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This paper deals with the problem of robust L, disturbance attenuation for nonlinear systems with input
dynamical uncertainty. The input dynamical uncertainty is restricted to be minimum-phase and relative
degree zero. A sufficient condition is given such that the nonlinear system satisfies the Ly gain performance
and input-to-state stable (ISS) property. Using this condition, a design approach is given for smooth state
feedback control law that solves the robust Ly disturbance attenuation problem, and the approach is extended
to more general case where the nominal system has higher relative degree. Finally, a numerical example is

given to demonstrate the proposed approach.
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1. Introduction

In the last decade, there has been renewal of inter-
est in developing systematic design methodologies for
control of nonlinear systems. For the systems forced
by disturbance, the attention was focused on the Lj
disturbance attenuation problem. In the early stage,
a solution to this problem is given based on positive
definite solution of Hamilton-Jacobi Inequality (HJI)
W@ &) Recently, it has been shown by @V that if
the penalty signal is of particular form, the Lo distur-
bance attenuation problem can be solved by directly
constructing a storage function.

For uncertain nonlinear systems, robust Ly feedback
controller based on the extended HJI was proposed by
® 03 and the constructive design method has been ex-
tended to parametric uncertain system ¢ *® and to the
systems with ‘gain bounded uncertainty @~0%_ Also,
the case where the penalty signal includes the control
input term has been addressed in *”® by employing
the constructive design method.

However, in the L, disturbance attenuation ap-
proaches, the stability was considered only for the sys-
tem unforced by the disturbance. As is well-known,
in nonlinear systems, the asymptotical stability of free
system does not necessarily imply the boundedness of
the state when the system is forced by bounded dis-
turbance ®®. Indeed, for describing this boundedness
property of a system under bounded input, the notion of
ISS has been proposed by ", and it has been shown that
a necessary and sufficient condition for ISS can be given
by a dissipation inequality ® *. Using this result, we

are able to put the ISS specification to the dissipation.

inequality-based Lo disturbance attenuation approach.
Recently, along this research line, the Lo disturbance
attenuation with ISS property has been studied by 2.

'On the other hand, in the field of robust control of
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nonlinear systems, the attention has been focused on a

broader class of uncertainties. Robust control of nonlin-
ear systems with input dynamical uncertainty has been
investigated by many researchers (see *© ** and the ref-
erences therein). In “® a dynamical state feedback con-
trol law is proposed to solve the robust stabilization
problem under the assumption that the uncertainty is
minimum-phase and relative degree zero. However, the
approach requires a priori knowledge about the stabil-
ity margin of the uncertainty. A static feedback control
law is designed by ®®. In®9, it has been shown that
the nonlinear systems with input dynamical uncertainty
can be transformed into feedback loop structure, and
the state feedback stabilizing control law is given based
on gain assignment techniques ¥, which is a successful
application of the small gain theorem.

In this paper we focus our attention on robust Lo
disturbance attenuation problem for nonlinear systems
with input dynamical uncertainty. The uncertainty con-
sidered in this paper is the same class as shown in .
However, our goal is not only robust stability but also
robust Ly gain performance and ISS property. Then,
a feedback controller will be derived that solves the ro-
bust L, problem. Furthermore, the design method will
be extended to more general system with relative de-
gree larger than one. Finally, we will show a numerical
example.

2. Preliminaries

We consider the systems with input dynamical uncer-
tainty described by the following form

&= f(z) + g1(@)w + g2(z)v

z = h(z)
N (1)
€= ) + bu

where 7 € R™, w € R" and z € RY denote the state,
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disturbance and penalty signal, respectively. f(z),
g1(z), go(x) and h(z) are known smooth vector fields,
f(0) =0, h(0) = 0. £ € RP is the state of uncertain
dynamics driven by the control input w € R . v € R
is the output of the uncertainty. A(-) and ¢(-) are un-
known vector field and function vanishing at the origin,
respectively, and b is an unknown vector bounded by
1b]] < b, where by is a known constant.

If there is no uncertain dynamics in the path from u
to v, i.e. v = u, the system (1) is represented by

{ &= f(z) + g1(x)w + ga(z)u

z = h(z)

We call this system as the nominal system of (1), and
we say the uncertainty is admissible, if the input dy-
namical uncertainty satisfies the condition described in
the next section (see Al).

For the system (1), the robust L, disturbance atten-
uation problem with ISS is given as follows. For any
given v > 0, find a smooth feedback control law

U= QUT) e

(3)
with a(0) = 0 such that for all admissible input dynam-
ical uncertainty, the following conditions are satisfied.
[P1] The closed-loop system is input-to-state stable
with respect to the disturbance input w.
[P2] The closed-loop system has L gain less than
or equal to «, from the disturbance input w to the
penalty output z, i.e. for (0) =0 and £(0) =0

T
VA 2 2 w
/On o dtm/o o),

holds, where T' > 0 is any given scalar.

[P3] The origin (z,£) = (0,0) of the free system un-
forced by the disturbance is globally asymptotically
stable.

In order to obtain our main result, first, we consider
the system described by

T = fo(z) + ge(z)w
z = he(x) ‘
where z € R, w € R", z € R?. f.(z), g.(z) and h.(z)
are smooth vector fields, f.(0) = 0, h.(0) =

As is well-known ™, the system (5) is said to be ISS,

- (4)

if there exist a KLy function 8 and a K., function x
such that /
z@)[ < B(l[z0)[I,t) + x(Jjwl)), Yt>0 ---- (6)

holds for any w.

According to the necessary and sufficient condition
given in ®, the system (5) is ISS if and only if there
exist Koo functions A and &, such that the inequality

L 11e(w) + gelau] < Al ~ (el

holds for any w.

Moreover, by the relation between L, gain and -
dissipativity, the system (5) satisfies (4) for any given
T > 0, if there exists a positive definite function V(x)
such that the following inequality is satisfied.

Yz (7)

BHFWC, 122%65, FHUF
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2 el@) + gele)u] < 7 (Pl 207}, Voo (8

Comparing the dissipation inequalities (7) and (8), it
is obvious that the system (5) has L, gain, which is less
than or equal to v > 0, with ISS, if the positive definite
function V(z) satisfies

G o) + gelav] < 5 {2l = |20} — (),

Yz, Yw (9)

Summarizing the argument above, we have the fol-
lowing Lemma 1 which is a technical Lemma for our
main results.

Lemma 1. For any given v > 0, if there exist a pos-
tive definite function V(z) (V(0) =0) and a Ko func-
tion K, such that the Hamilton-Jacobi Inequality (HJI)

8V 1 9V 7, 0TV
9z folz) + 53 22 3z 9 ge(® )gc‘(x)ﬁﬁ

+5hT (@he(a) + a(lal) <O, Ve

holds, then the system (5) satisfies [P1]-[P3].

Proof. It is easy to show that V (z) satisfies HII (10)
if and only if V(z) satisfies the dissipation inequality
(9). Thus, [P1] and [P2] follow from (7) and (8), re-
spectively. Finally, when w = 0, following by (7), V(z)
satisfies Ly V(z) < O for all nonzero z. Therefore, the
system & = f.(z) is globally asymptotically stable at
equilibrium z = 0, i.e. [P3] is satisfied. i

3. Main result

‘We now consider the robust Ly disturbance attenua-
tion problem with ISS in Section 2.

First, we consider the systems (1) with n = 1, i.e.
the state x is a scalar variable. Suppose the system (1)
satisfies the following assumptions.

[A1] There exists a known smooth K, function &(-)
such that ||c(€)|| < é&(||€])), V€ € RP. For the zero
dynamics of {-subsystem disturbed by (d, d2)

€= Ao(¢+di) +dy

there exist a positive definite function W (¢) and K
functions B1(-), f2(-) and B3(-) such that

8W(£) [Ao(€§ +d1) +do] <
—,31(”5”) + B2(lldal) + Ba(l|dall), Vdi,da (12)
holds, where Ag(&) := A(E) — be(£).

This assumption means that the zero dynamics of
&-subsystem is ISS with respect to the inputs (dy, dz).

[A2] There exist constants gg > 0 and §; > 0 such
that the following inequalities hold

92() 2 9o, g1 (@)wl| < Gafjwll, Vz ---(13)

Now, we employ the change of coordinate used in 9

§:€~b/0 g5 (s)ds

to transform the system (1) into the following form



T = f(z) + g1(z)w + ga(x)(u + yo)

z = h(z) . |

w=c+b [ gl 1)
i 0

£=Ao(€+di) +dy

dy = —bgz‘l(w) [f (@) + g1(z)w]

Moreover, according to the assumptions [Al] and
[A2], function c(-) satisfies the following inequality

le(€ +b [ g2 (s)ds)ll < &(l€ +b [ g5 (s)dsll)
< ka(l€N) + ka(lll),

where k1(-) and ko(+) are K, functions defined by
. 2
k(lI€ll) = e2lElD,  k(llzl) = C(%bon"f”)-

For the system (15), we now consider the feedback
control law (3). Denote f.(x) = f(z) + ga(z)a(z).

_Obviously, there exists a smooth class Ko, function
f() such that the following inequality holds
16 (x)g5 ()| < bof(jz]l), vz
Define a K function ,@2() as follows
Ba(ll) = 52(901170”3341) + 2055 2 (|ll)) -+ (17)

where [ is a positive scalar. Then, we can find K, func-
tions v(-) and &(-) satisfying

v(2hi(€]) < iy

1 Br(IEl) — e li€l®,

(18)

r(llz]]) =

where €1 > 0 and 5 > 0 are sufficient small constants,
p is a positive constant.

~ﬁ2(||$|l)+'/(2kz(il$||))+€zvall?, vz (19)

Lemma 2. Suppose that there exists a scalar |l > 0
such that the Ko, function B3(-) satisfies

Bs(|ldal|) < 1[|da]?

' Consider the closed-loop system (15) with (8). If for
any given v > 0, there exists a positive definite function
Ul{x) such that the dissipation inequality

8U( )

[fe(x) + g1(@)w + g2(z)yo] <

1

2
5 {%Hwﬂ? ~ 12 p+v(loll - Clel), Ve (21)

holds for any w, then the closed-loo‘p' system satisfies
[P1]-[P3] for all admissible uncertainty.

Proof. By the assumption (12), we have
W(&) < =B (lI€]) + Bo((lda ) + 1]\ da]®
~sul1é+ (o [ o106 )
0

+1bg2 " (z) [£ () + g1 (z)w] |I?

982

~al) + 2 (o [ 5% c1as))
+21||bf ()97 (x >||2+2l||bgl< )93 (z)wl?

Moreover, from the assumption (13), we have

T _ 1
|6 5 95 (s)ds]| < g—ObOH-’UH,

lbg1(z)g5

1 73!
()w| < g—ObOHWH

2
Hence, by (17) and choosing p = QZ%b%, we get
0

) P (23)
where
i= [ ¢ ] F(F,w) = { Ao(€+ dv) +da
z fe(z) + g1(z)w + ga()yo

For the given v > 0, choose a positive definite function

V(i) = }[—)W(E) FU(Z) ceeeremnenennen

as a candidate of the storage function for the closed-loop
system (23). Using (21) and (22), the time derivative
of V' along any trajectories of (23) satisfies

_ [7_2% a_U_] [ Aog(E+dy) + dy
~ [4p 8¢ Oz | | fe(z) + gi(z)w + g2(2)yo

2
a2
5 flw]|

2 _ 2 R
< —1—pﬁl<n5n> + Z—pﬂz(Ilel) +

_ %”z“2 + v(|lyoll) —n(||m||)

Substltutmg (16) mto (25) obtains
A2
V< ——ﬂl(llﬁll) + ﬂz(IIIH) + ~||w||2

el + 0D 80 — 1
2 2
< {~Za0@n -+ veuian} + Tiol? - a2

2 ~
+{ L atlal) + vizkallal) - i} - (26

It is easy to show that by choosing K, functions v()
and x(-) satisfying (18) and (19), respectively, the in-
equality

V < Pl - 1212 - &(a0)

holds, where &(||Z||) = €||Z||? and £ < min{e1,e2}.
Therefore, by Lemma 1 we conclude that the closed-

loop system satisfies [P1]-[P3] for all admissible uncer-

tainty. 1

......... (27)

Remark 1. Note that the uncertain dynamics in (15)
is driven by both of the disturbance w and the state z.
As is shown by (22), under the assumption [A1], the zero
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dynamics is also ISS with respect to x and w. Further-
more, if there exist constants u; > 0 and us > 0 such

that p1[i€]* < Bi(l|€]l) and Bo(|l])) < pofa|? hold,
then, along any trajectories of the zero dynamics, we

have
w
x

where pt3 > maz {uz, p}. This means that the zero dy-

2
W < —pi|l€]? + ps

namics has finite Ly gain from [w x]T to £, which is
less than /p3/pu1 > 0. This kind of uncertainty with
finite Ly gain has been addressed by many papers to
solve robust stabilization problem. However, we do not
require the uncertain dynamics to have finite L, gain,
though our goal contains the asymptotic stability [P3].

Using the condition given in Lemma 2, a solution of
the robust L, disturbance attenuation problem with ISS
can be found for the system (1).

Theorem 1. Consider nonlinear system (1) satisfy-
ing assumptions [Al] and [A2], and suppose that there
exists a positive constant € such that

62
ol < v(luol,

holds. For any given v > 0, if there exists a solution
U(x) >0 (U0)=0) to HIT

oU 1 80U r, 0TU 1.
B (I)+?5;91(m)91 (1)—81_ +§h (z)h(z)
19U r, 07U
_— — <0 .-
202 (@) (@) 5+ () <0 - (29)

then a solution of the robust Lo disturbance attenuation
problem with ISS is given by

u=o(r)=—=

) —
6292

where v(+) and k(+) are any Koo functions satisfying (18)
and (19), respectively.

Proof. Note that the closed-loop system of (1) with
the controller (30) is described by (23). We will show
that under the condition (28), the positive solution U(z)
in (29) will satisfy the condition in Lemma 2.

Using (29), a straightforward calculation gives

ag(x) {f(z) + g2(z)(z) + g1 (z)w + g2(T)y0 }

T

{g2(z)a(z) + g1(2)w + g2(2)yo}

2 2 T
~y 5 € 5, 10U r, O°U

< i — Z -

< Tl + Sl + 5 20a(2)od ()5

+ 5 aa(@ale) — 3121~ ()
Taking (28) and (30) into account we obtain
mg—f) {f(2) + g2(2)a(z) + g1(2)w + ga()yo}

BEWC, 122%62, FRAE
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1

2
b
< 5 {FlP = 1elP + (ol () (21
Therefore, by Lemma 2 we conclude that the closed-
loop system satisfies [P1] — [P3]. 1

‘We now consider the robust stabilization problem for
the system (1) with w = 0. As specified in P3, Theo-
rem 1 presents a robust stabilizing controller. In fact,
the robust stability follows by the small gain theorem,
because if U(z) satisfies (29) and w = 0, then U(z),
as shown in (31), will satisfy the following dissipation
inequality \

g—g {f(@) + 92(z)(a() + o)} < w(llwol)—r(llz[l) (32)

The inequality (32) is nothing but a gain condition for
the z-subsystem of (15) from the input yo to the out-
put z. Thus, the small gain condition ¥ is satisfied
with the gain constraint on the &-subsystem described
by [Al].

Obviously, we can obtain a robust controller by di-
rectly constructing a function U(z) that satisfies (32).
As a special case, if we choose a candidate for the stor-
age function U(z) as

1
U(z) = §x2

then a robust stabilizing controller can be given as fol-
lows.

Corollary 1. Consider the system (1) with w = 0.
Suppose the uncertainty satisfies [Al] and [A2]. If there
exists a positive constant € > 0 such that the inequality
(28) holds, then a feedback controller which renders the
closed-loop system robust asymptotically stable is given
by

1 7
“'2—62‘92

u=a(z) = —g; ' (z)(f(z)+R(z)) (z)x (34)
where R(x) is a function satisfying k(||z||) = &(z)z.

Proof. Let U(x) be given by (33). Along any trajec-
tory of the system (1) when w = 0, we have

oU(x)

ok
-1 I 7 ¢ 2

< 2ga(@)lo(2) 65 (@) F (@) + 5598 (2)2]+ 5 w2 (35)
Substituting (34) into (35) and considering the inequal-
ity (28), we can obtain the inequality (32). Moreover,
using the same argument as the proof of Lemma 2, the
robust stability of the closed loop system is guaranteed
by the Lyapunov function

{f(z) + g2(z)a(z) + g2(z )0}

Vz, ,;:') - :Y_ZW(E) 4 le ................. (36)
4p 2
since in this case we can easily show that
V< —R(|B]) e (37)

Remark 2. It should be noted that the same Lya-
punov function (33) has been employed by ¢9 to con-
struct a robust stabilizing controller for system (1) when
w = 0, and the robust stability follows also by the small
gain theorem. In“® a robust stabilizing controller is
given by



U : —$d’(.’)3) - 2’7;1(111'”)59”(-’[) ......... (38)
where &(z) is a smooth function satisfying the inequality

I = g2 (@)[kz + F(@)]]l < |lz]l(z)

and 7,(:) is a Ky function which represents a gain of
the z-subsystem from the input yy to the output z.
Comparing the controller (38) with (34), it is easy to
find that two controllers have almost same gain terms,
however, (34) consists of smooth functions only.

We consider the systems (1) with n > 1, i.e. 2z =
[1 ... z,])7. Suppose that we can define an output
y = hq(z) such that the nominal system has the rela-
tive degree one. Then under certain geometrical condi-
tions @, there exists a coordinate transform

HRCRE

such that the system is transformed to:

[ C=fi(¢y) +m(Gy)w
y = f2<(7y) +p2(€ay)w +g(C7y)v

Z:h(c7y) (39)
v = () +u
&= A& +bu

where ¢ € ™1, y € R. f1(¢,y), p1(¢, ), p2(C, y) and
h(¢,y) are smooth vector fields, f2(¢,y) and y) are
)=

g(
smooth functions, f1(0,0) =0, fz(O 0) =0, h(0,0
9(¢,y) # 0,9C,y.

In the following, we address the robust L5 disturbance
attenuation problem with ISS for the system (39). Sup-
pose that the input dynamical uncertainty satisfies as-
sumption [Al] and the nominal system of (39) satisfies
the following condition.

[A2'] There exist constants § > 0 and p > 0 such that
the following inequalities hold .

9(Gy) 2§, (¢ y)wll < pllwll,  ¥¢y (40)
The change of coordinate
- Y 1 .
g = g —_— b/ g .................. (41)
0

transforms the system (39) to the following form

(= fl¢y) +pi(¢y)w
y:f2<<,y)+p2< y)w + g(¢, y)(u+ yo)

w=c(E+d [ 479 (42)
0
z = h(C,y)
&= Ag(é+d1) +do
where

t= ['97 ¢ 5)ds
0
dy = —bg~ (¢, y) [£2(¢, y) + p2(C y)w].
Observe that the functions. f1(¢,y), p1({,y) and
h(¢,y) can be decomposed to
[ AGY) = A0+ A y)y
hT(¢ )R y) = BT (C0)R(C,0) + H(C vy

Moreover, from assumption [A2'], we have

v -1
b/og (¢,s)ds
6= (¢, w)p2(C, y)w]| <pbouw||

and the inequality [lbg™(C,1)2(¢. )l < bofa(lnl)
holds for some smooth Ko, function fo(-), n=[¢ 3]”.

By choosing f(|[n]) = A2(a~bollul) + 21b* f3 ()

and p = 21p%§2by?, the inequality

0
D¢ <~ (18D + Balinl) + ol
holds for the input uncertainty.

According to assumptions [A1] and [A2'], function e(-)
satisfies the following inequality

le(€+b f5 971 (¢, 8)ds)|| < &€+ f§ 971 (¢ s)dsl)

< k1 (€D + F(llyl), vy
where k() and k2(-) are Ky functions defined by
k(€1 = e(2liél),  k2(llyll) = @(gboﬂyll)-

Theorem 2. Consider the system (89). Suppose the
assumptions [Al] and [A2'] hold. For any given v > 0,
if there exist a positive definite function Uy({) such that

Uy 6U1 NN
+hT(C’ O)h«', 0) + K’l(HCH) <0, VC """" (45)

holds, then a solution to the robust Lo disturbance at-
tenuation problem with ISS is given by

u=a((,y) =g (¢, y) {ar((y) —
where
8U1

al(C,y) = a( fl((a ) 4 (Ca ) H(C’y)
2

fa(Gy)} (46)

T,
Y B_C‘ﬁl((’ 1T (C, )B—C +p22(¢,y)

— (Ba([Jyl]) Ry oo (47)

€ 15 any positive constant satisfying (28), k is a positive
constant, k1(-) and k2(-) are any Ko functions satisfy-
ing the following conditions

k1(8) > 2K(25), (ka(s)+k)s® > 2k(2s), Vs >0 (48)
k() is any Ko function satisfying (19).

Proof. Note that the closed-loop system can be rep-
resented as follows:

n=F(n)+ P(g)w +G(M)yo
yo = c(E+b /O 971(¢, 5)ds)

= h((,y)
Ao(g +d1) +do

N

where

_ (&)
Fn) = [ £26,0) + 9(C w)alCw) }
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P = [ 260 Jem=[ oy ]

which has similar structure to (15). Hence, by Lemma 2,
we can prove this theorem by constructing such a stor-
age function U(n) that the condition (21) is satisfied
for the nominal system. We now consider the storage
function of the system as follows

Uln) = ; (Ul(g) + ;y2> ................ ; (50)

Then,
LFU( )+LPU( )w-{-LgU( ) 0

U
; aglfl(C y)+ ;yal(C y) + yg(c,y)yo

+ % [%—Lglpl(c,y) +ypz(C,y)} w
5o {eacn) + FEACD + o

- 5 { G0+ Frntow)

+= [aal?m(c, y) +pa(C, y)]

Substituting (45) into (51) and completing the squares
by adding and subtracting terms, we obtain
LrU(n) + LpU(n)w + LeU(n)yo

< 1y{a1<c, D)+ DRF(Cu) + 9(C v

<3 C
1 U oTU
"o e 7G0T (€05 = Zra(Icl)

10U,

—EhT(C,O) (¢ 0)+§ ac —n1(¢, 0w

+l [%%ﬁl(c, )+pz(4,y)} yw
<1 {al )+ G2 Al - gmlch

%yg(c Y)yo — 8129 ¢ v)y? +8—129 (S
212 (S O)Ba?1 +35ep(C O
- —hT(C 0)h (C,O)— = (C7y)y+—H(C» Y)y
;aaUglﬁl(ﬁ y)yw %%%151(4 v)B1 (C:) BCU

8U LT
12 8551(( V5T (¢ y) o V't

[\]

sz (C: )

+ p2(¢, )yw— . — (¢, y)

1

2
1 1,
<gr{mcn+Z f1<<, D)+ 39 <<,y>y}
+ov{Eey QaU;mc DSt
+ 68 — ST CWMEY) - )

62

2 2
T llwl? + L fwl?

2
& 24 24
+ Slyol? + Ll + X2

EHMC, 122%65, FHRUUEF

Taking (47), (28) and (48) into account, we have
LrU(n) + LpU(n)w + LaU(n)yo

2 62
< Tl + S ol - 512
—% (el + Ceallyl) + 2]
%uwnz = S 1217 + vl ~ s(2lcl) + ~(2vl)]
< 5 { ol = 2+ 1) - i)
Therefore, by Lemma 2 we conclude that the closed-

loop system satisfies [P1] — [P3]. 1

Remark 3. In order to satisfy the condition (28), the
parameter € should be chosen as small as possible. And,
to satisfy the condition (48) the parameter k should be
chosen as large as possible. However, a small € and a
large k will make gain of the controller (30) and (46)
higher. It is a trade-off to selecting suitable values for
the parameters. Unfortunately, it should be noted that
there is no general procedure in the trade-off.

Remark 4. Suppose that the nominal system is
minimum-phase, i.e. the zero dynamics of the nominal
system ¢ = f1((,0) is globally asymptotically stable at
¢ =0, then, by inverse Lyapunov theorem, there exists
a Lyapunov function U;(() satisfying Ly, (c.0)U1(¢) <
0, V¢ # 0. Furthermore, if there exists a positive defi-
nite function Q(({) such that

Ly .0U1(¢) < —Q(Q),
holds, and

is satisfied, then we have

Ly, (¢,0)U(Q)+RT (¢, 0)h(¢, 0)+x1([IC]1) <0, V¢ (53)

This is a special case of (45) when p;(¢,0) = 0. Tt
means that if the zero dynamics is not forced directly by
the disturbance w, and there exist a Lyapunov function
U1(¢) and Q(¢) satistying (52) and (53), then a desired
storage function satisfying the condition in Theorem 2
can be easily constructed based on the Lyapunov func-
tion U1 ().

In fact, in the case where the zero dynamics is ex-
ponentially stable at ( = 0, it is easy to find such a
Lyapunov function Uj.

L /GEEETR PR (52)

Remark 5. Asis shown in Lemma 2, if the nominal
system with dynamical uncertainty has the structure
shown by (15), then a sufficient condition such that the
closed-loop system satisfies [P1] — [P3] can be given by
a storage function satisfying the dissipative inequality
(21) according to the nominal system. The result of
Theorem 2 presents a step-by-step constructive way for
the storage function when the nominal system has rel-
ative degree one. In fact, this recursive design method
can be extended to more general system, which has rel-
ative degree r > 1. For example, consider the nonlinear
systems with the following form.



é: fl(C7771)
m = n2 + ¢1(¢, M)w
2 = 13 + (¢, 12)w

i = F2 (o) + e (Coin)w + g(Coi)y (54)

y=m
z = h(¢, ")
v=c(§) +u
£=A()+bu
where ;7 = [n1,m2,---,m] (1 < i < r), ( € R*".

fi(¢,m), ¢:(¢,7;) and h(¢, 7)) are smooth vector fields,
f2(¢, 1) and g(¢, 77-) are smooth functions, f1(0,0) = 0,
f2(0,0) = 0, h(0,0) = 0. If there exists a Lyapunov
function Uy (() satisfies the condition in Remark 4, the
storage function can be constructed by recursive way
based on the U;(¢).

" As is well-known, if the nominal system (2) has rela-
tive degree r > 1, then under appropriate geometrical
conditions, the system (1) is feedback equivalent to the
system (54).

4. Numerical example

Consider a system given by

i = 23 + 20 + (x1 + T122)W

B9 = x2+ 0.52% + (1 +sin(z; + z2))w + (14 z3)v
1[ 22

=i (%)

€= A(E) + bu

v=c(§)+u

It is easy to check that the nominal system has rela-
tive degree one. Let the disturbance attenuation level
is given by v = 10. We will design a state feedback con-
troller for (55) such that the closed-loop system satisfies
[P1] — [P3] for all admissible uncertainty.

Using the notation of (39), po(z1,z2) = 1 + sin(z; +
Z2), 9(z1,72) = 1 + z2. Hence, it is easy to check
|p2(z1, x2)| < 2, g(z1,22) > 1, so that Assumption [A2’]
is satisfied.

Choosing 1(||z1]) = 15z}, then Uj(z;) = 10z?
satisfies (45). According to Theorem 2 and choosing

5 ‘
€ = 0.44, ra(||z2]]) = 59:%, k = 71.8476, a desired state
feedback controller is designed as’

1
1+ 23

U= Ol(.’l?l,.'l‘z) = [041(3?1#52)—-?2—%33%] (56)

where )
oy(z1,22) = 2027 — 5—0x2[400$‘11+ (1+sin(x1+22))?

1 5
— g% 1.2913(1 + z%)%z5 — (51:3 + 71.8476)x2
Suppose the uncertainty is described by

A9 = _2&:5%2}’ bz[H (57)

‘ _ 3
c(§) =§1+—§2T+§£—2

By the change of coordinates

Li=6& .
5 _ 2 1
=6 /0 H—xfds

the input uncertainty is transformed into the form (11),
where

0
o[y

+
0
dy = z2+1/2z2 1+ sin(z; + 22)
1427 1+ z2
~26 — &+ &

— _09¢3
Ag(ﬁ) - _52 _ fl + §12+ ;f)z

: o~ 1o, 1
If we construct a positive function W (&) = 55% + 55%,

then, it is easy to show that the input uncertainty
satisfies Assumption [A1], where &(||£]|) = 2v2|¢],

Bi(liEl) = %Ilfllz, Bo(lldall) = 7lldal|* and Ba(lldz) =

|d2||?. Also, the storage function of the system (55) is
P 25 =~ 1 1
Vi@, 22,6,82) = FWI(E) + 5 (Ui(z1) + 595%)
Simulation results of the system (55) with the con-
troller (56) and the uncertainty (57) are shown in Fig.1
and Fig.2. Fig.1 indicates that the closed-loop system is
asymptotically stable when the initial state z1(0) = 1,
z2(0) = 1 and disturbance input w = 0. While the
disturbance input w = 2sin3t and the initial state

z1(0) = 0, x2(0) = 0, the boundedness of the states
is demonstrated in Fig.2.

5. Conclusions

In this paper, we address the robust Lo disturbance
attenuation problem for nonlinear systems with input
dynamical uncertainty. The uncertainty is restricted
to be minimum-phase and relative degree zero. First,
a sufficient condition is given based on a dissipation
inequality such that the nonlinear systems satisfy Lo
gain performance and ISS property for all admissible
uncertainty. The dissipation inequality is derived for
the nominal system. Using this condition, a smooth
state feedback control law is given, which solves the
robust Lo disturbance attenuation problem with ISS.
Moreover, the design approach is extended to the case
where the nominal system has higher relative degree by
using the recursive method. Finally, a numerical exam-
ple demonstrates the proposed approach.

(Manuscript received July 23, 2001, rivised Feb.12, 2002)
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