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The fetal electrocardiogram is extracted from cutaneous potential recordings of a pregnant woman. The
cutaneous potential recordings are noisy mixtures of fetal and maternal source signals. To separate these
signals we use time delayed decorrelation, which is an algorithm for independent component analysis. The
separated signals are noisy source signals. In order to reduce the noise, we apply nonlinear noise reduc-
tion method to the separated fetal component. The extraction of fetal component is sufficiently successful
although the fetal signals are much weaker than the maternal ones.
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1. Introduction

In biomedical fields, noninvasive measurements are
most desirable. The measurement of the fetal cardio-
gram is one of typical examples. When we obtain a cu-
taneous potential recording of a pregnant woman, the
signal consists of a strong maternal component and a
weak fetal one. Then the question is how to extract the
fetal component.

In the present paper, we tackle this problem by com-
bining nonlinear time series analysis ™ with indepen-
dent component analysis (ICA)®® on multi-probed
recordings. When multi-channel-recorded signals can
be regarded as linear superposition of several source sig-
nals, the estimation of the source signals based on the
observed ones is called blind signal separation .

ICA is a method for solving blind signal separation
problems under the assumption that source signals are
independent each other. In usual cases, ICA problems
are supposed to meet the condition that the number
of observed mixture signals is greater than or equal to
that of independent components in the mixture. How-
ever, this condition is not met usually, because the
contamination of noise during measurement cannot be
avoided. Each mixture signal includes as many com-
ponents of noise as the number of sensors. Although
several researchers have tried to tackle this problem ),
ICA method for noisy mixture has not been established
yet.

We first show that the separated signals can be re-

garded as source signals contaminated with noise due
to measurement when ordinary ICA method is formally
applied to noisy mixtures. Although the noise com-
ponents included in the formal solution of ICA are no
longer independent each other, the formal solution can
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be regarded as an approximate one when the amplitude
of noise is small. The noise contained in the separated
components is reduced by using nonlinear noise reduc-
tion @ Most of biomedical signals have considerable
nonlinearity, and hence the conventional linear method
for noise reduction does not always work well.

Other approaches to extracting fetal ECG have been .
reported by several authors. A sophisticated multi-
dirmensional ICA approach was proposed by Cardoso (7.
The obtained results are very nice, but the procedure
is rather complicated. Another important approach
is a full nonlinear method, a locally linear projection,
which was proposed by Schreiber and Kaplan . Their
method is based on the determinism appearing in the
maternal ECG, and is not for multi-channel recorded -
signals. Our approach is a hybrid of linear and nonlin-
ear ones, and is simple and efficient.

In the next section we describe our method and data
for the present analysis. In section 3 we first discuss the
validity of our approach based on the results for simple
numerical data, and then present the results of the fetal
ECG extraction.

2. Method and Data for Analysis

2.1 Estimation of source signals and mixing
matrix based on ICA Suppose that we have ob-
tained time series data with length of T' from N sensors:

:1;(1),:1:(2), T w(t), Tt m(T*l)a .'E(T),--(l)

where x(t) € RY. We assume that the series is gener-
ated by another underlying time series

5(1),8(2), ---, s(t), -+, s(T =1), s(T), --(2)

components of which are independent each other, and
that x(¢) is described as a linear mixture of M indepen-



ICA provides the source signals {s(¢)} and the mix-
ing matrix A from the observed mixture signals {x(t)}
based on the statistical independency of each compo-
nent' of source signals s(¢). Actually, the time series
resulting from ICA is not always {s(¢)} itself. There
are uncertainties in both the order of the independent
components and a constant factor, and what we get is
a series of

u(t) = PDs(t),

where P is a permutation matrix and D is a diagonal
matrix. From Egs. (3) and (4), the time series {u(t)} is
connected with {z(¢)} by a relation

u(t) = WE(E), - oevveme (5)
where the matrix W is given by
W = PD A‘l, ............................. (6)

with A™" being generalized inverse matrix of A. The
generalized inverse of W, W1, has the meaning of
effective mixing matrix.

In the ICA, we determine the matrix W so that it
makes the components of u(¢) to be independent each
other. To solve this problem, we use the time de-
layed decorrelation (TDD) algorithm @9 which im-
poses the linear independence between different compo-
nents of w(t) and u(t + 7) at several values of 7. The
key step is to diagonalize several correlation matrices si-
multaneously. This diagonalization cannot be generally
realized by any matrix operation. Instead, we minimize
the off-diagonal elements of these correlation matrices:

K

> wi®ug )+ D (wiltyu;(t+ ), (7)

i k=1 i%j
where {73} are K different positive numbers. In this
paper we set 7 and K to be 5kdt and 20, respectively,
where §t denotes sampling intérval. 'As shown by Car-
doso, * this minimization can be realized by diagonal-
izing 2 x 2 matrices’ N(V —1)/2 times by using Jacobi
method. By this procedure, we obtain W and w(¢).

Letting observational noise to be n(t), the observed

signals are given by

o(t) = As(t) + n(t)
We can rewrite Eq. (8) as
z(t)=A {s(t) + A_ln(t)} .

Even though the components of the noise 7(t) are inde-
pendent each other, the components of A~"n(t) are not
independent because the matrix A~! mixes the compo-
nents of n(t). By this reason the solution obtained using
ICA is not an exact solution. However, when ||n(t)|| is
small, the solution can be regarded as an approximate
one.

TCardoso gave explicit form of 3 X 3 matrix to be diagonalized for
a complex matrix. The expression for a real matrix can be easily
derived from Egs. (4) and (5) in Ref.(11).
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2.2 Method for noise reduction  The sepa-
rated signals include computational artifacts due to ICA
treatment in addition to the measurement noise. To re-
duce these noise and artifacts we use a nonlinear noise-
reduction method proposed by Schreiber .

Suppose that we have obtained, by ICA, a noisy sep-
arated signal y(t):

where 7/(t) denotes the noise component remaining in
y(t). '

In Schreiber’s method ¢ we first reconstruct the state
space from the observations {y(t)} using a 2m + 1-
dimensional embedding. The point y(t) corresponding
to the observation y(t) is given by

y(t) = (y(t —mr), -, y(t — 1), y(t),
y(t+7‘), T y(t+m7))'

Letting N;(e) denote e-neighborhood around the point
y(t), we obtain the estimate 4(t) as the central coordi-
nate component of the weighted center of the neighbor-

hood N¢(€):

1

U = R

>

Y(R)EN:(e)

where |Ni(e)| denotes the number of the points con-
tained in the neighborhood A (e).

Unlike the noncausal moving average method this
method can avoid degradation of the peak signals due
to smoothing because this method averages the data lo-
cating near each other instead of the successive data.
The method works well even when the noise amplitude
is large or the number of data is relatively small. We be-
low call this method phase space local averaging method
or simply local averaging method.

The chronological order of applying ICA treatment
and the noise reduction is important. One may think
that the true separated signals are obtained by applying
a noise reduction method to the observed mixture sig-
nals before ICA treatment. Mathematically, of course,
this is the case. In most cases, however, the separated
signals. include undesirable computational artifacts due
to ICA treatment. In addition it is difficult to determine
the values of parameters for noise reduction before ICA
treatment because it should be determined based on the
relation between the amplitude of noise (and artifacts)
and the signals to be separated. We believe that it is
better to reduce the noise present in the separated sig-
nals after ICA treatment.

2.3 Data series for analysis

2.3.1 Numerical data We first use numerical
data for M = N = 2 case in order to study the effects
of observational noise on the results of ICA and appro-
priate values of parameter € used in the noise reduction
scheme. Source signals are given by

{

sit)=sinll2at
sa(t) = cos214~t,
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Fig. 1. Cutaneous potential recordings of a preg-
nant woman. i, z2,x3: data measured at different
three points on the abdomen.

and the observed signals were generated from Eq. (8)
using mixing coeflicient matrix A:

|

We used independent uniformly distributed random
number as noise 77(¢) and set the sampling frequency
to be 4 kHz within range t € [0, 1].

2.3.2 Cutaneous potential recordings of a
pregnant woman Our aim in the present paper is
to extract fetal ECG from cutaneous potential record-
ings of a pregnant woman. The used data were down-
loaded from the website of DalSy ®®. The cutaneous
potential was recorded at 8 points (5 points on the ab-
domen and 3 points on the thorax) with 500 Hz sam-
pling for 5 seconds. We used three of the abdominal
recordings for the extraction. We show them in Fig.
1. Electrocardiograms generally consist of major three
structures, P-wave, QRS complex, and T-wave, which
correspond to the sequential activation of the arteria,
the ventricular depolarization, and ventricular repor-
larization, respectively. Among them QRS complex has
particularly large signal amplitude.

Although the fetal signals are maximized by position-
ing the electrode on the abdomen, the maternal compo-
nent is still dominant in each recording. The aim of our
analysis is to obtain the fetal electrocardiogram after
reducing the noise included in the recordings and the
artifacts generated by ICA treatment.

1
0.55

0.85
1

|

3. Results and Discussion

3.1 Noise effects on ICA and noise reduction
Before presenting the extraction of the fetal ECG, we
show the results of ICA for a case where some amount
of observational noise is superimposed on the mixture
of source signals (section 2.3.1). We set the noise ampli-
tude to be 10 % of the mixture signals. Figures 2(a) and
(b) denote the source signals, Figures 2(c) and (d) de-
note the noisy mixture signals, and Figures 2(e) and (f)
denote the independent components obtained by TDD
algorithm. When we obtained the results in Figs. 2(e)
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Fig.2. Results of ICA for a noisy mixture of
synthesized source signals. s1,s2: source signals,
1, Z2: noisy mixture signals, ui, ug: separated sig-
nals, ucy, ucy: denoised separated signals.

and (f), we adjusted the signal amplitude based on the
values of the diagonal elements in the estimated mix-
ing matrix so that the amplitudes of both source and
separated signals be equal. The estimate of the mixing
matrix was then given by

[ 1.000 0.871 }

0.531 1.000
The noise amplitudes of the separated signals were
larger than those of the noisy mixtures in this case.
We applied the nonlinear noise reduction method to
the separated signals shown in Fig. 2(e) and (f). The

W=
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Fig.3. Relationship between the noise levels in the
mixture signals and in the separated signals.

results are shown in Figs. 2(g) and (h). To obtain these
results we set € to be 0.4. It is found in Figs. 2(g) and
(h) that the nonlinear noise reduction method works
well for this case.

We study the relationship between the amplitude of
the noise added to each sensor and that of noise present
in the separated signals. The results are shown in Fig.
3. In double logarithm plot, the relationship between
them is plotted as a straight line with slope about one,
which shows that the amplitude of the noise present in
the separated signal is proportional to that of the noise
added to the sensors. This shows that the distortion of
the separated signals is small even for relatively strong
noise 7. Hence, the separated signals correspond to the
source signals contaminated with noise.

In the nonlinear noise reduction process, the choice
of a radius € for neighborhood affects the reduction ra-
tio of noise significantly. Letting the noise amplitude
before and after reduction be opefore and CTafter, respec-
tively, the reduction ratio r of noise can be described
aS T = Ohefore/Tafter- We calculated the dependence of
r on € for u; and us shown in Fig. 3. The results for a
constant opefore(= 0.1) are shown in Fig. 4. The figure
shows that it is important to set the neighborhood ra-
dius € to be several times as large as the noise amplitude
Obefore- L'he appropriate value of e is discussed also in
ref. 6. In ref. 6 it is recommended that the value of € be
a few times as large as the noise amplitude. This noise
reduction method works when the signal amplitude is
sufficiently larger than the appropriate value of e.

3.2 Extraction of fetal electrocardiogram from
cutaneous potential recordings of a pregnant
woman  We show the results of ICA for the cuta-
neous potential recordings (Fig. 1) in Figs. 5 and 6.
- Figure 5 shows the results with TDD algorithm. Judg-
ing from higher heart beat rate in the component ug
than in other two, the component us corresponds to the
fetal ECG. For comparison we show the results with the
infomax algorithm ¢® % in Fig. 6. The infomax algo-
rithm separates independent components from mixture

signals based on the minimization of mutual informa- -

As for
by Lee

tion among the separated component signals.
the learning rule we modified the rule proposed
et al. .
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Fig.4. Dependence of the noise reduction ratio r
on the size of neighborhood ¢ for the separated
signals.
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Fig.5. Results of ICA with TDD algorithm for cu-
taneous potential recordings of a pregnant woman.

Comparing the results, the TDD algorithm separates
the fetal ECG components more efficiently than the in-
fomax algorithm. In ECG, the dynamics underlying
signals is clear, and hence the signals have a definite
structure in the time domain. The TDD algorithm con-
serves this information and so TDD seems to have led to
better extraction of the fetal ECG from the cutaneous
potential recordings.

The separated signal, us, corresponding to the fetal
ECG (in Fig. 5) appears to include relatively strong
noise. To reduce noisy character we applied the phase
space local averaging method to the signal. The results
are shown in Fig. 7. Figure 8 denotes phase space plots
related to these results. Figure 7(a) shows the separated
signal. The corresponding two-dimensional phase space
plot is shown in Fig. 8(a). The large loop appearing
in Fig. 8(a) corresponds to QRS complex. The center
part of the orbits, where many state points locate, cov-
ers small loops corresponding P and T waves. Figure
7(b) and (c) denote the denoised signal and the removed
noise, respectively. To obtain these results we set the
dimension of reconstructed phase space at 9 (m = 4)
and neighborhood diameter ¢ at 20 % of orbit diam-
eter. It is found that the noisy component has been
considerably removed, and the degradation of signals
(e.g. QRS complex) is not recognizable. Figure 8(b)
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Fig.6. Results of ICA with infomax algorithm

for cutaneous potential recordings of a pregnant

woman.

-5 L L N x - L L . )

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
5 time /s

by’ j ' ' ' ' ' ' '

2]
290

0.0 02 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
time /s

5 v - v -+~ v ~ T . +

(c)

u3 (£+0. 004)

ucg (t+0. 004)

Fig. 8. Phase space plots related to the results pre-
sented in Fig. 7.
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Conclusion

We presented the results of the extraction of fetal
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ECG from cutaneous potential recordings of a pregnant
woman. QOur approach to this extraction is combining
nonlinear noise reduction with time delayed decorrela-
tion. Although the fetal signals were much weaker than
the maternal ones, it was able to extract the fetal com-
ponent with little degradation. The approach we took

in this paper is expected to be valid for other biomedical

data obtained from multi-channel observations, because
many of them can be regarded as noisy mixtures of non-
linear source signals contaminated with measurement
noise.
(Manuscript received December 25, 2001, revised April
3, 2002)
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Fig. 7. Results of noise reduction for fetal compo-
nent. (b)result with the present method. (d)result
with the non-causal moving average.

denotes the corresponding orbits in the reconstructed
state space, where the center part of high point density
has shrunk and the main loop structure corresponding
to QRS complex has been clarified.

For comparison, we show the result of smoothing by
a non-causal moving average filter (window length = 5)
in Fig. 7(d). Figure 7(e) denotes the noise removed by
this smoothing. Comparing with the result presented
in Fig. 7(c), we find that the signal is considerably de-
graded. In this smoothing, the QRS spikes are partly
subtracted as noise.
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