

TThe core of a fuzzy set A is defined as: core(A) = {a|ua(z) = 1}.
11 The same values in (¥ are used in this paper. .



regime. Mathematically speaking, this acceleration
is a function of {4;, R, H} and limited to the MDR

(see Tab.1) as shown below:
2

As =max{MDR, A — f—H} (1)

e When “normal”, the acceleration is equal to the
normal deceleration rate (NDR), see Tab.1. It cor-
responds to the case when the driver decelerates to
keep his desired speed in free-flowing regime.

¢ The “pos.med” and “neg.med” terms correspond
to the car-following regime; the acceleration is cal-
culated based on Herman’s general car-following

model 1
v
Af:aiHyiR ........................ 2)

Where a®, #* and 4+ are model parameters.
at, BT, v are used for accelerating (V; < V;), and
a~, B, v~ for decelerating (V; > V;) cases. De-
fault values for these parameters are taken from @2,
see Tab.2.

Herman Model Parameters
8
-1.67
1.08

Table 2.

o
2.15
1.55

Y
-0.89
1.65

acceleration

deceleration

o In case of “zero”, a small random number is as-
signed to the output variable.

The output terms correspond either to constants or
functions of the input variables; the overall output is
computed using the weighted average method:

0— Dp WrOr
ZT Wy

where w, and o, are the firing strength and the out-
put of the rt* rule, respectively. The proposed fuzzy
inference system is considered as of Sugeno type *9.

2.3 Rule Base Formulation of the rules is based
on a real human expertise on driving. The rule base can
be divided into three sets corresponding to the three
regimes.
Free-flowing regime is governed by the three following
rules:

(speed==less_des)& (headway==large)=(acc=max)
(speed==desired)& (headway==large)=(acc=zero)
(speed==more._des)& (headway==large)=(acc=normal)
In car-following regime, the acceleration is either

“neg_med” or “pos_med” depending on the relative
speed. Here is a sample of this rule base subset:

(speed==medium)& (rel==neg)& (headway==medium)
=>(acc=neg-med)
(speed==medium)& (rel==pos)& (headway==medium)
= (acc=pos_med)

Emergency regime is translated into a single and unique
rule: ‘ :

(headway==not_safe)= (acc=hard)
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3. System Architecture

A simplified diagram of the system architecture is’
“shown in Fig.2. ‘

INPUTS

Layerl LayerS

Layer2
W

Layer3 Layerd

L

Speed W W, NDR

OUTPUT

Relative ¢

Spaed ‘e Acc

VALY

Headway o4

Fig. 2. System flowchart

A functionally equivalent adaptive network of the
Sugeno fuzzy inference system is shown in the box titled
ANFIS % Here is a brief description of each layer in
the ANFIS:

Layer 1 The node function of a node ¢ in this layer
is:

O1,s = pa, ()

Where x is the input (e.g. speed), 4; is a linguistic term
(e.g. “slow”, “fast”, etc.) associated with this variable
and p 4, is its membership function. In other words, Oy ;
is the membership grade of x in A;. Parameters of this
layer are the parameters of the membership function
pa,(z). They are referred to as premise parameters.

Nodes corresponding to “slow”, “medium”, “fast”
for speed variable and “small”, “medium”, “large”,
“not_safe” for headway variable are the only adaptive
nodes in this layer.

Layer 2 Every node in this layer is a fixed node where
a T-Norm operator, an algebraic product in our system,
is applied to the incoming signals.

02,11 =W; = HA; (z):u‘Bi (y):u'ci (2)

In other words, each node output represents the firing
strength of a rule. ,

Layer 3 Every node in this layer is a fixed node.
The ith node calculates the ratio of the ith rule’s firing
strength to the sum of all the rules’ firing strengths.

W
Qe : = W; = ——rv
3,2 7 Z:L w;
Outputs of this layer are called normalized. firing
strengths. ‘

Layer 4 Every node i in this layer is an adaptive
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node with a node function:

Oy4,s = Wic;
¢; is the value of the output of the ith rule, (in Fig.2, it
is equivalent to MAR, MDR, NDR, or f;).

Typically, for a first-order Sugeno FIS, ¢ =
fi(z,y,2) = piz+qiy+riz+s;. Parameters of this layer
are the parameters of the function f; = {pi, qi,7i, S},
they are referred to as consequent parameters.In our
model, f; is the function of the corresponding neural
network box and its weight matrix is the consequent
parameter.

Note that the acceleration of the leading vehicle (4;)
is not a direct input to the fuzzy system but rather an
input to the neural network of the corresponding rule.

Layer 5 The single node in this layer is a fixed node
that computes the overall output as a summation of all
incoming signals.

_ E :-wici
() = Cr: = = -
n = 2=

This representation helps to understand how to im-
plement a learning algorithm into this system for the
premise and the consequent parameters. This issue, to-
gether with the function of the ANN box will be ex-
plained and discussed in the next section.

i

4. Learning Algorithm

The main motivation behind the development of this
algorithm is to emulate the learning of the driver from
his on-road driving experience. It is based on the idea
that drivers 'naturally’ enhance their skills by driving
on the road. The algorithm is hybrid, it is composed of
two routines to train simultaneously premise and con-
sequent parts of the fuzzy controller, as shown in Fig.3.

premise consequent
parameters parameters‘ M
Error
rule
. : Formula
MFs parameters ANN; weig: matrix Acc
"
. N
LM
A ' Error ]
rule
MFs parametefs ANNjweig matrix
ra

Steepest Descent

IWeighted Average
Exrror

Fig.3.- Learning Algorithm

4.1 Consequent Learning As cited in a pre-
vious section (see 2.2), the output of the system is a
function of its inputs. More specifically, when the out-
put is “hard”, “pos_med” or “neg_med”, computation of
the acceleration is based on Equations 1 and 2. In real
world, behavior of a driver is, indeed, a reflextion of his
approximation of thiese functions. The actual learning
routine is built upon this idea.

THHC, 122%15, FRUF

Artificial neural network (ANN) are well known for
their ability to imitate humans in learning from experi-
ence, in other words, given a set of input/output data,
they can perform an approximation (with certain error)
of the output even if the input is not exactly the same
as the already learned one.

The output of a rule that has in the consequent part
“hard”, “neg_med” or “pos.med” will be computed by a
corresponding feed-forward neural network (see Fig.2).
This 'type of rules is called neural rule.

To train these neural networks, a fast convergence al-
gorithm in which the performance function is always
reduced at each iteration of the training process is
needed. The Levenberg-Marquardt algorithm (LM) sat-
isfies these two conditions; It is known to be the fastest
method for training moderate-sized feed-forward neural
networks ®®. The objective function to be minimized is
the mean squared error’s (mse).

4.1.1 Pre-Training (batch)  This training phase
may correspond to the ’driving school’ phase that every
driver must pass. It can be addressed as follows:

Start—Initialization of the neural networks: The ANN
starts with matrix of weights with random numbers,
which may correspond to a very beginner driver.

Step 1— Training Data: prepare a set for every ANN.
(for details, see next section Simulation/Set up).

Step 2- Training: Perform one training iteration
(epoch) by presenting to the ANN the whole set of train-
ing data.

Step 38— Verify stopping condition: If the objective
function has reached a defined minimum value, mse <
M SEy, then stop training (go to End), otherwise go to
Step 2.

End- Stopping condition is reached: From this point,
the skills of the driver are considered acceptable and he
is allowed to drive on the road.

4.1.2 On-Road Training (on-line)  Now the
driver is on a ’real’ road. Continuously over time (ev-
ery time step in the simulation), The following steps are
applied:

Start- MSE = M SE,.

Step 1- Compute the error: e, = t. — o,, where t,
is the target output and o, is the actual output of the .
network. -

Step 2— Compare the error with the performance of
the network:

If 2 > MSE, then

premise_update = TRUE.

else quit.

Step 8— Extend the training set: actual (input/target
output) pair is added to the list of training data.

Step 4— Training: Perform one training iteration.

Step 5— Stopping conditions:

1-If mse < MSE, then
if mse > MIN, then

MSE = mse
else MSE = MIVN
quit.

9-If a max number of epochs is reached, then
extract the actual (input/target output) pair



from the training list.
premise update = FALSE
quit.

If none is verified, go to Step 4.

if premise_update == TRUE then premise 1earning
(see next paragraph).

MIN is an arbitrary minimum error value. The
constraint in condition 1 will ensure that the ANN is
trained only for an error measure bigger than MIN,
and Vn, MIN < MSE, < MSEj.

Fig.4 is an illustration of the error measure during Pre
and On-road training phases. The major part of error
reduction is performed in batch training phase. The
on-road training is performed occasionally (see step 2);
it is infact the same as the batch training but with an
extended training set. Convergence of the network to a
new MSE is reached within fewer epochs.

Introduction of 2 new training
input/output data pair

Fig.4. ANN Training Process

4.2 Premise Learning An experienced driver
and a beginner driver may have a different understand-
ing of ’headway is small’, ’speed is fast’, headway is not
safe’, etc. In our system, this 1mp11es that the MFs of
the 1nput variables may change their positions and even
their shapes to reflect the driver’s view of the driving
state.

For this matter, a learning algorithm that goes in
parallel with the above described one is implemented
in the ANFIS. The parameters are updated by Steep-
est Descent method (SD) based on the backpropagation
of the overall error in the driver’s action, which is the
weighted average of all the rules’output errors:

T“‘O — ZTwr(tr _Or)

Zr Wy
The error measure is the squared error:
1 )

Let a be a parameter in a rule r, the method to up-
date a for this rule is as follows:

OF
Ara = _na_a‘a‘

B aw,
Tla dw, Ba

or) = (T — O) dw,
Sw da

Where 7, is the learning rate of the parameter a, T'
and O are the overall target output and the overall ac-
tual output, respectively. ., o,, and w, are the target
output, the actual output, and the firing strength of the

h rule, respectively.

4.3 Remarks The system is self supervised by
the mathematical model instead of real-world data
which could be very erroneous or heavily influenced by
some facts that are hard to catch. Preparation of train-

— g -0y

_ ing data is detailed in next section.
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The consequent learning has a major and direct ef-
fect on premise learning, since the error measure used
to update the premise part is the weighted average of
the errors engendered by the neural rules (see Fig.3).
The premise learning has no effect on consequent learn-
ing, consequently, the convergence of the whole learning
algorithm is driven by the convergence of the neural net-
works in consequent learning to the defined minimum
error MIN.

The on-road training procedure will prevent the ANN
from over-fitting since it performs generalization in a
natural way: data that represents erroneous driving ma-
neuvers, in other words, occasionally 'mistakes’ of the
driver, are added to the training set as to enrich the
‘driver’s experience’.

To maintain the interpretability of the trained MFs,
some constraints are set for the parameters update pro-
cedure:

e The update is performed for all the parameters
except the center parameters for “slow”, “fast”,
“small” and “large” MFs.

e The centers of -all the MFs must keep their order
over the universe of discourse. This will prevent
the MFs from passing each other.

¢ The update is allowed only for a specific direction to
achieve a comprehensive modification of the MFs.

5. Simulation

5.1 Set up The simulator uses the Object Ori-
ented Programming paradigm provided in Matlab.

Training Data: For each ANN, a list of (in-
put/target output) pairs is prepared. An input is a
vector whose elements are samples of the correspond-
ing input variables. The target output is calculated us-
ing this vector with the appropriate equation, (e.g.: in
emergency regime, the input is [4;, R, H]T, the target
is calculated with Eq. 1). Sampling is done uniformly
over the compact set of each variable. Sampling steps

e : 1 for A, 10 for V}, 10 for H, and 10 for R.

Training of ANNs during the simulation is performed
in two phases as explained earlier.

Phase 1: Pre-training.
ANNs are trained in batch mode using LM algorithm
until an error measure M SEy = 0.1 is reached. Gener-
ally, the ANNs converge to this value w1th1n 10 to 15
epochs.

Phase 2: On-road training.
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Generally, convergence to a new MSE is reached within
1 to 5 epochs. The minimum MSE is chosen to be
MIN =0.01.

The time step is chosen to be ts = 0.05s. Compu-
tation of position, speed and acceleration is made in
floating point, thus, the model is continuous.

5.2 Results and Discussions

5.2.1 System Evaluation by Example Eval-
uation of the system is done by simulating different driv-
ing situations. Initial values of the variables in this sim-
ulation are chosen as to reproduce the same scenarios
(specially 1 and 2) used by S.Huang et.al in *® in pur-
pose to encourage the reader to compare the results.
The curves shown in Figs.5, 6 and 7 represent the be-
havior of the system (driver/vehicle) in terms of acceler-
ation, speed and headway when starting from the initial
conditions, as detailed in the following paragraphs.

First scenario
Initially, the subject vehicle is running with a speed of
Vs = 20m/s. A vehicle changes lane in front of it at
a distance of 10 m with a relative speed R = +6m/s.
The reaction of the driver to this situation is given in
Fig.b ‘

The driver keeps following the front vehicle while be-
ing aware to not violate the safe distance. When the
headway begins to be ’large enough’, he gradually ac-
celerates to reach his desired speed. When the desired
speed is reached, the driver tries to keep it.

Second scenario
The subject vehicle is running with a speed of V; =
20m/s. A vehicle changes lane in front of it at a dis-
tance of 30 m and keeps running at a speed V; = 10m/s.

At first, the driver acts in emergency regime as to
avoid collision with the cutting vehicle, he decelerates
until a safe combination of relative speed/headway is
reached. Then, he keeps following the front vehicle in
car-following regime, see Fig.6.

Third scenario
The subject vehicle is stopped. A vehicle in front of it
is stopped at a distance of 120 m.

The driver starts with increasing his speed, having
in mind the purpose of reaching the desired speed. He
realizes after a certain time that the headway does not
allow him to do so, he then decelerates to stop at an ar-
bitrary distance before colliding with the front vehicle,
see Fig.7. :

Small oscillations observed in the acceleration curves
are due to the effect of ANNs. As the ANNs learn dur-
ing the on-road driving, these oscillations will gradually
disappear. They reflect the driver’s approximation of
the appropriate acceleration for the actual situation by
manipulating the brake and the accelerator pedals.

5.2.2 Convergence of the Learning Process
The convergence of the learning process is proved by
an experiment. The experiment consists of repeating
the third driving scenario for 10 times.

In Fig.8, the root mean squared error of the overall
driving time is decreasing at each run and converging
to a certain minimum value.

In Fig.9, NBH, NBP, and NBN are the numbers of

BHRC, 122818, FRUE
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Fig.8. Root Mean Squared Error

added pairs to the training data for ANNs correspond-
ing to “hard”, “pos.med” and “neg-med” respectively.
These numbers gradually converge to 0.

Tt is concluded from the above two observations, that
the learning process converges and the MFs will have
final forms.

5.2.3 Effect of Learning to the Membership
Functions An example of the effect of this learn-
ing process to the MFs is given from the consecutive
executions of the three previous scenarios.

— orginal MFs
—-_fnal MFs

slow medium fast

20 25 30 35 40 45 50
Speed Universe

o 5 0 15

Fig. 10. Learned Speed MFs

— ongmal MFs
— _tnal MFs

medium

kmall large

08
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o4f i

oz

° 20 40 80 & 100 120
Headway Universe

Fig.11. Learned Headway MFs

Intuitively, a beginner driver is more careful than an
expert because he has more fear to make accidents. He
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tries always to keep a larger headway and drive in a decision at the right time.
moderate speed comparing to an expert driver who is Figures 10 and 11 show that, a beginner driver may
more confident in his skills and ability to make good consider a given speed as medium, while the same speed
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is considered by an experienced driver as still slow; This
explains why the speed MF's shift to the right. Note that
this modification will affect the driver’s desired speed:
since the speed MFs are shifting to the right, the de-
sired speed will be increased accordingly (see paragraph
Input variables: Speed).

A beginner driver may consider a given headway small
while the same headway is considered by an expert as
still medium; This explains why the headway MF's shift
to the left.

The safe distance offset will be gradually decreased
as the driver has better approximation of the distance
needed to smoothly brake without colliding with a brak-
ing vehicle in front of it.

6. Conclusion

This paper introduced a mechanism based on a com-
bination of two major Artificial Intelligence branches,
Fuzzy Logic and Neural Networks, to deal with the
driver’s decision making on acceleration.

While fuzzy reasoning deals with uncertainty in a
driving environment, neural networks play the role of
local experts in this system; they allow the emulation
of the driver’s learning process from his own experi-
ence while driving on the road, and the imitation of his
manipulation of the brake and the accelerator pedals
reflecting his approximation of the appropriate acceler-
ation for the actual situation.

Results obtained from the simulation of different driv-
ing scenarios, are very comparable to those of *®, but
emphasizing better human learning and approximation.
Their clear aspects and understandable meanings are
very encouraging for implementation in a traffic simu-
lation environment.

The proposed system is very flexible. Tt allows easy
formulation of the rule base, shapes of fuzzy sets can be
calibrated by different methods (e.g. that of ®), pre-
cision of the ANNs can be freely chosen as to have an
appropriate approximation.

A natural extension to this work is the development of
other driving behaviors, principally, the lane changing
model, where similar techniques can be used to decide
the appropriate steering.

(Manuscript received December 11, 2000, revised

June 22, 2001)
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