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In this paper, an FPGA circuit for estimating chaotic characteristics of unknown nonlinear systems is
proposed. From particular solutions corresponding to chaotic signals of the unknown system, the proposed
circuit approximates nonlinear functions: The approximation of these nonlinear functions are performed by
using supervised learning. From the approximated functions, chaotic characteristics of the unknown system
are estimated. An understanding of the behavior of unknown nonlinear system will be provided by uti-
lizing the estimated chaotic characteristics. The proposed circuit is implemented onto an FPGA by using
Verilog-HDL. This implementation confirmed that the proposed circuit can achieve high-speed operation and

low-cost development.
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1. Introduction

Chaos is the most frequently encountered phe-
nomenon in the study of nonlinear dynamical systems
such as biological neural networks [1], power systems
[2],[3], and so on. For example, in medical field, chaos
can be observed in brain pulse, R-R interval in electro-
cardiogram (ECG), and so on. In the studies of these
nonlinear dynamical systems which exhibit chaotic be-
. havior, it is important to understand their mechanism.
The studies of nonlinear dynamical systems have been
carried out by utilizing computer simulations. How-
ever, they require long computational time [2]-[6]. For
this reason, a chaos circuit is one of the most efficient
tools for experimental observation of chaos. In previous
studies, many physical, biological and chemical systems
have been studied by means of large ensembles of inter-
acting analog chaos circuits [7]-[9]. Among those, Pivka
has modeled traveling waves by using resistor-coupled
Chua’s circuits [9]. However, it is difficult for these
method to make rigorous models of unknown nonlin-
ear systems, because they cannot accurately represent
the nonlinear functions. Therefore, we attempt to make
the models by applying particular solutions which cor-
respond to chaotic signals generated from the unknown
nonlinear systems. The modeling of unknown nonlin-
ear system is achieved by approximating the nonlinear
function from chaotic signals. This approximation en-
ables us to estimate chaotic characteristics of the un-
known nonlinear systems. In other words, the system
which can approximate nonlinear functions behaves as
a chaos generator for estimating chaotic characteristics
of unknown nonlinear systems.
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Being distinct from above mentioned purpose, the
hardware implementation of these nonlinear systems
is important. The conventional software implemen-
tation on a digital computer requires an expensive
high-speed microprocessor and large-capacity memo-
ries only for generating chaotic signals. The electronic
circuits can be implemented by using a digital tech-
nique or an analog technique. Among others, the digi-
tal hardware implementation by using FPGA’s (Field
Programmable Gate Array) [10] excels in hardware
cost and exact reproducibility of signals. Furthermore,
FPGA-implementation can afford high-speed parallel
data bus operations easily.

In this paper, an FPGA circuit for estimating chaotic
characteristics of unknown nonlinear systems is pro- .
posed. From particular solutions corresponding to
chaotic signals of the unknown system, the proposed cir-
cuit approximates nonlinear functions. The approxima-
tion of these nonlinear functions are performed by using
supervised learning. From the approximated functions,
chaotic characteristics of the unknown system are esti-
mated. An understanding of the behavior of unknown
nonlinear system will be provided by utilizing the esti-
mated chaotic characteristics. The functional verifica-
tion and logic synthesis for the proposed circuit are per-
formed by using Verilog-HDL (Hardware Description
Language) [10].

2. Architecture

Figure 1 shows a general architecture of the proposed
circuit. The circuit consists of N nonlinear function
blocks. T The nonlinear function block is built with a

tThe number of nonlinear function block, N, is defined by users.
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Fig.2 Architecture of the fuzzy rule block.

fuzzy based circuit consisting of a fuzzy rule block, a
defuzzifier block, a learning block, and a delay block.
During the learning process, the switches SW1’s and
SW2’s are connected to a’s. In this process, the non-
linear functions Fg(-) (s = 1,..., N) are approximated
from A/D converted chaotic signals, 'z(T), - - -, Vz(T).
After the learning process, these switches are connected
to b’s. Then, the nonlinear function blocks generate
digital signals corresponding to estimated chaotic sig-
nals.

The detail of respective building blocks will be de-
scribed in the following subsections.

2.1 Fuzzy Rule Block The inference rules
FRy’s [11] used in the nonlinear function block are given
by the form:

FR;:Ifzis A; thenyis B;, (i=1,2,...,k) (1)

The dimension of proposed circuit is determined by the parameter
N.
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where x is an input variable, y is an output variable,
A;’s are fuzzy set defined by the membership functions
(11], and B; is a fuzzy singleton, 1/5;(t) [12].

In the fuzzy rule block, the matching degrees Wi(T)'s
are determined by

*Wi(T) = min (p4;(*2(7)),. .., ,LLNA,:(N.'E(T))), (2)

(=1,2,...,k) (s=1,2,...,N)

where T' denotes the count of input signals, z(T),
*z(T), ..., and Nz(T) are the T-th A/D converted
chaotic signals, °A; denotes the fuzzy label [13] for the
input *z in the i-th fuzzy rule, k is the number of infer-
ence rules, s is the number of nonlinear function blocks,
and (1 44, P24, . . -, and pun 4; are the membership func-
tions. The domain and range of ps4;’s and *z(T)’s are
the sets of integers on the interval [—2™,2™), where m
is an integer parameter. Hence, in point of accuracy,
a design which has a larger number of m is preferable.
The value of m is determined by considering the tradeoff
between the circuit size and the accuracy.

Figure 2 shows the architecture of fuzzy rule block. In
Fig.2, k fuzzy membership functions for 2™+! — 1 differ-
ent input values are stored in the s-th SRAM1. The size
of each SRAMLI is (m + 1)(2™*! — 1) bits. As address
signals for SRAM1, the demultiplexer DMUX provides
*z(T)’s. For the inputs, the SRAMI block selects the
values of membership functions with no sign-bit from
the results-table stored in the respective SRAM1’s. The
minimum operation in Eq.(2) is realized in the min-
imum block composed of N-input/l-output MIN cir-
cuits. By selecting the minimum value of membership
functions, the minimum block outputs the matching de-
grees *W;(T)’s. :

2.2 Defuzzifier Block In the defuzzifier block,
the output fuzzy set, *W1(T) /°S1(t) +... + SWi(T)
/*Sk(t), is defuzzified by the center of area (COA)
method [12], where ®S;(t) is a singleton’s element, /
is Zadeh'’s separator, and + is a union operation. The
output of defuzzifier block, *i(t + 1), corresponds to
an estimated (7" + 1)-th chaotic signal. The defuzzified
output (¢t + 1) is given by

Yoi *Si(t) *Wi(T)
Yy SWi(T)

aTh, 85;‘ Ez) WiT) (3)

G+ 1) =

, (s=1,2,...,N)

where ¢ denotes the count of learning cycle. To simplify
the circuit, the membership functions are chosen such
that the summation of matching degree 3% . *W;(T)
in Eq.(3) becomes the constant value 2™,

Figure 3 shows the circuit architecture of de-
fuzzifier block. The scaled multiplication result
*Si(t)*W;(T)/2™ is provided from the results-table
stored in the SRAM2. The bit-length of scaled mul-
tiplication result is m + 1 bits. And the size of SRAM?2

used in the multiplier block is (m + 1)22™ bits. T The

" 1The size of SRAM2 can be reduced to as low as (m -+ 1)2™ by
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adder block calculates the partial sum of summation in
Eq.(3). After k—1 of additions, the adder block outputs
the defuzzified result of Eq.(3).

2.3 Learning Block The singleton’s elements
8S;(t)'s are determined in the learning block. In the
" learning process, (T + 1)-th chaotic signals *z(T'+1)’s
are given as supervisor signals. To simplify the circuit
design and to avoid the long computational time, the
learning dynamics is given by

*Si(t+ 1) = °S;(t)

N Cax(T+1)— *2(@t+1)) *Wi(T)

= @

Figure 4 shows the circuit architecture of learning
block: In this figure, the hatched functional blocks
are shared by the learning block and the defuzzifier
block since these blocks do not work simultaneously.
The subtraction in Eq.(4) is realized by the subtractor.
The multiplication and the partial sum of summation in
Eq.(4) is realized by the same manner as the defuzzifier
block. The learning process terminates when

| S8 (E41) = Si(t)] < €, cevevrveeeeennns (5)

where € is a parameter.

2.4 Delay Block After the learning process, the
nonlinear function blocks operate as a digital circuit
generating the estimated chaotic signals. From Eq.(3),
the dynamics of the nonlinear function blocks is given
by

adopting quarter-square principle. However, this SRAM size reduc-
tion can be achieved at the cost of additional hardware (1 full-adder
and 2 subtractors) and m + 1 clock delay.

BEWC, 122528, FRl4E

; JHIAN . ;
SX(T+D): *X(t+1) SWI(T), =, SWk(T);

Input Jd From the From the

R
m+2 bits [ [~ defuzzifier block fuzzy rule block

y m+2 bits

@rﬂl ' T m+1 bits
L bit - m+2 bits [HIIVUTJ

m+1 bits m+1 bits
S see

address ,-f"["" 777" ~
DMUX signal =} -}----- __}-> Logic circuit for

‘l\mﬂ bits

multiplication

meiss 1 et 'S/RAMZ External
: b SRAM 2 Block \Memory
m+lbits |, e fofernnn ]

m+1 bits

t-th outputs
 SS1(t), "+, SSk (b);

I+ m+1 bits

sign -bit 1 bit

“hm+2 bits

N
N
m+2 bits

m+2 bits
.

Subtractor

m+2 bits

its
sign -bit
1 bit

t+1 th_outputs 1 bit
]
SSl(t+l) SSk(t+1) Stop signal
Fig.4 Architecture of the learning block.

//\ Hoas
!\X //‘An

A

0 14 l6 18
[nput x(T) (X 10%)

Fig.5 Merr;bership functions for a tent map.

~ 18
@
S 16

514» “a
o

S 2t
Qe
st
3

=

o
T

[SEESEEN
T

BT+ 1) = B, (1(T), .., Va(T))
)

E & ewi(T

where #3;’s are the final values of singletons. In Eq.(6),
SW;(T)’s are determined by Eq.(2). The delay block
produces a unit delay in Eq.(6) and feeds the delayed
output.

3. Simulation

3.1 Numerical Simulation Firstly, to confirm
the validity of algorithm, numerical simulations were
performed. In the numerical simulations, two types of
nonlinear functions were assumed as unknown systems.
The nonlinear functions were approximated from the
signals which are generated by the following maps:

Tent map :

lo(T + 1) = F(Y2(T)),
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=2 —2'g(T) —2™7 Y, «..oeen (7)
Hénon mﬁp :

'2(T +1) =F1(*z(T), *(T)),
= 2™ 4 2x(T) — (7 x 2™/5) x(T) /2™,

2g(T +1) = Fo(12(T), 22(T)),
= (3 x 2™/10) 'z(T)/2™. - ovtn-. (8)
In Egs.(7) and (8), the parameter m was set to 14.
These maps are the most famous nonlinear maps for
which a rigorous proof of chaotic behavior -has been ac-

complished. In numerical simulations for the tent map,
the following membership functions were used. 1

e Membership functions for the tent map:

pai(e) = 2" — e — 2" = 1), (i=1,...,5). (9)

Figure 5 shows the triangular membership functions ob-
tained from Eq.(9) f. In case of the tent map, the

tor course, the shape and the number of membership functions
can be defined by users since the membership functions are stored
in SRAMI.

H1In the numerical simulations, the triangular membership func-
tions were used. Actually, the shape of nonlinear functions of non-
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number of singletons is set to 5. Figure 6 shows the
convergence behavior of singletons for the tent map. In
the numerical simulations for the tent map, the count
of learning cycle ¢ was set to satisfy T'= 50t. In Fig.6,
the values of singleton’s elements converge to their fi-
nal values after 4000 learning cycles. This result means
that the proposed circuit requires only 80 input data to
approximate the nonlinear function of tent map. Figure
7 shows the examples of approximated nonlinear func-
tions obtained by using the final values of singletons of
Fig.6. The error of the approximated function is less
than 2%. Figure 8 shows an example of the estimated
chaotic signal obtained from Fig.8. In this figure, the
initial value 'Z(0) is set to 10. Although the estimated
chaotic signal in Fig.8 is different from the signal gen-
erated from Eq.(8), it has similar characteristics. By
multiplying the approximated nonlinear function by the
parameter A/2™ (A € [0,...,2™]), the bifurcation dia-

linear dynamical system is unknown. By applying the triangular
membership functions, the nonlinear functions are approximated as
piecewise-linear functions.
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gram of the approximated tent map is obtained. Figure
9 (a) shows the bifurcation diagram obtained from the
approximated tent map. Figure 9 (b) shows the ideal
bifurcation diagram obtained by '

'o(T + 1) = AF1 (*z(T)/2™,
= A{2™ - 2|*2(T) — 2™ 1|} /2™

Because of rounding error, these bifurcation diagrams
make a difference in the bifurcation modes. Since the
approximated nonlinear function for Fig.9 (a) satisfies
F1(0) > 0, the bifurcation diagram of Fig.9 (a) has a
lot of difference in the period-1 orbit.

In the numerical simulations for the Hénon map, the
following membership functions were used.

e Membership functions for a Hénon map:

EBYHRC, 1224525, FRUEF
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pias(Pz) = 2™ — 31z + (2™/3)(i — 11/2)],

paai(Pz) = 2™ - 9%z + (2 /9)(i - 11/2)),
(t=1,...,10). -- (10)

In case of the Hénon map, the number of singletons,
k, was set to 200 (=10x10x2). Figure 10 shows the
convergence behavior of singletons for the Hénon map.
In this figure, the convergence behavior of 36th, 54th,
and 77th singletons for F5(*2(T"), 2&(T)) are shown as
examples. In the numerical simulations for the Hénon
map, the count of learning cycle ¢ was also set to satisfy
T = 50t. In Figs.10, the values of singleton’s elements
converge to their final values after 100000 learning cy-
cles. This result means that the proposed circuit re-
quires 2000 input data to approximate the nonlinear
function of Hénon map. Figure 11 shows the exam-
ples of the approximated nonlinear functions obtained
by using the final values of singletons of Fig.10. Figure
12 shows an example of the strange attractor obtained



Table 1 Results of the circuit design.

Device Occupied CLBs 810/1024 (79%)
Bonded I/0 pins 63/192 (33%)

XC4025eP G223 Highest clock
frequency 19.4 (MHz)
Critical path delay 52 (ns)

by Fig.11 (a). In Fig.12, the initial values, '£(0) and
2#(0), are set to 10. The errors of the approximated
functions are less than 4%. Here, the error Er of the
approximated function is defined by

oy & VIS 0000{Fa( 12(T), (D) — a(T +1)}?
B 10000 x 214

x 100 (%). (11)

Figs.8 and 12 show that the proposed circuit can gener-
ate the estimated chaotic signals from the approximated
nonlinear functions.

4. Circuit Design Using Verilog—-HDL

According to the architecture shown in Sect.2, the
one-dimensional portion of the proposed circuit was im-
plemented onto an FPGA using Verilog-HDL. In this
design, the number of inference rules k was set to 5
and the parameter m was set to 14. And SRAM1 and
SRAM?2, which are used as external memory, are sep-
arated from the chip. The circuit was synthesized by
the logic synthesizer with Xilinx FPGA logic unit li-
brary XC4000e which targets FPGA X(C4025ePG223
[10]. The results of FPGA design are summarized in
Table 1, where CLB and I/O stand for Configurable
Logic Block and Input/Qutput, respectively [10].

5. Discussion

5.1 Error of approximated functions

The precision of approximated nonlinear function de-
pends on the number of singletons as well as the pa-
rameter €. Figure 13 shows the approximated nonlinear
function of a logistic map for the number of singletons
k=(5,7,9,11,13, and 15). The signals to approximate
the nonlinear function are generated by

(T +1) =4 2(T)(2™ - *&(T)). ------ (12)

Figure 14 shows the error of the approximated nonlinear
function in Fig.13. Figs.13 and 14 show that the error
of approximated nonlinear function can be reduced by
increasing the number of singletons. \
5.2 Convergence conditions of singletons
From Eqgs.(3) and (4), the dynamics. of learning can
be expressed by

sS(t+1) = (I — *Wp *Wa/2%™) *5(t)
+52(T 4+ 1) *Wp /2™, - eoen- (13)

where

"tFrom Fig.1, high-dimensional circuits can be realized by array-
ing the one-dimensional portions of proposed circuit. By using the
array structure, FPGA-implemented circuit can afford high-speed
parallel operation.
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If £k = N and *W4 and *Wpg are regular matrices,
Eq.(13) can be expressed by

T. IEE Japan, Vol. 122-C, No. 2, 2002



Estimation of Chaotic Signals from Reconstructed Nonlinear Function

sS(t+1) - *z(T + 1)Wyi'2™
= (I =* Wg *W,4/2°™)

(¢S(t) - (T + HW3t2™), - (14)
Since Eq.(14) can be expressed by
sS(t) — *x(T + 1)W 2™
= (I —° Wp *Wa/2*™)
(5t - 1) =* a(T + 1)W;'2™),
St —1) = *z(T+ )Wy'2™
= (I s WB SWA/sz)
(St —2) = =(T + HYWi'2™),
*S(1) - (T +1)Wy'2m
— ( WB SWA/22m)
(°5(0) —* =(T + W 2™),
the following equation can be obtained:
*5(t) - *o(T + DW5'2"
' — (I _ s WB SWA/22m)t
(8(0) —* z(T + 1)Wt2™). ----- (15)

From Eq.(15), it is the convergence condition of learn-
ing process that all the absolute values of eigen values
of I— *Wpg *Wy/ 2™ are less than 1. The membership
functions must satisfy above condition to converge the
singletons.

5.3 Comparison with conventional methods

Table 2 shows the comparison with conventional
methods. In Table 2, the modeling using mutually-
coupled chaos circuits is one of the most famous meth-
ods to investigate nonlinear dynamical systems [7]-[9].
In point of accuracy, the estimation employing digital
computers is the most excellent method. However, the
proposed hardware systems provide low-cost and high-
speed realization. The circuit can be used as an exper-
imental tool to understand the mechanism of unknown
nonlinear systems, a classification tool exploiting the

" form of attractors, and so on.

6. Conclusion

In this paper, an FPGA circuit for estimating chaotic
characteristics from approximated nonlinear functions
has been proposed. The simulation results showed
that the proposed circuit can approximate the nonlinear
functions and can generate digital signals which corre-
spond to estimated chaotic signals. Both the numeri-
cal simulations of algorithm and the synthesis of FPGA
circuit showed that the one-dimensional portion of pro-
posed circuit can be implemented onto a single FPGA
except for SRAM.

The theoretical analysis for the definition of shape of

BHWC, 122525, FRU4E
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Table2 Comparison.

Proposed Mutually-coupled | Software based
circuit chaos circuits method
Accuracy of
Estimation N x 1t O
Calculation
speed O O X
Hardware .
cost (@) O X
Hardware
size O O X

t The accuracy of approximated nonlinear functions depends on the
number of singletons, k. .

1t The mutually-coupled chaos circuits are difficult to approximate
the nonlinear functions since the target is unknown.

membership function is left to the future study.
(Manuscript received October 18, 2000, revised Octo-
ber 22, 2001)
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