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Wavelet neural networks are networks employing nonlinear’ wavelet basis functions as the activation func-
tions of the neurons. This paper presents a new type of wavelet-based neural network: the local linear
adaptive wavelet neural network. A hybrid evolutionary programming and gradient descent algorithm is
introduced to the learning of the proposed network. The local linear models which are used in some neuro-
fuzzy systems are introduced as powerful weights instead of straightforward weights employed in the previous
wavelet neural networks.: Training is performed by using the evolutionary programming algorithm at first to
search a good region in the parameter space and then employing the gradient descent algorithm to find a
near optimal solution in that region. The experiments on a number of nonlinear dynamic system identifica-
tion problems indicates that the proposed network with the hybrid EP/Gradient algorithm can successfully
identify and describe the input/output relationship for an unknown complex system with a small number of
wavelet basis functions and compared [avorably to the traditional neural networks with the sigmoid activation

[unctions and the previous wavelet neural networks with straightforward weights.
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1. Introduction

Due to. (i)the ability to learn from the experiences,
(ii)generalization for untrained inputs, and (iii)the ca-
pability to approximate to arbitrary specified accuracy
given sufficient humber of neurons, artificial neural net-
works(NN) have been established as a general nonlinear
fitting tool to develop models from observed data, or to
learn maps between input and output spaces (2. The
marked characteristics are the same as those of interest
to researchers in the areas of dynamical system con-
trol, signal processing, system identification and many
other fields ®®, Recently, in stead of using the com-
mon sigmoid activation functions, by employing nonlin-
ear wavelet basis functions(called wavelets) which are
localized in both the time space and frequency space,
the wavelet neural network(WNN) has been developed
as an alternative approach to nonlinear fitting problems.
Since Zhang and Benveniste first introduced wavelets
to a three layer feedforward neural network in (5), sev-
eral researches on this kind of neural network have been
done ®~®_ The output of a WNN is given by

where ¥, is the wavelet activation function of the i-th
unit of the hidden layer and w; is the weight connecting
the 4-th unit of the hidden layer to the output layer unit.
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With various wavelets ¥ used as activation functions
and gradient descent based training algorithms, all of
these previous studies have successfully demonstrated
the power of WNNs when employed to approximate
nonlinear functions ~®. However, a large number of
basis function units has to be employed and the gradi-
ent descent based algorithms have some limitations as
pointed in the studies of the back-propagation learning
algorithms (7.

In this paper, we introduce local linear models whose
good performances have been shown in some neuro-
fuzzy systems *%, as powerful weights to an adaptive
wavelet neural network(AWNN). The local linear mod-
els connect the hidden layer with the output layer in-
stead of the previous straightforward weights w; in (1),
therelore this type of wavelet neural network is called a
local linear adaptive wavelet neural network(LLAWNN)
(1) Moreover, a hybrid evolutionary programming and
gradient descent algorithm is employed to train this
LLAWNN. Evolutionary programming(EP) algorithm
is used first to locate a good region in the parameter
space and then gradient descent algorithm, the local
search procedure, is employed to find a near optimal so-
lution in that region. Due to WNNs have already shown
the power on nonlinear function approximation problem
which is a fundamental problem in the areas such as
signal processing, system identification and many other
complex engineering fields, the LLAWNN here is em-
ployed to the application of nonlinear dynamic system
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identification.

The paper is organized as follows. The topology of
the LLAWNN network is introduced in section 2. The
hybrid evolutionary programming and gradient descent
algorithm is described in section 3. The experiments on
nonlinear dynamic system identification problems are
described in section 4. Finally, conclusions are derived
in the last section.

2. The Local Linear Adaptive Wavelet
Neural Network

In terms of wavelet transformation theory, wavelets
in the following form

1 — b .
U= {T; = |ag| " Fyp(Z —)ai,b; € Ryi € Z}(2)
= (21, ,TN)
a; = (au,"',az'N)
b; = (b1, -, bin)

is a family of functions generated from one single func-
tion ¥ (x) by the operation of dilations and translations.
¥ (=), which is localized in both the time space and fre-
quency space, is usually called a mother wavelet and
the parameters a; and b; are called the scale parameter
and translation parameter, respectively 2.

With Eq.(2), the output of a WNN given by (1) can
be rewrote to

M
flz) = Z w; ¥ ()

i=1
M
—1
=) wilai| Ty
i=1

It is obviously, the localization of the i-th unit of the
hidden layer is determined by the scale parameter a;
and the translation parameter b;. According to the
previous researches, the two parameters can either be
predetermined based upon the wavelet transformation
theory (9~® or be determined by training . Therefore,
an adaptive wavelet neural network is a WNN of which
not only the connection weights w;’s, but also the scale
parameters a;’s and the translation parameters b;’s in
(3) are determined by some training algorithms based
on the given training data set . “Adaptive” means
the hidden layer units can adapt their receptive fields to
the distribution of the input vectors during the training
process. ‘

Due to the network architecture and the localized va-
lidity of the wavelets, the AWNN (3) can be viewed as
a kind of standard basis function network. The output
of a standard basis function network given as :

xr

) e (3)

—b;
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M
Y= Zwi@i(m)
i=1

is a weighted linear combination of many locally active
non-linear basis functions ®;(i = 1,---, M), where w; is
the associated weight with ®; *». In the AWNN (3), it
is obviously that the wavelets ¥ are the corresponding
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locally active non-linear basis functions.

It is well known that an intrinsic feature of the ba-
sis function networks is the localized activation of the
hidden layer units, so that the connection weights as-
sociated with the units can be viewed as locally ac-
curate piecewise constant models whose validity for a
given input is indicated by the activation functions 4.
Compared to the multilayer perceptron neural network,
this local capacity provides some advantages such as
the learning efficiency and the structure transparency.
However, the problem of basis function networks is also
led by it. Due to the crudeness of the local approxima-
tion (plecewise constant models are integrated by their
associated localized basis functions), a large number of
basis function units has to be employed to approximate
a given system. As reported in the previous research (7),
a shortcoming of the wavelet neural network also shared
by the RBF network and other basis function networks,
is that for higher dimensional problems, many hidden
layer units are needed.

In order to take advantage of the local capacity of
the wavelet basis functions while not having to use too
many hidden units, we propose an alternative type of
wavelet neural network. Its output of the k-th unit in
the output layer is given as :

M
Uk = Z(wi,o +wi 11+ +wi van ) Vi) (5)
i—1
x = (x1, -, TN)

where, instead of the straightforward weight w; (piece-
wise constant model) in (3), the following linear model

U; = Wi, 0 + W; 1% e

is introduced as a powerful representation of weights.
Because the activities of the linear models w;’s(%
1,--+, M) are determined by the associated locally ac-
tive wavelet functions ¥,;’s(s = 1,---, M), u; is locally
valid so that it is called a local linear model.

The idea of introducing local linear models to wavelet
neural network is inspired by the researches of some
neuro-fuzzy systems , where the local linear neuro-fuzzy
mode] described as :

M
y=> (wjo +wjws +--- +w;nay)Bi(x)
=1
‘E=($1,"',$N) ....................... (7)

has been studied and shown good performances ¢ ),

The following given Gaussian-based functions ®,(j =
1,---, M) are the basis functions used in these neuro-
fuzzy systems to control the activity of the local linear
models.

where

D; = exp(—d(; c;,0;))
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in which

d(@;c;,05) =

Similar to the fact that Eg.(7) is called the local lin-
ear neuro-fuzzy model, we call the proposed network (5)
the local linear adaptive wavelet neural network V. Its
structure is shown in Fig.1.

+ WXy
Output layer

N
Fig. 1.

M"'J}L

Network structure

It has a feedforward structure consisting of a sin-
gle hidden layer. The hidden layer performs nonlin-
ear transformation via the activation functions which
are the wavelets and the weights connecting the hidden
layer units to the output layer units are the local lin-
ear models (6). The working of the proposed network
can be viewed as to decompose the complex, nonlin-
ear system into a set of locally active submodels, then
smoothly integrate those submodels by their associated
wavelet basis functions. It means that this structure
has the advantages inherent to the local nature of the
wavelet basis functions while, by employing the more
powerful local models (6) associated with those locally
basis functions, it is not requiring as many basis func-
tions as before to achieve the desired accuracy.

As mentioned above, various wavelets have been used
as activation functions. In this study, for a problem with
N inputs, the mother wavelet ¥(x) with which wavelets
are generated by the operation of dilations and transla-
tions, is given as follows :

N

11 ¢(@n)

n=1

¥()

" this is the most frequently chosen scheme to generate a
multidimensional wavelet function by the tensor prod-
uct of a one dimensional wavelet function. The basic
one dimensional mother wavelét ¥(z) we used is de-
scribed as :

2
2

Therefore, with Eq.(2), wavelets used as basis functions

Y(z) = —x éxp <
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which has N inputs, can be generated from (11) as

N
-1 Ty — bzn
U;(x) = J;[l |@in| w(_aT) .......... (13)
3. Hybrid EP/Gradient Training Algo-
rithm

Given a set of training data Tp,
Tp = {(wwf(mz)),bz IPERE aP})

where @;, f(x;) are the input vector and the corre-
sponding output vector, the training of the network can
be formulated as minimization of an error goal function,
such as the mean square error between the target and
the actual outputs over all training examples by iter-
atively adjusting the parameters w;, a; and b; in (5).
Various gradient descent based training algorithms have
shown their effectiveness in previous studies on WNN.
However, problems such as local minimum or sensitivity
to initial conditions are still remained due to the nature
of the gradient descent ®. On the other hand, including
genetic algorithm(GA), evolutionary programming(EP)
and evolution strategies(ES), evolutionary computation
based on the genetic process of biological organisms has
been used effectively in the training of the traditional
neural networks as a global searching method (7~09),
However most evolutionary algorithms(FEAs) arc rather
ineflicient in fine-tuned local search ®®. To take advan-
tages of both methods to train the proposed LLAWNN,
we introduce a hybrid evolutionary programming and
gradient descent algorithm. EP algorithm is used first
to locate a good region in the parameter space and then
gradient descent algorithm, the local search procedure,
is employed to find a near optimal solution in that re-
gion. Successful results of hybrid training have been
reported in some researches of the training of the tradi-
tional neural networks where GAs were used to search
for a near optimal set of initial connection weights and
then BP was used to perform local search from these
initial weights (2 (23),

A. Bvolutionary Programming

Evolutionary programming, in contrast to GA, is
based on the assumption that evolution optimizes the
behavior of an instance, but not the underlying genetic
code. Therefore, the primary search operator in EP is
mutation. Gaussian mutation has been the most com-
monly used mutation operator, but Cauchy mutation
and other mutation operators can also be used. In this
study, we employ the Gaussian mutation operator as
the primary search operator. Similar to the studies of
applying EP to the evolution of the traditional NN’s
connection weights *® 2 the procedure of evolving the
adjustable parameters in the proposed LLAWNN (5) is
given as follows :

(1) Generate an initial population of L individuals
at random and set generation = 1. Kach indi-
vidual is a pair of real valued vectors (8;,m,;)(i =
1,---, L), where vector @ is the collection of all of
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the parameters w;, a; and b; in (5) that should
be adjusted, m,’s are variance vectors for Gaus-
sian mutations.

(2) Evaluate the fitness score for each individual
of the population by the inverse of the following
defined error function

B(0) = 5 Y (F, = Yy,

where f,, and Y'p are the teaching signal and the
output of the network (5), respectively.

(3) A single offspring (0;,7n.)(i = 1,---,L) is cre-
ated from each individual (6;,m;)(¢ = 1,---,L)
as the following :

1 a
Mg = Mi; exp(—éﬁN(O, 1) 0,1))(15)

0,5 =i +ni ;N;(0,1), (17)
where 0; j, 0] ;, mi,j, and n; ; are the j-th com-

1
+—N;
i

ponent of the vectors 6;, 6}, n,, and 7., respec-
tively. m is the total number of the component
in 8. In fact, here n is the total number of the
adjustable parameters in the proposed network
(5). N(0,1) denotes a normally distributed one
dimensional random number with mean 0 and
variance 1. N;(0,1) indicates that the random
number is generated anew for each component j.

(4) Calculate the fitness of each olfspring as the
same as step 2.

(5) Perform pairwise comparison over the union
of parents (6;,m;)(¢ = 1,---,L) and offspring
(0;,m})(i = 1,---,L). For each individual, g op-
ponents are chosen uniformly at random from all
of the parents and offspring. For each compari-
son, if the individual’s fitness is no smaller than
the opponent’s, it receives a “win”.

(6) Select L individuals out of all of the parents
and the offspring which have most wins to be the
parents of the next generation.

(7) Stop if the terminating criterion is satisfied;
otherwise set generation = generation + 1 and
go to step 3.

B. Gradient Descent Algorithm

Given the objective function to be minimized as

p=1

where as the same as in EP, 0 is the collection of allk

of the parameters w;, a; and b; in (5) that should be
adjusted. f, and Y, are the teaching signal and the
output of the network (5), respectively. Then 8 'is up-
dated from step t to the next step as follows :

Ot +1) = O(t) £ AB(L),-wvrvveerneanenn (19)
A6(t) = ~77%—£; 660 +pAB(t —1), - (20)

where the learning rate 7 scales the stepsize and p is
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the momentum term added to make the training pro-
cess more stable.

Combining the EP’s global search ability with the gra-
dient descent’s local search ability, the flow chat of the
hybrid EP /Gradient training algorithm is illustrated in
Fig.2.

parameter optimization
with EP algorithm

if the maximum number
of generations
has been reached

No

l Yes

parameter optimization with
gradient descent algorithm

if the error goal is satisfied
or the maximum number of
the iterations has been reached

stop

Fig.2. Flow chat of the hybrid EP/Gradient
algorithm

4. Experimental Results

The system identification, which is an important pre-
requisite for a successful analysis and controller de-
sign, is a process aimed to identify and describe the
input /output relationship for unknown systems. Be-
cause of the nonlinear nature of most of the processes
encountered in engineering applications, the problem of
nonlinear system identification using neural networks
has been extensively researched *9~?®_ The model of a
discrete-time dynamic nonlinear plant can be described
as :

Yp(k+1) = flyp(k),yp(k — 1), yp(k —n + 1);
u(k),u(k —1),---,u(k —m+ 1)}(21)

where u(k) and y,(k) represent the input and output
of the plant at the k-th time instant. m and n are the
order of u and y,, m < n.

In this section the ability of the LLAWNN to iden-
tify the nonlinear dynamics of various plants has been
tested in simulation. We show the scheme of nonlinear
system identification with the LLAWNN in Fig.3.

The performance index used is the mean square er-
ror(MSE):

| NT
MSE = NT Z(@p(k) - yp(k))2
k=1

where y,(k) and §,(k) are the desired ontput and the
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Fig. 3. System identification using LLAWNN

network output of the plant at time k, respectively. NT
represents the number of data in the testing data.

A. Ezample 1

This example is a first-order plant which is assumed
to be of the form

Yp(k +1) = flyp(k), u(k)).

The unknown function f has the form

flz1, 2] = sin(wy) + 29 * (5 + cos(zy * x2)) (24)

The identification of this plant is reported in Naren-
dra (25) where the linear model and traditional neu-
ral network model were employed. In our study, the
LLAWNN used for this first order plant identification
problem has a {2—12~1} structure. The two inputs are
Yp(k) and u(k). u(k) is a uniformly distributed random
sequence. Similar to (25), three different sets of experi-
ments were carried out with |u(k)| < 0.1,0.5, and 1 to
study the relative performance of the network with the
increasing amplitudes of input and output. In all of the
three cases, the number of data used for the training was
1000 and the testing was undertaken by the following
300 points. The algorithm parameters are set as follows
: L(population size) = 20, g(tournament size) = 10, and
after 200 generations of the evolutionary programming
training, the gradient descent algorithm were performed
with n(learning rate)= 0.05 and p(momentum term)
= 0.75. For each case of u(k), 10 experiments with

different initializations had been done and the aver-

aged MSE of the testing data are 0.000032, 0.00036 and
0.0045 respectively. The identification results with the
three input signal u(k) are illustrated in Fig.4~6. The
corresponding MSE of each figure is 0.000031(Fig.4),
0.00034(Fig.5) and 0.0041(Fig.6), which is the near-
est one to the average of each u(k). It is clear that
LLAWNN performed well for the identification of all the
three cases. With the {2 — 12 — 1} structure, the total
number of the adjustable parameters in the LLAWNN
is 84, where in (25), the traditional neural network em-
ployed and shown effectiveness for the identification of
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the plant has two hidden layers with 20 units in the first
hidden layer and 10 units in the second hidden layer.

——  actualoupul
w—  netwarkoltpul

Network and actual output Error of the network output

Fig.4. Result of |u(k)] < 0.1

—  aoualoupu
e newOIKOUIDLE

Network and actual output Error of the network output

Fig.5. Result of |u(k)] < 0.5

~——  3Chualoulpu
e DatWOIK QLI

actual and netwark output

® ) )
me

Network and actual output Error of the network output
Fig.6. Result of |u(k)| <1

Table 1. Identification results of |u| < 0.1
network | number of | training
structure | parameters | iterations

LLAWNN 2-12-1 84 472
AWNN 2-21-1 105 1803

To further illustrate the performance of the LLAWNN
comparing with a previous WNN, we consider the first
case(i.e., |u| < 0.1) in more detail. The compared
WNN is the above described network (1) with the same
wavelets of the LLAWNN as basis functions. It has
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straightforward weights and is trained with the gradi-
ent descent algorithm. Given a targeted MSE< 2x 104
for the training data, performance comparison results of
the two networks are given in Thl.1. The training itera-
tions of the both networks are the iterations of the gra-
dient descent algorithm and the results are the average
of 10 different experiments. According to our prepara-
tory experiment, the calculation time of 200 generations
of EP algorithm is as long as about 800 iterations of
the gradient descent algorithm. Therefore, it can be
seen that the hybrid algorithm made the training of the
LLAWNN to converge to the desired error tolerance
with few itefations. Moreover, in terms of employing
the local linear models (6) as the powerful weights as-
sociated with the locally active basis functions instead
of the straightforward weights w;, the LLAWNN can
learn the input/output relationship for an unknown dy-
namic nonlinear system with a smaller number of basis
functions with sufficient accuracy.

B. Example 2
The plant is expressed as
zy(k + 1) = za(k),

u(k)z1(k)z2(k) +0.5e4*)
1+ a2(k) + z3(k)

Let
(k1) = 2k 1),

therefore, using the above three equations, rewrite the
plant to be identified as :

yp(k +1) = f[yp(k),yp(k —1),u(k)]
_ Bu(k)y, (k — Dy (k) + 0549
T G- D+ )

. (28)
Moreover, according to the study (26), the input signal
u(k) was a uniformly distributed random variable over
[—1,1] for the identification process. After training, the
network’s performance was tested using the following
input signal :

u(k) = 0.5sin(27k/10) -+ 0.5 sin(27k/25). - - (29)

The identification of this plant was carried out using
a LLAWNN with the structure {3 —7 — 1}. There-
fore the total number of the adjustable parameters in
the: LLAWNN is 70. The number of the training data
is 500 and the testing data is 100 points. With the
following algorithm parameters : L(population size)
= 20, g(tournament size) = 10, 7(learning rate)= 0.05
and p(momentum term) = 0.75, for 10 different exper-
iments, after 200 generations of EP algorithm and av-
eraged 2081 iterations of gradient descent algorithm,
the MSE of the training data was less than 2 x 1074,
The output of both the network and the actual model
with the testing input u(k) are shown in Fig.7 where the
MSE of the testing data is 4.05 x 10~%. This figure indi-
cated that the LLAWNN could successfully identify the
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complex characteristics of the dynamic nonlinear plant.
Here the identification performed with the traditional
multilayer neural network in (26) is given as a compar-
ison. The traditional multilayer neural network struc-
ture is {3—17—1}. There are a total of 86 weight param-
eters and bias parameters to be adjusted. Training was
performed with the standard BP algorithm, a modified
fast algorithm and a self-learning algorithm employed
Kalman filtering. After 4105 iterations and 13467 itera-
tions, both the self-learning algorithm and the modified
fast algorithm has a MSE of less than 2 x 10~%. But
with the standard BP algorithm the MSE of the train-
ing data was around 0.008 even after 20000 iterations.
It is clear that the LLAWNN performed better than
the traditional multilayer neivral network whether on
the number of adjustable parameters or on the training
convergence rate.

—  acudaupui
s nabwOIKOULpLE

metual and network autput
88 - 0§ 3

HE U S SRS S S R S
o 1 ® ® ® ™ ® N ¥ W W
tme

Network and actual output Error of the network output

Fig.7. Result of the example 2

0 @m w0 ® w P w ®
time:

C. Ezample 3

The nonlinear plant employed here as example 3 is
taken from (27) in which the identification of this dy-
namic system with previous WNNs has been discussed.
It is assumed to be of the following form :

Yp(k+1) = flyp(k), yp (k—1),yp(k—2), u(k), u(k—1)](30)
where the unknown function f has the form

$1$2$3$5($3 — 1) + oy

(31
e e R

f[$1,x2,x3,$4,3:5] =

The input signal u(k) for the identification process is
generated by:

mm:{

and after training, the network’s performance was
tested using the following input signal :

sin(2Zk) k < 500

0.8sin(42%) +0.2sin(%E) k> 500 (32)

' . km .k . kT
u(k) = 0.3 sm(%)—}—o.l sm(ﬁ)—%—o.l sm(ﬁ).(33)

Here, 1000 points of training data and testing data are
generated, respectively.

Identification results of the proposed LLAWNN and
previous WNNs are shown in Thl.2. MSE is calculated
with the testing input signal u(k). The training details



of the LLAWNN are the same as the above two exper-
iments. The two previous WNN in Tbl.2 are adaptive
wavelet neural networks with straightforward weights
and the probabilistic incremental program evolution-
ary algorithm. The only difference of the two previous
AWNN is that different wavelets were used as activation
functions. Similar to the above experiments, it can be
seen that the LLAWNN could learn the input/output
relationship well for an unknown dynamic nonlinear sys-
tem with a smaller number of basis functions compared
with previous WNNs. Fig.8 showed the output of both
the LLAWNN and the actual system with the testing
data.

Table 2. Icentification results of example 3
network | number of MSE
structure | parameters
LLAWNN 5-8-1 128 0.000041
AWNN1 5-19-1 209 0.000121
AWNN2 5-15-1 165 0.000372
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Error of the network output

Result of the example 3

5. Conclusion

In this paper, we proposed a new type of wavelet-
based neural network: the local linear adaptive wavelet
neural network with hybrid evolutionary programming
and gradient descent algorithm. The basic idea is to
replace the straightforward weights of previous wavelet
neural networks by introducing the local linear models
as powerful weights. This was inspired by the studies
of some neuro-fuzzy systems. The working process of
the proposed network can be viewed as to decompose
the complex, nonlinear system into a set of locally ac-
tive submodels, then smoothly integrate those submod-
els by their associated wavelet basis functions. Train-
ing of the introduced network is performed by a hybrid
EP/Gradient algorithm. Evolutionary programming al-
gorithm is used first to locate a good region in the pa-
rameter space and then gradient descent algorithm, the
local search procedure, is employed to find a near opti-
mal solition in that region. Several tests on the non-
linear dynamic system identification problem indicated
that the local linear adaptive wavelet neural network
with the hybrid EP /Gradient training algorithm could
successfully identify and describe the input/output. re-
lationship for an unknown complex system with a small

1200

number of wavelet basis functions and compared favor-
ably to the traditional neural networks with sigmoid ac-
tivation functions and the previous wavelet neural net-
works with straightforward weights.

For future work, it would be interested in the opti-
mization of the network architecture and other practical
applications of the network. ‘

(Manuscript received July, 25, 2001)
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