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A method was introduced for computing the three dimensional distributions of electro static potentials
and forces in a DNA molecule with helically distributed electri cal charges. A cylindrical model of DNA
molecule composed of an inner region where a discrete char ge does not exist, a middle region where there is
an interaction between charges and the ex ternal region where the ions interact. The potential in each region
was described by Laplace and Poisson equations. The Green function method was applied for the discrete
helical charge distrib ution within a one helical turn of the finite cylinder. The calculated potentials and
forces depended on the circumferential angles. The present method, when it was improved, will be available:

for evaluating the free energy of the DNA molecule.
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1. Introduction

Characterization of molecular structure of DNA has
been progressed for these two decades. Precise molec-
ular properties have been reported particularly in their
geometry ). Fig 1 shows the side view of the double he-
lix DNA molecule. The Top view Fig2 shows how the
phosphate charges are arranged along the helical loop
with equal spacing. There are ten phosphates for each
helical turn with raise angle of 32 degree. Fig3 shows
spatial positioning of the electrical charges around the
surface of the DNA cylinder. L is the length of the in-
ter helical interval. ¢ is the latitudinal angle around the
circular cross sectional plane of the DNA.

All these findings, however, are still in premature to
be organized to understand the thermodynamic behav-
ior of the DNA® ., Since a DNA molecule consists of
neatly arranged charges, modeling analysis is the most
reasonable approach. This should be directed to inves-
tigate the potential and electrical force to evaluate the
electrochemical dynamic properties of the DNA. The
present work introduces a simplest method ® for com-

puting three dimensional distributions of electro static

potentials and force of modeled DNA.
2. Charge distribution in one helical turn.

We set following assumptions for modeling electro
static potential in a DNA.
(1) Phosphate charges locate helically on the sur-
face of a cylindrical DNA.
(2) The DNA cylinder ( Fig3) is impermeable to
the screening ions ®.
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Fig.1. DNA

Figl is side view

(3) Each position of a charge was described on one
helical turn on the surface of the DNA cylinder ¢,
We set L as the periodic length of the helical loop
( pitch of one helical turn ). L is a repeat distance
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Fig.2. Top view
Fig2 is the top view of the DNA strand.

zH, ,zH,

Fig.3. Helical Model

of one helical turn along the longitudinal axial.

(4) Only the interaction between screening ions
and the DNA helix contributes to the inter molec-
ular interaction .

3. Geometric description of charge dis-
tributing in a one helical turn.

3.1 Circumferential angle in one helical turn.
Ten phosphates are arranged helically around the cen-
tral axis of the DNA cylinder ™ in one pitch. Each
electrical charge makes a rotation of ¢ = 2/10 around
the central axis of the DNA. The k th charge on a cross
sectional horizontal plane of the DNA in a given helical
turn has a circumferential angle of

2nk
Pk = Tg e (1)

3.2 Side view of one helical turn. (Fig4)
We introduce a side view of the relative position of two
successive charges on one helival turn. Superscript ' de-
notes the charge position on the helical loop. 2, denotes
the position of the k th charge on any given helical loop
and is not the axial distance of the kth charge. zHj is
the position of the kth charge that has been projected
from #z;, down on to the horizontal cross sectional plane
of the DNA. 2z, is the vertical axial distance between z,
and zHy ( Figd ). The relation between spatial posi-
tions of two successive k — 1th and kth charges ( Figd
Yon the helical loop (zi..2. .) can be approximated by,

. Z’k—Z’k-l | Sin\l’
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Fig.4. Side view
Fig4 is the side view of Fig3 just focusing on the spatial relation of
k — 1th and k th charges on 2 helical turn. They are denoted by zj,_,
and zj,. zH} is the vertically projected position of the kth charge on
the cross sectional plane of the DNA that is making angle ¢ with the
helical turn on which the kth charge exists.

2 — 2p—1 =12, — 2z Isingp.oooovvniinnn, (2)

where 9 is the rise angle ( Figl ) in a given helical
turn. It describes how the charges are shifted from the
horizontal cross sectional plane of the DNA cylinder.

3.3 Arrangement between adjacent charges.
Relation between the distances of two successive charge
on the helical turn that are projected on the horizontal
plane (zHj,zHy1) and those which are projected on
the helical loop (24, 2},_;) can be approximated by

IZHk - ZHk_lI

cos =
' !
Iz, — 2, I

.................... (3)

From the triangular formula, we have

IzH, — zH, 11 _ Pe (4)
sin(¢x) sin(T52%)

where py is the radial distance of the kth charge from
the central axis of the DNA on the horizontal cross sec-
tional plane. Then cos® can be expressed by 3 and
4. The distance between two successive charges on the
helical loop can be approximated by

Iz q=PeS000) 1 5)

Sin( ‘"_2&) CcOs ’l,/)

Hence the position of the kth charge in the axial direc-
tion is given by

__ kprsingg
2, = W t,an¢ ........................ (6)

From the reported measured data ", we have

1 =32°and g =36% - cereieiiinii, (7)

4. Application of Debye-Huckel theory.

According to the Debye-Huckel theory, the potential
field created by the charged DNA is divided into three
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Fig.4a. Circumferential positions.
Fig4a is the top view of DNA molecule showing the circumferential
positions of the Phosphate charges on the horizontal cross sectional
plane of the DNA. Each position was denoted by zHo, zHy, zHz, zHs
—. The circumferential angle between charges at zHo and zH; is ex-
pressed by ¢x1. The angle from zHg to zHa is ¢12 etc. Since all the
phosphate charges occupied their spatial positions in equivocal dis-
tances, we set all the circumferential angles between two neighboring
charges ¢. '

Helical pathway

HoTizonal cross|
sectional plan%

ZH,, zHk

Fig.4b. Stereoscopic description.
Figab is the stereoscopic view of DN A molecule showing the positions
of the phosphate charges on the helical loop around the DNA cylinder.
O is the center of the cylinder. O — zHj._1 — zHj is the horizontal
cross sectional plane. On this plane, the phosphate charges at z,'c_1
and zj, on the helical loop were projected vertically.
! denotes the position of a charge on the helical loop and H denotes
the projected charge position on the horizontal plane.

regions ® ( Figh).

Region I is the DNA cylinder with radius & and di-
electric constant Dp. The points of discrete charges by
phosphates locate in this region. This region is the main
source of the potential of DNA.

Region II is the area of closest approach of screening
ions. In the range of b < p < d, (d — b) is the radius of
screening ions. Since the radius of screenig ion is con-
stant and the radius of region I does not change, the
number of ions that can enter to this region is automat-
ically determined. In another words, in this region the
movement of the screening ions is strongly constricted
and their locations are almost fixed. The ions can not
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Fig.4c. Side view of axial distribution.
Figdc emphasizes the axial positions of two successive point charges on
the helical loop. zk—; is the axial distance of the k— 1th charge on the
helical loop from horizontal cross sectional plane O —zHy..y —2Hy .2k
is the axial distance of the k th charge on the helical loop from the
same plane. All the phosphate charges on a helical loop are arranged
in parallel with pitch of L.

Fig.5. Cylinder model of DNA Top view

diffuse freely due to intense electro static interaction
between the charged phosphates in the region I and
screening ions.

In addition, the close positioning of screening ions
would produce ionic pairwise interaction that would not
occur in a dilute space where ions can take free posi-
tions. Since the action of ions in this region II differes
from those of the ions in free volume space, we set an-
other region III to discriminate the ions which are not
constricted their movements.

Region III is a free field in which the screening ions
can approach to the DNA cylinder. Region III is free
diffusion space for ions. We set this region as a dilute
space in which the concentration of the ions are so low
that mutual inteactions among the ions do not occur
as in the dense solution or colloid solution. Region III
differes from the region II only in the situation that the
screening ions do not take the closest approach to the
DNA cylinder. The ions in this region can move freely
and the potential of this region goes to zero as the dis-
tance from the DNA cylinder increases. There may be
a lot of non screening ions and counter ions in this re-
gion. The essential difference is the free movement and
number of ions. The dielectric constants for region II



and III are assumed to be the same, D which is equal
to that of the bulk solution.

We set following assumptions  and approximations
which seem to be valid in this problem ®.

1. Assumption 1.

¥ Each ion was represented by a rigid sphere and
spherical ion can be replaced by a point charge at its
center ”.

This assumption neglects ionic volumes and is only
valid when the mean inter ionic distance is sufficiently
large compared with their sizes meaning a dilute solu-
tion.

2. Assumption 2.

Near the central ions ( region I), the concentration
of positively charged ions differs from the concentration
of negatively charged ions depending on the polarity of
the central ions ( region I). By the Debye-Huckel the-
ory, this concentration difference takes the Boltzmann
distribution. The ratio of the concentration of one kind
of ion near the central ion to the concentration of far
from the central ion equals to exp(—w;;(r)/kgT). kg
is the Boltzmann factor. T is the absolute tempera-
ture. w;; (7‘) is the work done to carry the ion from the
infinity ( ¢ = 0 ) to the potential ¢ prevailing at the
point for which the concentration is to be computed.
The work done is w = ey for a positive ion of charge
e and w = —ey for a negative ion of charge —e. The
Boltzmann distribution gives the number n; density of
1 lons around the ion j by

n; = ng expl—wij(r)/(kpT)]- - oevvvrveeeene (8)

and hence the charge density of j ion is
pi(r) = Zezim Zn 2 exp —d ) ). (9)
i

The z; is the valence of ¢ ion. n? is reference concen-
tration of the salt solution. 7 — n? is the average local
excess of ¢ ion at the position 7 .

3. Approximation 1. The factor w;;(r) can be re-
placed by the potential energy of an ion ¢ which locates
at a point of a potential ¥;(r) due to ion j.

wij(rr) = Zie‘I’j('r) .......................... (10)
4. Approximation 2. We approximate
z;eW;(r)
kel AN 2 [ PN 11
ol << (11)

This means that the potential is sufficiently small at all

-the points where Poisson equation is to be used. This
approximation owes to the linear property in dilute sys-
tem that neglect mutual interactions among the ions. In
the physiological circumstances,the central ions ( region
I') has sufficiently low charge density. Hence, the Ap-
proximation 2 is satisfied. Then,

pi(r) = Zezzn - En z,ez,-ﬁ— ------- (12)

The first term on the right is zero by the neutralization.
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Then, we can express

0,2
2 ——+¢ 2 nl z’L ........................
K°=e ZkBTsos (13)
8me?
= DTV (14)

where D is the dielectric constant of solution and N is
the Avogadro’s number. ¢ is the product of number of
charge per one helical turn and the phosphate charge
€o. K is proportional to the square root of the mobile
ion concentration and plays as a constant for integration
of the Poisson Boltzmann equation. According to the
reported experimental data ) ®) we took the value of

5. Mathematical description of the sys-
tem.

We introduce a method ® )¢ only for the region I in
detail. Phosphate groups produce a point charge den-
sity pr(r) ( r is a position vector ) on the region I.

pI(‘r) = Zgjd(r — 'rj) .................... (16)

where r; is the position vector of the j th charge. £; is
the jth discrete charge. The sum is all over the points

of discrete charge in one helical turn ( p = 10 ). Then,
the Poisson equation is
4
Vz'(/fl(r) = —Fpl(r) ..................... (17)
k

1(r) is the potential at the position = in the region I.
The corresponding Laplace equation is

V2Pp(1) = 0c e ieveeniiiniii (18)
The corresponding particular equation is
VQQ,(J ('r) = ﬂ Ze ‘6(1' r ) ............. (19)
P Dy, - J J

Then, the basic form of solution for the region I can be
given ¥ ) by the series of modified Bessel function

U= Z ZZAlcos(nc(z+ 2))

u,u'=1l n=1m=

cos [m (¢ + %)] In(ncp)
+zp: i Bycos [m (4 + %)} P+ Ty

u=1lm=1

ﬂ'ZD ZE,/ dAcos(A(z — z;))

m==1

| { 2 cos(m(é = ¢;))gm P, pj) + @%ﬁ)} (20)
where
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gm is a Green function. It is a product of I,,( the mod-
ified Bessel function of the first kind ) and K, ( the
second kind ). For A # 0

G (P, pi) = 4L (Noj) K (Aps) +-vvevvee (22a)

go(p, p;) = 4rIo(Apj) Ko(Aps) oevreereese (22b)
and A=0

p ................... a

gm(p,pj) = — (—pl) (23a)

9o(p,pj) = 2mlog % ...................... (23b)

subscript j indicates a variable in the cylindrical co-
ordinate of the j th charge in one helical turn.

The coeflicients Ay,Br and Tt are determined by the
" boundary conditions at p =b

Dr(p =) = hrr(p =) rerrernrrieinns (242)
Ovr _ p®u
Dy 2L 5 =D R ERREREE (24b)

Applying these boundary conditions independently to
each harmonic component of the potential, we have the
potential for the inner region, 97 in an exact form by

oht oo oo

YI=2"> "> Qumcos(nc(z - z))

j=1ln=1m=0

cos[m(¢ — ¢;)]1

oht oo

+3° Smcoslm(g — ¢)1°2

F=0m=0

n(12p0) Im(ncp)

. eKo(kd)
[LDndK 1 (nd)]
d
1og + =

+ 108 + - log(b) £ ¥p -+ (25)

where oht: one helical turn. Coefficients Qpnm and Sy,
are determined by the boundary conditions. Their exact
forms are given by our previous technical report ®. z;
and ¢; specifies the discrete position of the j th charge
in a given helical turn. Sum over j extends for all the
points of discrete charges in one helical turn. The solu-
tion of the characteristic potential v, is given by

8eo
Pp = LZh Z Z cos(ne(z — z;)) -

j n=1

{Io<ncpo> Ko(nep)

+ 3 cosm(6 87 In(nepe)Kom(nr)

m=1

o COS m(¢ ¢;)] p
Lphzz

i m=l

+

15 1
e log ; ........................ (26)
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where p, is the radial position of the point charge. The
potential for the second region ;[ is '

@b%-1= z”: iicos(nc(z-{— %E))

uw,u'=1m=0n=1

wln(e)]

[A”I (mp)+FHK (ncp))

+Zz [Bup -}—@]

u=1m=1
CcOo8 [m (qi)—i— %,r—)] +Trr + —H% ------ (27)

The coefficients of Ayr, Brr, Frr,Grr, Hyr and Ty are
determined by the continuity of the boundary between
the region II and region III. They are given in our tech-
nical report . Since all the potentials involve the fac-
tors cos[nc(z — 2;)] and cos[m(¢ — ¢;)], we selected the
positions (2, ¢) for the potential computation as

ne(z — z;) = 0,7/2,m,3w/2 and 27.
m(¢ — ¢;) = 0,7/2,7,3n/2 and 27. -

Then, we computed the potentials in three regions at

z=(0,7/2,7,3n/2,2n)/(n2n/L) + 2;
o= (07 7(/2, T, 377/27 27r)/m + ¢j

For simplicity, we set 2z; = 0 and ¢; = 0. Other the
biophysical parameters were set (V) as

L = 33.8 x 1078(cm), b = 10 x 10™%(cm)
d =12 x 10~%(cm)
po =9 x 107%(cm)

= 0.1 x 1073(cm) @: Debye length
D =10, ®® and Dy, = 20, ®©@,

To present several examples of computed results, we
simplified the computing process. All the potentials
were normalized by &,, the phosphate charge. The num-
ber of charges per one helical turn was assumed to be
ten according to the number of charges on one pitch of
one helical loop. The computation was confined only
for one helical turn.

An entire scope of the potential distribution can be
computed when the potentials in all the helical turn
were summated. As the circumferential and axial dis-
tributions of these potentials in one helical turn were
characterized by the factors of coslnc(z — z;)] and
cos[m(¢ — ¢;)], the potentials in 2 axis and circumfer-
ential directions oscillated like sinusoidal function. In
the radial direction characterized by the modified Bessel
functions with arguments of ncp and power of p, the po-
tential (the third region ) decreased monotonically.

The forces acting on the latitudinal direction were
obtained by differentiating the potential with respect
to the circumferential angle ¢. The present computa-
tion confines only for one helical turn Thus, we show
only a limited interaction.



6. Results.

1.Potential distributions at the inner region ( Fig 6-a
) and at the middle region ( Fig 6-b )

Fig 6-a shows three dimensional distribution of the in-
ner regional potential timed by the factor 10%° at radial
position of R =5 x 10~%cm. Along the axial positions
with /4 step, the potential oscillated to negative val-
ues at /4 and 37/4. There were three peaks at z = 0,
7/2 and at w. In the latitudinal direction, the potential
showed two peaks at ¢ = 0 and 2.

The potential at the middle region was computed at
the radial position of R = 11 x 10~8cm. Absolute val-
ues of the potential at the middle region ( timed by the
factor of 108 ) was considerably smaller than the in-
ner potential ( timed by the factor of 10%° ).In contrast
to the inner regional potential, all the potential values
were positive. The oscillative natures of the potential
was , however, similar to those of the middle regional
potential,

2. Distribution of the forces at the inner region ( Fig
7-a ) and at the middle region ( Fig 7-b ).

The force at inner region ( timed by the factor of
1020 ) oscillated periodically. This originates from the
distributions of the inner regional potential. The force
attained the negative peak values at z = n/4 and 3n/4
in the axial coordinate and at 7/2 and 37/2 in the cir-
cumferential coordinate. The these oscillative natures
were in contrast to those of the potentials at the inner
region. The distributions of middle regional force were
quite different from those of the middle region potential.
For the hemisphere of 0 £ ¢ < m, the force directed in
negative direction while for 7 £ ¢ < 2x the positive
values. For the interval of 0 £ 2 £ 7, the oscillation of
the force was weak.

7. Discussion.

The main part of the present work were based on
electrostatic potential theory ®.The geometric consid-
eration was founded on the basis of molecular biology.
Since the spatial distribution of phosphate charges are
neatly arranged, we can determine the distribution of
charges by setting only a few parameters.

The present three layers modeling seem to be over
complicated. The region I and II differed only because
of the existence of charges in the region I. Thus, it may
be possible to associate region I and II, because the
region II envelopes region I and their charges. The dif-
ference between region II and region III originates in
the mobility of screening ions. Since the sum of radius
of the DNA and screening ion determines the number of
the screening ion that can envelope the region II. Hence
the degree of freedom of the screening ion in the region
II is strongly limited. On the other hand, the region III
is a free space where the ions can take any position.

We have no precise measured data for local distri-
bution of potential in one helical turn. The boundary
conditions in cylindrical symmetry and the charge dis-
tribution would result in symmetric distribution of the
potentials. The present computed results, however, can
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not represent such symmetry. Since we have computed
just only a portion of an entire helical ‘turns, we could
not reproduce such symmetric distribution pattern.

The difference of magnitude between the inner region
potential and the outer region potential was large. This
would originate in the difference of computed radial po-
sitions. For the inner region B = 5x10~8cm and for the
middle region R = 11 x 10~8cm which is about twice the
distance. Measuring the electro static potential around
the DNA molecule will disclose minute distribution of
electrical potential by nano technological approach such
as nano electrode The present computed data have to
be compared to them.

There may be some limitations for the computatlonal
system. Particularly some computational error may ex-
ist regarding to the modified Bessel functions of the
second kind in region I and those in Poisson Boltzman
equation for region II. In the region II, the Debye pa-
rameter x is so large 10® that the analytic solution may
be inadequate. The large valued s would over estimate
the modified Bessel functional. As a result, the poten-
tial remote from the center will become incorrect. The
approximation solution for large x will converge rapidly
and may be more adequate.

The most critical point of the present study is the as-
sumption of the helical distribution charge due to phos-
phate and its simple boundary condition. The bound-
ary condition should be corrected in a helical coordi-
nate system. Another point is the isotropic nature of
the dielectric constant. This is because there is a lot of
electric dipole perpendicular to the molecular axis and
along the base ladder. Such large dipole would result
in anisotropic dielectric constant along the helical axis.
So the biological boundary conditions have to be more
complicated than the ordinal electro static boundary
conditions. In addition,we did not take into consider-
ation of the secondary effects of counter ions, salt and
water molecules. The counter ions contribute for neu-
tralization of the electrical circumstances®. Salt will
contribute the the structural modification of the DNA
because the melting point of the DNA is a function of
the salt ion concentration®. Thus a high concentra-
tion of salt will influence of the stiffness of molecular
structure of the DNA . Water molecules can easily in-
vade the DNA molecules and occupy the empty spaces
among the bases. Such empty space occupation of the
DNA molecule contribute to stabilize the molecular con-
formation of the double stranded DNA ®,

The present work introduced ¢ an electro static com-
putational method and its computed results. For more
precise computation, one should use FEM or MD sim-
ulation systems.
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Fig 6-a ' Fig 6-b

vion potential

lnner regi
Middle region potential

"b% o &
Fig. 6.

Fig 6. Three dimensional distributions of the Inner regional potential Figb-a ( timed by the factor 1020 ) and of the middle regional potential
Fig 6-b ( timed by the factor 10 20 Y in one helical turn of the DNA. They are normalized by e,, the phosphate charge. Circumferential plots
were set by every w/2 from 0 to 2n. The axial positions were selected every =« /4 from 0 to 7.

Fig 7-a Fig 7-b

region

Force atinner region
middlz

Force at

Fig.7.
Fig 7. Three dimensional distribution of the Forces generated in the inner region Fig 7-a ( timed by the factor 1020 ) and m the middle region
Fig 7-b ( timed by the factor 10 20 ) in one helical turn of the DNA
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8. Conclusion.

1. A computational method was introduced for po-
tentials and forces in a DN A molecule with the helically
arranged discrete electrical charges distribution on its
surface. 2. The potential and force at the inner and
middle regions of the DNA cylinder were significantly
influenced by circumferential angle.

(Manuscript received Jan.4, 2002, revised April 15, 2002)
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