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Wavelet neural networks employing wavelets as the activation functions recently have been researched as
an alternative approach to the traditional neural networks with sigmoidal activation functions. In this paper,
we proposed a new type of wavelet neural network by introducing local linear models, which are used in
some neuro-fuzzy systems, as powerful weights instead of straightforward weights employed in the previous
wavelet neural networks. The proposed network is called the local linear adaptive wavelet neural network.
Its effectiveness is examined by the network performances on function approximation and chaotic time se-
ries prediction problems. In these experiments, the proposed local linear adaptive wavelet neural network
performed well and compared favorably to the previous wavelet neural network. l
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1. Introduction

Developing models from observed data, or learning
maps between input and output spaces, is a funda-
mental problem in the areas such as dynamical sys-
tem control, signal processing, system identification and
many other fields. Multilayer perceptron neural net-
work (MLP) with the sigmoidal functions as the acti-
vation functions has been established as a general non-
linear fitting tool ®~®_ On the other hand, instead
of the sigmoidal functions, a number of locally active
nonlinear basis functions such as polynomial basis func-
tions, Gaussian radial basis functions, spline basis func-

tions and wavelet basis functions have also been studied
" as activation functions. The corresponding basis func-
tion networks, such as radial basis network (RBF) and
wavelet neural network (WINN), have been developed as
powerful nonlinear fitting methods ¥~

Among the basis function networks, wavelet neural
networks employing wavelets as activation functions
have been paid a special attention because in terms
of the wavelet transformation theory, the wavelet rep-
resentation of a function can reveal properties of the
function in localized regions of both the time space and
frequency space ®®) . Zhang and Benveniste first in-
troduced wavelets to neural networks (™. Pati and Kr-
ishnaprasad demonstrated that it is possible to con-
struct a theoretical description of feedforward neural
networks in terms of wavelet decompositions *?. Em-
ploying the orthonormal scaling functions (1n the the-
ory of wavelet transformation, scaling functions are the
functions used to generate wavelet functions) as the ac-
tivation functions, the wavelet network developed by
'Jun Zhang et.al can provide a unique and efficient repre-
sentation of a given function ®V. Yamakawa et.al. pro-
posed a wavelet neural network in which compact sup-
ported non-orthogonal wavelets are used *?. The adap-
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tive wavelet neural network is developed by Kadambe
and Srinivasan to let the network more flexible *®. All
of these wavelet neural networks have identical archi-
tecture, though the wavelets used as activation func-
tions are different. In this paper, we introduce local lin-
ear models (LLM) whose good performances have been
shown in some neuro-fuzzy systems, as powerful weights
to an adaptive wavelet neural network (AWNN). The
local linear models connect the hidden layer to the
output layer instead of the previous straightforward
weights. Therefore this type of wavelet neural network,
called a local linear adaptive wavelet neural network
(LLAWNN), is proposed as an alternative approach to
nonlinear mapping problems.

The paper is organized as follows. The proposed net-
work is introduced in section 2. The experiments per-
formed on function approximation and chaotic time se-
ries prediction problems are described in section 3. Fi-
nally, conclusions are derived in the last section.

2. Local Linear Adaptive Wavelet Neural
Network

After a brief review of some basic concepts about
wavelet neural networks and local linear models, our
proposed local linear adaptive wavelet neural network
is introduced in this section.

2.1 Adaptive Wavelet Neural Network In
terms of wavelet transformation theory, wavelets in the
following form

¥ = {‘I’i = Iazl_%'(ﬁ(w;bl) ra;,b; e Ri € Z}(l)
z:(371~)"'7‘7;N)
a; = (ail,"'uaiN)
b; = (bir, -+, bin)



is a family of functions generated from one single func-
tion () by the operation of dilations and translations.
(), which is localized in both the time space and fre-
quency space, is usually called a mother wavelet and
the parameters @; and b; are called the scalar parame-
ter and translation parameter, respectively ®.

According to the previous researches of WNN (7),
(10)~(12), the output of a wavelet neural network is
given by

M
f(z) = sz"l’i(w)

M 1 x — b;
:Zwilai _Ew( o ’L) .............. (2)
i=1 v

where the activation functions of the hidden layer units
are the wavelets ¥ and w; is the straightforward weight
connecting the i-th hidden layer unit to the output layer
unit. The number of the hidden layer units is M.

Usually, each component a;;, b;; of the parameters a
and b is in the following discretization form:

{(asj,bi5) = (ag™,nboay ™) : m € Z,n € Z} -(3)

with ag = 2 and by = 1, typically ®?. Given a set of
training data, if m and n are predetermined by some
analyses of the data set and the localization of 1, the
only adjustable parameters of the wavelet neural net-
work (2) are therefore the output layer weights w;.

On the other hand, if the discretization form (3) is
not considered, not only the connection weights w;, but
also the scalar parameters a; and the translation pa-
rameters b; of the network (2) can be determined by
some training algorithms based on the given training
data set. Therefore the wavelet neural network (2) be-
comes an adaptive wavelet neural network . Because
the localization of a hidden layer unit corresponds to
the parameters a; and b;, “adaptive” means the hidden
layer units can adapt their receptive fields to the distri-
bution of the input vectors during the training process.
In this study, this kind of adaptive wavelet neural net-
work is considered.

2.2 Local Linear Adaptive Wavelet Neural
Network Due to the network architecture and the
localized validity of the wavelets, the adaptive wavelet
neural network (2) can be viewed as a kind of standard
basis function network. The output of a standard basis
function network given as :

is-a weighted 'linear combination of many locally ac-
tive non-linear basis functions ®;(¢ = 1,---, M), where
w;' is the associated weight with &; ™. In the adap-
tive wavelet neural network (2), it is obvious that the
wavelets ¥ are the corresponding locally active non-
linear basis functions.

It is well known that an intrinsic feature of the ba-
sis function networks is the localized activation of the

hidden layer units, so that the connection weights asso-
ciated with the units can be viewed as locally accurate

piecewise constant models whose validity for a given

input is indicated by the activation functions *®. Com-
pared to MLP, this local capacity provides some advan-
tages such as the learning efficiency and the structure
transparency. On the other hand, due to the crudeness
of the local approximation(piecewise constant models
are integrated by their associated localized basis func-
tions), a large number of basis function units have to
be employed to approximate a given system. As re-
ported in the previous research (11), a shortcoming of
the wavelet neural network also shared by the RBF net-
work, is that for higher dimensional problems, many
hidden layer units are needed.

In order to take advantage of the local capacity of

" the wavelet basis functions without having too many
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hidden units, here we propose an alternative type of
wavelet neural network. Given that the input vector =
is N dimensional and the number of the hidden layer
units is M, the network output of the k-th unit in the
output layer is given as :

M

Y = Z('I,Ui,o +w;11 +--- + 'lUi,NSCN)‘IIi(m) (5)
i=1
= ($17"'7$N)

where, instead of the straightforward weight w; (piece-
wise constant model) in (2), the following linear model

U =W;0+W; 11+ + Wi NN =-=revmeeee (6)

is introduced as a powerful representation of weights.
Because the activities of the linear models w;(i =
1,---, M) are determined by the associated locally ac-
tive wavelet functions ¥;(i = 1,---, M), u; is locally
valid so that it is called local linear model. The idea of
introducing local linear models to wavelet neural net-
work is inspired by the researches of the local linear
neuro-fuzzy system 97", We call the proposed net-
work (5) the local linear adaptive wavelet neural net-
work.

By replacing the straightforward weights with the lo-
cal linear models, the proposed network can be viewed
as an extension of the previous wavelet neural network.
In other words, the proposed network degenerates to a
previous wavelet neural network if

W;0 ?é 0 and Wil = Wi =" =Wy N = 0(7)

Since the basis functions associated with the local lin-
ear models could cover larger region of the input space
than with the straightforward weights 9 @7 fewer hid-
den layer units are required than before. For complex
or high dimensional problems, the previous network
possesses only a single parameter (the straightforward
weight w;) for each unit, but a large number of units
is required. In contrast, though the proposed network
possesses more than one parameter (parameters w; ;’s
in the local linear model u;) for each unit, the required
number of units is already significantly reduced.
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A. Network Structure

B
Fig. 1.

.})k"‘

Network structure:

The structure of the proposed network (5) is shown in
Fig.1. It has a feedforward structure consists of a single
hidden layer. The activation functions of the hidden
layer units are the wavelets (2) and the weights con-
necting the hidden layer units to the output layer units
are the local linear models (6). The working of the
proposed network can be viewed as to decompose the
complex, nonlinear system into a set of locally active
submodels, then smoothly integrate those submodels
by their associated wavelet basis functions. It means
that this structure has the advantages inherent to the
local nature of the wavelet basis functions while, by em-
ploying the more powerful local models (6) associated
with those locally basis functions, it is not requiring as
many basis functions as before to achieve the desired
accuracy.

Considering the network architecture and the local-
ized validity of the wavelet basis functions ¥, we refer
the proposed network (5) to a kind of local model net~
work. Local model networks described in the form :

M
y= Z fi(W,z)pi(z)

are networks composed of locally accurate models f;(i =
1,---, M), where the outputs are interpolated by locally
active basis functions p; *® ¢#. Obviously, in the pro-
posed local linear adaptive wavelet neural network (5),
the local active basis functions used in previous local
model networks, such as Gaussian basis functions, are
replaced by the wavelet basis functions localized in both
the time space and frequency space and f; associated
with each basis function is the local linear model (6).

B. Training Algorithm

Similar to the traditional neural networks and wavelet
neural networks %, training of the proposed local lin-
ear wavelet neural network can also be performed by
employing the iterative gradient-descent method.

FEMC, 122% 28, FRI4FE
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Given a set of training data Tp,
TP = {(wivf(mi))’i — ]-," 'aP}a

where «;, f(x;) are the input vector and the corre-
sponding ouput, the objective function to be minimized
is

1 P
BO) =33~ V)

where vector @ is the collection of all of the parameters
w;, a; and b; in (5) that should be adjusted. f, and
Y, in Eq.(10) are the teaching signal and the output of
the proposed network (5) of the p-th training example,
respectively. '

Therefore, 8 is updated from step t to the next step
as follows :

o(t +1) = 6(t) + A6(t),

AB(t) =

—ﬂa—E +”A9(t - 1),
00 0=0)
where the learning rate 7 scales the stepsize and p is
the momentum term added to make the training pro-
cess more stable.
The partial derivative of the objective function with
respect to 8 is

L Y,
;(fp ~Y) 50

oF
00
Therefore, explicit formulae for the partial derivatives

of the objective function with respect to w; ; of u;, a;
and b; are given as follows :

OF -

B~ ;( fo— Yp) (@) ovvemrennnn (14)
OF P |

3’(0,,:’3- = — Z(fp - Y;,)mjp\I’i(a:p) ......... (15)

where, zj, is the value of the j-th component of the
input vector « for the p-th training example.

OF ov;

e = S -%) i—agﬁ .......... (16)
(2 p=1 2

OF - oF;

= __Z(fp_yp) z# ........... (17)
2 p=1 3

3. Experimental Results

The proposed network is examined by its perfor-
mances on function approximation and chaotic time se-
ries prediction problems. All experiments are carried
out on a Pentium 500-MHz PC with the C programming
language. Before discussing the experimental results,
the following notes are given first, which are employed
in all of the experiments.



A. Wavelets Used as Basis Punctions

As mentioned above, wavelets are generated from a

mother wavelet ¢(x). Here, for a problem with N in-

puts, the mother wavelet (), is given as follows :

P(x) = 1’_1 (0 (18)

this is the most frequently chosen scheme to generate a
multidimensional wavelet function by the tensor prod-
uct of a one dimensional wavelet function. The basic
one dimensional mother wavelet i(x) we used is de-
scribed as :

P(z) = —a e;p ( _ %2) ................... (19)

Therefore, according to (2), wavelets used as basis func-
tions, with N inputs, can be generated from (18) as

U;(x) = ﬁ |am|—%¢(f’%). ..... s+ (20)

n—1

B. Testing Criterion

To evaluate the performance of the proposed network,
a testing criterion is needed. Here, Root Mean Square
Error (RMSE) described in the following form is em-
ployed :

PT
RMSE‘= %;(fk(wj)—yk(mj))z“" (21)

where fi, and y;, are the desired value and the network
output of the kth unit in the output layer, respectively.
PT is the total number of the testing data.

3.1 Function Approximation Function ap-
proximation is a fundamental problem in many fields
such as system estimation, signal processing, control,
etc. It deals with the problem of learning a mapping
between an input and an output space from a set of ex-
amples of input-output pairs. In this section, the per-
formance of the proposed network (5) on this problem
is shown by employing two multivariable functions as
experimental examples.

3.1.1 Example 1 The first example is given by

sin(m, ) cos(nzz) + 1.0
3 .
(IL’I,$2 € [‘1) 1])

f($1,$2) =

The approximations of this example with a traditional
sigmoidal neural network and a wavelet neural network
are reported ',

Over the domain [—1,1] x [—1,1], we generated a set
of 49 data points, equally spaced on a 7 x 7 grid, as the
training data set. The testing data set used to calculate
the RMSE is a set of 400 data points which are equally
spaced on a 20 x 20 grid. Experimental result of the

proposed local linear adaptive wavelet neural network
is shown in Tbl1l. The number of parameters means
the number of adjustable parameters of which the val-
ues should be determined by training. In the case of the
proposed network (5), all of the scalar parameter a;,
and translation parameter b;,, of the employed wavelets
(20) and the weights w;,, in the local linear models (6)
are adjustable. a;,, and b;, are initialized as-

Qin = 0.2(ﬂn—an)
(oo - G od o

to take advantage of the locally active property of the
wavelets according to the previous study *?, where
[@n, Br] denotes the domain of the nth component of
the input vectors. On the other hand, each w;, is ini-
tialized to a small random value within [-0.1,0.1].

For comparison, we also give results of the sigmoidal
neural network and the adaptive wavelet neural net-
work. The sigmoidal function defined as

1—e™®

U(x)=1+e—$”“““”””.“‘. ......... (24)

is used as the activation function in the sigmoidal neu-

- ral network. The number of the hidden units is set to

10 and all of the adjustable parameters, the connection
weights and the thresholds, are initialized to small ran-
dom values within [—0.1,0.1] 9. The adaptive wavelet
neural network is the above described network (2) with
the same wavelets (20) of the proposed network as basis
functions, where the initializations of the scalar and the
translation parameters are also performed as (23). The
initial value of each straightforward weight w; is also a
small random value within [—0.1,0.1].

Table 1. Approximation results of function (22)

network | number of | computation | RMSE

structure | parameters | time (sec)
LLAWNN 2-4-1 28 57.3 0.0158
AWNN 2-8-1 40 103.8 0.0165
NN 2-10-1 41 113.2 0.0432

Fig.2. Original function of example 1

As mentioned above, the number of parameters in
Tbl.1 is the number of adjustable parameters of which
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the values should be determined by training. In the case
of LLAWNN and AWNN, it is the sum of the number of
the scalar parameters, the translation parameters and
the connétion weights. In the case of the sigmoidal neu-
ral network, it is the sum of the number of the thresh-
olds and the connection weights. Given that the input
vector x is N dimensional and the number of the hidden
layer units is M, the number of parameters of the pro-
posed network, the previous wavelet neural network and
the sigmoidal neural network is (3N +1)M, (2N +1)M
and (N + 2)M + 1, respectively.

For each network, the training was stopped when the
value of the objective function (10) was no longer chang-
ing and the result of RMSE calculated with 400 points
of testing data is the average of 10 experiments with dif-
ferent initial values of the adjustable parameters. The
graph of the function Eq.(22) is shown in Fig.2. The
network outputs of 400 points of testing data are shown
in Fig.3~5. The corresponding RMSE of each figure is
0.0156 (Fig.3), 0.0166 (Fig.4) and 0.0422 (Fig.5), which
is the typical one of the 10 experiments for each net-
work. These experimental results showed that in terms
of employing the local linear models (6) as powerful
weights associated with the locally active basis func-
tions instead of the straightforward weights w;, the pro-
posed network can learn the input-output mapping with
a smaller number of basis functions with sufficient ac-
curacy.

Network output surface

Fig. 3.

Error surface

Result of the proposed network

Error surface
Fig.4. Result of the previous wavelet neural
network

Network output surface
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Network output surface

) Error surface
Fig.5. Result of sigmoidal neural network

3.1.2 Example 2 The second example given by

f(m1,2) = cos(2may) cos(2mas) exp @13 (25)
(1,22 € [1,1)

is difficult to be approximated by a sigmoidal neural
network due to its complication *V). :

Over the domain [—1, 1] x[—1, 1], we generated a set of
169 data points, equally spaced on a 13 X 13 grid, as the
training data set. The testing data set used to calculate
the RMSE is a set of 400 data points which are equally
spaced on a 20 x 20 grid. We show the results with the
proposed network (5) and the previous adaptive wavelet
neural network (2) in Thl.2. Details about the initial-
izations of adjustable parameters are the same as the
above example. The graph of the function Eq.(25) is
shown in Fig.6. With the corresponding RMSE values
of 0.0181 and 0.0210, the network outputs of 400 points
of testing data are illustrated in Fig.7 and Fig.8. These
experimental results also show the proposed network
performed well on this function approximation problem
and compared favorably to the previous wavelet neural
network.

Table 2. Approximation results of function (25)

network | number of | computation | RMSE

structure | parameters | time (sec)
LLAWNN 2-16-1 112 646.2 0.0183
AWNN 2-29-1 145 1032.5 0.0201

Fig.6. Original function of example 2
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Network output surface

Fig.7. Result of the proposed network

Error surface

Network output surface

Error surface
Fig.8. Result of the previous wavelet neural
network

3.2 Chaotic Time Series Prediction The
problem of time series prediction can be formulated as
: given a time series y(k)(k = 1,2,---), employing

y(k —m),y(k —m+1),---,y(k)

to determine y(k + l), where m and [ are fixed posi-
tive integers. Because applications of time series pre-
diction can be found in various domains such as signal
processing, inventory and production control, economic
planning and lots of other fields, it is a very important
practical problem. Chaotic time series are generated
from deterministic nonlinear systems. Because they are
so complicated that appear to be “random” time series,
they are not easy to be predicted. In this section, the
effectiveness of the proposed network on this prediction
problem is shown. Two well known chaotic time series
are employed as examples in this research.

A. Mackey-Glass series

The Mackey-Glass series is defined by the following
differential equation *?.

dy(t) _ ay(i—1)
d — 14+y(t—7)P

with @ = 0.2, b = 10, and ¢ = 0.1. This unperturbed
system has an inherent delay time 7. It is known that
when 7 > 17, the above equation (27) exhibits chaotic
behavior and one remarkable feature of this system is
that the dimension of its strange attractor increases
monotonically with 7. Varying the parameter 7, strange
attractors with an arbitrarily large dimension can be
generated. In our experiment, we choose 7 = 30 to gen-
erate a Mackey-Glass chaotic time series. The data set
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of 1200 points of this chaotic time series which gener-
ated using y(0) = 1.0 and y(t —7) =000 <t < 7) is
shown in Fig.9.

With different m, in (26), the input and output vec-
tor of the Mackey-Glass series prediction problem are
different. Here, m = 6 and | = 1 are employed *%,
therefore the input vector is @ = {y(t — 6),---,y(t —
1),y(t)} and the output vector is y = {y(t + 1)}. The
first 500 points of the series were used as the training
data, and the further 500 points were used as the testing
data. :

0 0 4o 00

tun:m (sec)

Fig. 9. Mackey-Glass chaotic time series

B. Henon Attractor

Henon attractor is a strange attractor discovered by
Michel Henon 4. 1t is given by :

{

where ¢ = 1.4 and b = 0.3. With the initial value
zo = yo = 0, 500 points of series = and y are gener-
ated. The = — y phase portrait of the Henon attractor
is shown in Fig.10. .

For the Henon attractor prediction problem, m, ! are
set to m = 1 and I = 1, therefore the input vector is
{Zn,Zn_1} and the output vector is {Z,41}. The ex-
periments on this problem are performed employing the
first 250 points of the z series as the training data, and
the further 250 points as the testing data.

1—az2 +y,
bz,

$n+1
Yn+1

C. Results

The results of employing the proposed network to the
Mackey-Glass series and the Henon attractor prediction
problems are summarized in Tbl.3, where the values of
RMSE were calculated by (21) with the testing data
of each problem. The results of the previous wavelet
neural network with straightforward weights are also
presented in Tbl.3. ' For both the Mackey-Glass series
and the Henon attractor prediction, it can be seen that
both the wavelet neural network with local linear mod-
els as powerful weights and with simple weights could
predict the chaotic time series with sufficient accuracy.
However, compared to the wavelet neural network with
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Fig. 10. Henon attractor

straightforward weights, the proposed network could
achieve a similar accuracy with a smaller size due to
the introduction of the local linear models. The predic-
tion performances are illustrated in Fig.11 and Fig.12,
where the predicted and actual values of the testing
data are demonstrated in a same figure and the plotted
prediction error is the difference between the predicted
and actual values.

Table 3. Results of chaotic time series prediction
time network | structure | number of | computation | RMSE
series parameters | time (sec)

Mackey | LLAWNN 6-2-1 38 672 0.009
Glass AWNN 6-5-1 65 1558.4 0.010
Henon | LLAWNN 2-2-1 14 71 0.008

attractor | AWNN 2-8-1 40 204.3 0.011

4. Conclusion

In this paper, we proposed a wavelet-based neu-
ral network which is called the local linear adaptive
wavelet neural network. The basic idea is to replace the
straightforward weights of previous wavelet neural net-
works by introducing the local linear models as powerful
weights. This was inspired by the studies of some neuro-
fuzzy systems. Furthermore, from the point of view of
the network architecture, it can also be considered that
the proposed local linear adaptive wavelet neural net-
work is developed as a new type of local model net-
work. The local active basis functions used in previous
local model networks, such as Gaussian basis functions,
are replaced by wavelet basis functions that localized in
both the time space and frequency space. The working
of the proposed network can be viewed as to decompose
the complex, nonlinear system into a set of locally active
submodels, then smoothly integrate those submodels by
their associated wavelet basis functions. Experimen-
tal results obtained in the function approximation and
chaotic time series prediction problems indicated that
the proposed network could achieve sufficiently good
performances with a smaller number of wavelet basis
functions compared to the previous wavelet neural net-
work.

For future work, it would be interested in the opti-
mization of the network architecture, efficient parame-
ter training algorithms and practical applications of the
proposed network.

{Manuscript received May 23, 2001, revised Septem—

ber 7, 2001)
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