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This paper presents a gradient ascent learning algorithm in weight domain for solving local minimum prob-
lem of a Hopfield network. The learning algorithm has two phases, the time domain phase and the weight
domain phase. The former seeks a minimum of the energy function by updating states in time domain of
a Hopfield network, and the latter intentionally increases the energy of the network by modifying weights
in a gradient ascent direction of the energy in weight domain after the network update stabilization in time
domain is achieved. The two phases are repeated until a condition, for example the energy function E=0
is satisfied. The learning algorithm is applied to a two-neuron Hopfield network and an N-queen problem,
extensive simulations are performed and its effectiveness is confirmed.

Keywords: Hopfield neural networks, gradient ascent learning, Local minimum, Weight domain, Time domain

1. Introduction

The time domain behavior of a Hopfield neural net-
work to decrease a well-defined energy function [1,2] has
been applied to many constrained optimization prob-
lems and has shown potential for solving such problems
efficiently [3-5]. Unfortunately, since the energy func-
tion of a Hopfield network has many local minima, prac-
tical limitations exist: performance is not good with
a Hopfield neural network, and performance becomes
poorer with larger problems, typically larger than 10
cities when applied to the traveling salesman problem
[6, 7). Furthermore, there is not an effective method
to help the network escape from the local minima. The
performance may be improved by some sophisticated ar-
chitectures, such as the Boltzmann machine [7, 8]. The
Boltzmann machine uses noise to ”shake” the network
state out of a local minimum [9]. However, the Boltz-
mann machine is very slow because of the need for ex-
tensive averaging over stochastic variable [10]. Besides
annealing, sharpening (T becomes smaller), for exam-

ple deterministic annealing [11], [12], and adding chaotic

noise [13], [14] are also powerful methods for solving the
local minimum problems. However, the former takes a
very long time due to the meticulous decrease. of tem-
perature parameters [13], [14]. The latter doesn’t give
a general solution to the local minimum problem due to
its "control difficult problem” of the dynamics [15].

In this paper, we present a gradient ascent learning al-
gorithm in weight domain for solving the local minimum
problem of a Hopfield network. The learning algorithm
has two phases, the time domain phase and the weight
domain phase. The former seeks a minimum of the en-
ergy function by updating the states of the Hopfield
network in time domain, and the latter intentionally in-
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creases the energy of the network by modifying weights
in a gradient ascent direction of the energy in weight
domain after the network update stabilization in time
domain is achieved. The two phases are repeated until a
condition, for example the energy function E=0 is satis-
fied. The learning algorithm is applied to a two-neuron
Hopfield network and an N-queen problem, extensive
simulations are performed and its effectiveness is con-
firmed.

2. Hopfield Network Behavior In Time Do-
main ‘

A Hopfield network is constructed by connecting a
large number of simple processing elements (neurons)
to each other [1, 2]. In general, the ith processing ele-
ment is described by two variables: its total input de-
noted by x; and its output denoted by ;. The output
is usually related to the input by a simple nondecreas-
ing monotonic output function f(z;). The function is
normally designed to limit the possible values of y; to
the range 0 to 1: hence the function will be nonlinear.
For simplicity, f(z;) is frequently a sigmoid function of
the form

B 1

= Ty (1)

vi = f(z:)

where T is a parameter called temperature parameter.
The output of the ith neuron is fed to the input of the
jth neuron by a connection of strength (usually called
the weight) W;;. In addition, each has an offset bias
(usually called the threshold) of h; fed to its input. The
dynamic behavior of the network, consisting N neurons,
is described by the following system of N nonlinear dif-
ferential equations.
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dynamic of a Hopfield network.
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where i = 1,2,:--, N, and 7 is a constant. The elements
of z; are updated either asynchronously (the element to
be updated being selected randomly) or synchronously,
Hopfield proved that motion equation (Eq.(2)) for a net-
work with symmetric connections (W;; = Wj;) always
lead to a convergence to a local minimum of the quan-
tity (energy function) [1, 2].
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The theory shows that a mathematical quantify E,
which might be thought of as the energy, decreases
during the change in neural state with time (i.e. the
updating in time domain) described by Eq.(1). Started
in any initial state, the system will move in a general
downhill direction of the E function, reach a state in
which F is a local minimum or a global minimum, and
stop changing with time.

Thus, seeking a minimum of the energy function is
analogous to seeking a minimum in a mountainous ter-
rain. Figure 1 depicts a two-dimensional version of such
terrain. The energy function is reflected in the height of
the graph. Each position on the terrain corresponds to
a possible state of the network, and the network moves
towards a minimum position. In this graph, a local
minimum and a global minimum are depicted. If the
state of the network is changed, then a corresponding
change is made in the horizontal coordinate position on
the graph. This change in turn results in a movement
downhill toward one of the minima.

The initial state of the network may be thought of as
the position of a skier who has dropped randomly onto
mountainous terrain. The updating procedure in time
domain moves the skier downhill until he gets to the
bottom of the most accessible valley. This valley may
be at a local or a global minimum.

Although we may visualize this search in two or three
dimensions, there are actually as many dimensions as
there are processing units. A Hopfield network’s con-
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vergence procedure in time domain seeks a minimum
in such a multi-dimensional mountainous terrain. How-
ever, there is no effective method to help the network
reach the global minimum from a local minimum.

3. Hopfield Network Learning In Weight Do-
main

As mentioned above, the original Hopfield network’s
updating in time domain may lead a convergence to ei-
ther a local minimum or a global minimum. However
there is not an efficient way for the network to reach
the global minimum from a local minimum. We pro-
pose a gradient ascent learning method of solving the
local minimum problem of a Hopfield neural network.
Figure 2 shows a flowchart of the learning algorithm.
In the flowchart, Phase I (state update phase) performs
the state update of a Hopfield neural network in time
domain in which a Hopfield neural network seeks new
state, a minimum of the energy function. Then result of
the updating is evaluated. If a condition for the end of
learning is satisfied, then stop; otherwise, go to Phase
IT (weight update phase). Phase IT uses the new steady
state and increases the energy by changing the weights
of the Hopfield network. Then Phase I is re-performed
using the new weights and the new state. Thus, the two
phases are repeated until a condition, for example the
energy function F = 0 is satisfied. The detail algorithm
will be described in section 4.

In order to describe the learning algorithm, we use a
two-dimensional graph (Fig. 3) of energy function with
a local minimum and a global minimum. The energy
function value is reflected in the height of the graph.
Each position on the energy terrain corresponds to a
possible state of the network. For example, if the net-
work is initialized onto the mountainous terrain A, the
updating procedure in time domain moves towards a
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Fig.2. Flowchart of the learning algorithm.
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minimum position and reaches a steady state B (Fig.
3(a)).

Because the energy terrain is determined by various
parameters, such as the weights and the thresholds of
the network. We can change the weights and the thresh-
olds to increase the energy at the point B so as to fill up
the local minimum valley and finally drive the point B
out of the valley. Here, suppose that a vector W corre-
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Fig.3. Relation between energy and state update
during the learning process of a Hopfield network
with two stable states.
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spond to the weights and the thresholds of the Hopfield
network. Since for the weight vector W, the updating
requires the weight change to be in the positive gradient
direction, we take

where € is a positive constant and 7 F is the gradient
of energy function E with respect to the weight W. If
the constant ¢ is small enough, the energy is increased.
Applying Eq.(3) to Eq.(4), we then obtain:

oF ’
AW, = P = Yy e (5)
Wi
OF
Ahij = q% S QU e (6)

where p and ¢ are positive constants. y;, y; corre-
spond to the state of B.

Now we show that after we change the weights and
the thresholds according to Eq.(5) and Eq.(6), point B
will be on the slope of a valley. Suppose yp; represent
the state of point B, yp; represent the state of any point
P of energy terrain, then the change of energy in point
P by the learning rule (Eq.(5) and Eq.(6)) will be:
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Because point B is a minimum of energy function and
the output of neuron in point B is at or near 0 or 1 [2],
from Eq.(7), we can know easily that the change of en-
ergy is largest when point P is at the same point as
point B, and the larger the difference of state between
point P and point B has, the smaller energy changes in
point P. Thus, we can see that the valley will be filled
up in a most effective way. In general, point B may
become a point on the slope of the valley.

Thus, the previous steady state B becomes a point on
the slop of a valley (B’). From Eq.(5) we can see that
the modification of weights is symmetric, and therefore
the new weight will be kept symmetric. Thus, after
updating of the Hopfield network with the new weights,
the point B’ goes down the slope of the valley and reach
a new steady state C' (Fig. 3(b)). Thus, the repeats of
the updating in time domain and the learning in weight



domain may result in a movement out of a local mini-
mum (Figs. 3(c) and (d)).

Note that once the weights and the thresholds are
changed, the energy terrain may be changed and the
position of global minimum in energy terrain may also
be changed. But the problem can be easily solved by
performing the update using the original Hopfield net-
work with the new state as its initial state.

Furthermore, in contrast to Boltzman mechine [9},
our learning method does not attempt prevent the sys-
tem getting trapped in a local minimum; rather, if the
network converges to a local minimum, it aims to fill
up the local minimum valley. Our algorithm proceeds
in cycles, with each cycle comprising a energy mini-
mization phase followed by a gradient ascent phase. In
the energy minimization phase, the Hopfield network is
updated in the normal manner until a minimum state
is located. The method then enters the gradient as-
cent phase, during the course of which the algorithm
increases the energy by modifying weights in a gradi-
ent ascent direction of energy. The cycles are repeated
iteratively until a global minimum or a better one is lo-
cated. One advantage of this approach is that it has no
effect on the energy minimization until such time as the
network converges to a stationary point. Our algorithm
is a deterministic algorithm. There are no any random
perturbations of the search direction. Therefore, the al-
gorithm is very fast, very efficient and reliable compared
to Boltzman mechine

4. Algorithm

The following procedure describes the proposed al-
gorithm. Note that the Hopfield updating procedure
and the gradient ascent learning procedure are all syn-
chronous parallel procedure.

1. Set the constants p, ¢ in Eq.(5) and (6).

2. Update the Hopfield network with original weights
and thresholds until the network converges a stable
state (Phase I).

3. Record the stable state.

4. Use Eq.(5) and (6) to compute the new weights
and new thresholds (Phase II).

For i=1,--N

a. Compute the AW,;, using Eq.(5) for j = 1,-, N

and j # 4. ,
* b. Change the w;; for j =1,--, N and j # 1.

Wij = Wi5 + Awij

c. Compute the Ah;, using Eq. (6).

d. Change the h;. -

h; = h; + Al

5. Update the Hopfield network with the new weights
and thresholds until the network reaches a stable state.

6. Because the weights and the thresholds of the Hop-
field network determine the energy terrain, once the
weights and the thresholds are changed, the energy ter-
rain may be changed and the position of global mini-
mum in energy terrain may also be changed. In order
to avoid the shift of the state of the global minimum
to a specific problem, reupdate the Hopfield network
with original weights and thresholds until the network
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reaches a new stable state.

7. 1If the new stable state obtained from step 6 is
better than the recorded stable state, then replace the
recorded stable state with the new stable state obtained
from step 6.

8. If a condition, for example the energy function
E =0 is satisfied. then terminate this procedure, oth-
erwise use the stable state obtained from step 5 go to
the step 4.

5. Simulation Results

Using the learning procedure given above, two exam-
ples are cited. The first example is a Hopfield neu-
ral network with only two neurons. The learning con-
stants were p = 0.001,g = 0.01, the weights and the
thresholds were W12 = W21 = —2.0,h1 = 1.0 and
h2 = 0.9 and the temperature parameter T° = (.24.
Figure. 4 is a 3-dimensional contour line figure of the
energy of the network. The two horizontal axes cor-
respond to the states of the two  neurons, the verti-
cal axis is the energy of the network. It can be seen
that the relation between the energy function and the
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(b)
Fig.4. 3-dimensional energy contour map for a

two-neuron Hopfield network: (a) before learning,
(b) after learning.
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states of the two neurons becomes a shape of a saddle.
As shown in Fig. 4(a), the network has a local min-
imum at the corners of y; = 0,y2 = 1 and a global
minimum at the corner of y3 = 1,52 = 0. Figure.
5 shows the energy of the Hopfield network, and its
state change during the learning intuitively. First, in
an initial state A at time s = 0(y; = 0.95,y2 = 0.95),
the energy takes very large value -0.475287. From the
initial state, the network goes down to lower the en-
ergy as shown in the figure, and converges to -0.930935
by the energy and y; = 0.118270,y2 = 0.940722 by
the state B. Next if the learning in weight domain
using the formulas (5) and (6) is performed, the en-
ergy in state B(y; = 0.118270,y2 = 0.940722) will
go up to E = —0.911195 and becomes a point B’ on
the slope of the valley again. This is called the first
learning (s = 1). If the network updates using the
new weights and the new thresholds in time domain
from B’ again, it will converge to F = —0.911226 by
the energy and y; = 0.124065,y. = 0.932768 by the
state C. In this way, the updating in the time domain
and the learning in weight domain are repeated on the
Hopfield network. After the 4 — th learning (s = 4),
the network goes up to the energy F = —0.8546609
and the state E'(y1 = 0.142568, yo = 0.902425). Thus,
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b2) during learning.

the local minimum valley of the energy of the network
is disappeared, and the network updates to a state
G(y1 = 0.996728,y2 = 0.007408) from the state E’
through F, thus resulting in an escape from the local
minimum valley. The energy also decreased abruptly
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updating in time domain and the learning in weight domain for
a 10-queen problem.
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Fig.9 Histogram of the rate of the optimal placements during
learning

from B = —0.8546609(E') to £ = —1.389895((G) af-
ter a small decrease from E = —0.8546609(E’) to
E = —0.868840(F). The details of the energy change
during the learning are shown in Fig. 6. Figure. 7
shows the changes of the weights and the thresholds
during the whole learning process. Figure. 4(b) shows
the 3-dimensional contour line figure of the energy of
the network after learning.

By the above simulation results, the valley (the local
minimum) of energy is extinguished, namely, is under-
stood that the learning method proposed in this paper
is effective in making a Hopfield network escape from
a valley (a local minimum). Furthermore, according to
Fig. 5 and 6, by updating in time domain after the
4 —th learning, the energy decreases from E’ to F' gen-
tly first and falls in the minimum G from F' abruptly.
- This is because the energy has an extraordinary loose
hill as shown in Fig. 4(b). These simulation results are
in agreement with our learning algorithm. Furthermore,
the information such as the structure of the energy and
the feature may be acquired from the energy change
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Table 1. The rate of optimal solution to N-Queen

problems
Queens 50 | 100 | 150 | 200 | 300 | 400 | 500
Takefuji [17] 86 98 96 93 85 69 67
Maximum NN [18] | 78 99 95 95 95 87 86
Proposed Method | 100 | 100 | 100 | 100 | 100 | 100 | 100

during the learning by this learning method.

In the second example, the learning algorithm was
applied to an N-queen problem which is a well-known
constraint satisfaction problem. The task is given a
standard chessboard and N chess queens, to place them
on the board so that no queen is on the line of attack
of any other queen. The problem can be solved by con-
structing an appropriate energy function and minimiz-
ing the energy function to zero (E = 0) using an N x N
two-dimensional Hopfield neural network [16]. A sim-
ulation on a 10-queen problem was carried out using
the proposed algorithm. The simulation results that
illustrate a typical progressive intermediate placement
during the updating in time domain and the learning
in weight domain are shown in Fig. 8. Initially the
Hopfield network converged to a time independent state
(Fig. 8(a)). It is obviously not an optimal placement to
the problem. After the 1st, 2nd, and 3rd learning, the
network found the placements of Fig. 8(b) and (c) and
finally the placement of Fig. 8(d), an optimal place-
ment. Furthermore, to see how the learning was being
made of optimal placements, we generated 100 initial
placements randomly for a 30-queen problem and per-
formed the updating in time domain and the learning
in weight domain. Figure. 9 shows a histogram of the
rate of the optimal placements. We also found from the
simulation results that the learning has led to 100% op-
timal placement while the traditional Hopfield network
provided only about 57% optimal placement. For larger
problems such as 50, 100, 150, 200, 300, 400 and 500
queens problems, the algorithm does learn perfectly as
compared with the other existing neural network meth-
ods [17], [18] in synchronous parallel computation model
as illustrated in Table 1.

6. Conclusions

By increasing the energy function of a Hopfield net-
work in weight domain intentionally, we have given a
comprehensive description of the way in which a Hop-
field network gets out of a steady state which may be
either a local minimum or a global minimum. We have
also derived the analytic expressions and shown how to
use them to real application problems. With the learn-
ing algorithm, it is possible to solve the local minimum
problem of a Hopfield network. Simulations were per-
formed a two-neuron Hopfield network and an N-queen
problem up to 500 queens and produced 100% optimal
solutions. ‘
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