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This paper discusses a method of analyzing the adhesion problem of arbitrary-shaped microstructures us-
ing FEM and an optimization. We have applied our method to square plates, and obtained realistic curved
adhesion shapes. We fabricated square plates as test samples, and calculated vs of these samples by using
our method. Adhesion criteria are also derived by numerical calculation. We then redesigned the adhesion
samples by applying this method, and subsequent tests showed no adhesion of the samples.
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1. INTRODUCTION

Microstructures contact their underlying substrate
due to various causes, such as wet etching of sacrifi-
cial layers and actual operations. Such contact causes
permanent adhesion between the microstructures and
substrate and destroys the functionality of the device,
and so is a serious problem in the design of microstruc-
tures.

Many authors have developed measures to prevent
adhesion both theoretically and experimentally, but a
design method to avoid adhesion is still necessary. C.
H. Mastrangelo and C. H. Hsu investigated the adhe-
sion problem of microstructures ., They conducted
a theoretical analysis of beams and circular plates, in
which the adhesion shape is assumed easily, and de-
rived an adhesion formula for these structures and an
approximation formula for square plates.

However, their analysis method is difficult to apply to
arbitrary-shaped structures because of the difficulty of
estimating the adhesion shape, and so a series of sam-
ples must be fabricated to calculate the surface energy

vs-

In this paper, we present a method of calculating g

by using an adhesion area measured from one fabricated
+ adhesion sample, and then analyze the adhesion prob-
lem of arbitrary-shaped structures by using this value
of vs. A design method for preventing adhesion is also
presented. We fabricated square plates of SOI wafers
as test samples, and calculated vs from the adhesion
samples. Using this value and the new design method,

we then redesigned the samples to prevent sticking to -

the substrate.

EH¥RE, 122495, FRUE

427

Adhesion area

Fig.1. Formulation of an adhesion problem of an
arbitrary-shaped plate.

2. THEORY

In this section, the adhesion problem is formulated.
Consider a problem as shown in Figs. 1 and 2. A sus-
pended plate of thickness ¢, domain Qp (area Sp) is
clamped to the substrate on its outer periphery as fol-

‘lows:

The plate sticks to the substrate in the central region
Qg (area S) defined by the following curve:



arbitrary-shaped plate

anchor

L

t u = u(r, ¢)

adhesion area substrate

Fig.2. Cross-section of the plate.

Adhesion area S(0 < S < Sp) is a variable which de-
pends on the condition of the surfaces, so we will treat
this value as an independent value here.

The plate deflection u = u(r, ¢) satisfies the following
boundary conditions:

Vu - n|7‘=rp(¢) =0,
Vu- n|r=r5(¢) =0,

u(r, ¢)|r=rp(¢) =0,

'LL(’F, ¢> ’r:rs(¢) = h, o (3)

where h is the gap between the plate and the sub-

strate, and n is a unit outward normal vector on the -

boundary. The total energy of the system Ur is

Ur =Ug 4 Usc,

where Ug is the elastic energy of the deflected plate,
and Ugc is the adhesion energy of the solid-solid con-
tact. Ugce is expressed as follows:

Usc = =755,

where g is the interfacial adhesion energy per unit
area. The actual adhesion shape minimizes the value of
Ur, therefore, the solution is the shape which minimizes
Eq. (4).

2.1 Elastic energy  In this section, the method
of calculating the elastic energy of the adhesion plate is
described. First, we consider a searching problem of the
adhesion shape. Let S, be an adhesion area measured
from an adhesion sample. S, is obviously a constant
value, and ~s is also a constant due to the character-
istics of process conditions and materials. The actual
adhesion shape Q. (the area of the region Q,,. equals
Sime) minimizes the total energy Ur.

" mi Ur} = mi Ug —vsS
nﬁ}g}zp{ T} Qggg]}j{ E — Y5Sme}

oo, {Ug} + const.

Hence, a shape which minimizes Uy and a shape
which minimizes Ug are the same shape under the con-
dition of the measured value S = Sy (0 < Sppe < Sp).
That is, the adhesion shape is calculated by minimizing
the elastic energy Ug under the condition of S = Sy
being a fixed value.

This fixed area Sy, depends on the condition of the
surfaces. In other words, any adhesion area could be

made under certain process conditions or adhesion en-
ergy vs. Therefore, the relationship between the adhe-
sion area S and the elastic energy Ug is calculated by
minimizing the elastic energy Ugr under the condition
of several fixed values of S. It is difficult to calculate a
continuous relationship between Ug and S, but it is pos- .
sible to calculate a discrete relationship by this method.

2.2 Surface energy In this section, the surface
energy vs is calculated from the elastic energy Ug. We
consider the area differential of the total energy Eq. (4)
at S = Spe.

oUr
oS

OV
= 8s

me

S=8me

The total energy Ur already takes the minimum value
under the condition of S = S,,,. because the condition of
S = Spe is the actual situation in this problem, there-
fore OUr /0S is zero, and

S=S8me

The relationship between S and Ug is discrete when
using the method described in the next section, so the
differentiation of Eq. (8) is implemented by numerical
differentiation.

2.3 Search for adhesion shape The search for
an adhesion shape is a kind of optimization problem,
and is divided into two portions. One is the search
problem to minimize the total energy Ur, and this prob-
lem is used merely for searching for the adhesion shape.
The other is used to obtain the relationship between the
elastic energy Ug and the adhesion area S.

The minimization problem of Uy is defined as follows.
Ur is an objective function and the adhesion shape is a
design function. It is assumed that the adhesion energy
per unit area 7yg is obtained experimentally or by an-
other way. The problem of obtaining the Uz is defined
as follows. Ug is an objective function, the adhesion

" shape is a design function, and the measured adhesion
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area S,,. is a state variable. It is assumed that the
adhesion area S,,. is obtained experimentally.

These two problemis have the same algorithm, so we
describe the method of solving the minimization prob-
lem of Ur. Although in this paper we consider a square
plate, other shapes can also be considering using the
same method. A suspended square plate of width w
and thickness ¢ is considered and a 1/8 model is used
in the calculation.

The algorithm is as follows:

1. An adhesion point which minimizes the elastic en-
ergy Ug of the system is defined on the plate. Boundary
conditions are given by Egs. (3). When the adhesion
problem is that of a regular polygon, this operation is
omitted because the adhesion point is obviously defined
as the center of the object.

2. Several segments are defined on the plate and sev-
eral search points are placed in the n-th piece on these
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(a) Definition (b) Spline func- {c) Adhesion

of the search tion. shape and area.
points.

Fig.3. Definition of the spline function (n = 3).

segments as shown in Fig. 3(a):

Py(r1,¢1), Pa(r2,02),. .., Pa(rn, én),

where 7,72, ..
rameters.
3. A segmented spline function through a series of

search points Eq. (9) is calculated as shown in Fig.
3(b):

3Ty P1,P2,. .., ¢, are unknown pa-

r=ry(P,Py,...

where s is the parameter of the curve. The plate de-
flection u and the elastic energy Ug are calculated by
FEM under the boundary conditions of Eq. (3) with Eq.
(10}. The slope of the deflection curve on the bound-
ary also satisfies the symmetrical boundary conditions.
The adhesion area is calculated by Eq. (10). We as-
sume that g is obtained experimentally or calculated
by the method described in section 2.2. Therefore the
total energy of the system Ur is calculated by using
these values and Eqgs. (4) and (5).

4. To minimize the total energy Ur, a series of points
of Eq. (9) is changed by the optimization method (first
order optimization method ) included in the ANSYS.

5. Iterate the calculations 2 to 4 until the total energy
Ur is minimized. ‘

In this paper we use n = 3. The numerical calcula-
tion (calculating the elastic energy Ug and optimization
method) is implemented within the ANSYS.

2.4 Criteria of adhesion In this section, we
outline the comparative and judging method that is
needed for designing microstructures. The elastic en-
ergy of the arbitrary-shaped plate as shown in Figs. 1
and 2-is:

1 DR?

Y

/ (V24)%dS
Qp—Qsg

on / (V221)2dS,
2 Qp—Qs

where V? is a Laplacian operator, D = Et3/12(1—v?)
is the flexural rigidity of the plate, @ = u/h is a dimen-
sionless deflection function, and
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is a value which has the unit of energy. The dimen-
sionless representation of Eq. (4) is given as follows:

Ur = Ur(€) - 73€,
where Up = Up /Uy, Ug = U /Uy, € = §/Sp, and

= ’ys
Uo/Sp

o~

s

.............................. (14)

The form of the function lffE is determined by the
morphology of the system, and is also independent of
Sp, t, and h.

If the continuous relationship between the elastic en-
ergy Ug and the adhesion area £ is able to be calcu-
lated analytically, it is easy to derive adhesion criteria.
However, the continuous relationship between them is
difficult to calculate analytically. Therefore, we numeri-
cally calculate a discrete relationship between them and
derive the adhesion criteria from the discrete relation.

When £ is a fixed value & (0 < & < 1), the cor-
responding adhesion energy 7g is also a fixed value
¥5' (= const.). Thus, we obtain

i U\ — i Sy
o {Ur} = min {Us '}
= QllTélflzlp {UE} - const., +---- (15)

where €)' is an adhesion shape, the area of which has
the fixed value £’. If we find a shape that minimizes Ug
under the constant area &’, the relationship between Ug
and ¢’ is obtained. The method described in section 2.3
is used to search for the adhesion shape . This dis-
cussion does not depend on a specific value of £, so
the relationships between & and Ug are obtained by
calculating several values of ¢’ in 0 < ¢’ < 1.

Consequently, we regard the several values of ¢’ as
the values of the independent variable £ again, and so
obtain a discrete relationship between the elastic energy
Ug and the adhesion area £ is obtained.

Therefore, we can calculate 75 by the dimensionless
expression of Eq. (8).

7= 2
o §=Eme

where &me = Sme/Sp (0 < &me < 1). Equation (16)
is implemented by a numerical differentiation because
the relationship between [7;; and £ calculated above is
discrete.

On the other hand, Figure 4 shows a typical curve of
Ug and a typical curve of Uz JO€. oUg /0¢ has a min-
imum value. Let I be the minimum value of 8Ug JO&
as follows:



Elastic energy Up

o fvr;in 1

Normalized area &

(a) Typical relationship between
adhesion area and’ elastic energy.
£min is the value which minimizes
oUg /o¢.

oUg [0¢

-

o £mi'n 1

Normalized area £

(b) Typical relationship between
adhesion area and area differential
of elastic energy. &£,,in is the value
which minimizes 6(7;;/65.

Fig.4. Typical curve of the elastic energy and the
area differential of the elastic energy.

If an experimental value of 7z is less than T, there is
no value of &, that is defined by Eq. (16). In other
words, there is no solution under the boundary condi-
tions of Eq. (3). This means that the plate does not
stick to the substrate. Thus, we can judge whether ad-
hesion occurs or not as follows:

—~ r

Y5> (=<1 Stick, »vrreereeinen (18)
s

—~ r

15<T (=>1) Peel «cvvevvneennnenn (19)
vs

The adhesion problem is thus a ¢comparison of I with
¥s. C. H. Mastrangelo and C. H. Hsu defined the ratio
of I" and 7g using a different method @, and they called
this value Np.
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1 Si wafer

2 Oxidation

3 Si0, patterning

4 Poly-Si deposition
s Poly-Si polishing
6 Wafer bonding

7 si polishing

8 SiRIE

9 8i0, etching

Fig.5. Fabrication process of the test samples.

3. CALCULATION AND EXPERIMENT

To compare the theoretical results with the exper-
imental ones, we fabricated square plates from SOI
wafers as test samples. The fabrication process is shown
in Fig. 5, and the cross-section of the sample is shown
in Fig. 6. '

3.1 Calculation of vg In this section, the value
of 7vs is calculated from an adhesion sample fabricated
as shown in Fig 5. The conditions of the sample are
shown in Table 1.

Table 1. Conditions of the square plate

Width w 2000 pm
. Thickness t 3.4 pm
Gap h 2 um
Initial stress op 0 GPa
Young’s modulus E | 145 GPa
Poisson’s ratio v 0.27

The adhesion area was measured from an infrared mi-
croscope photograph. The normalized adhesion area
is &me = 0.39. Figure 7(a)is an infrared microscope
photograph of the adhesion sample. The dimensionless
elastic energy Ug is calculated by FEM. Linear shell
elements are used in this calculation and the number
of elements is about 900. The first-order optimization
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e

Anchor

(b) Cross-sectional view along A-A’

Etching hole

{¢) Cross-sectional view along B-B’

Fig.6. Cross-section of the square sample. (a)Top
view of the square plate. See Fig. 7(a), 7(b),
(b)Cross-sectional view along A-A’, (c)Cross-sectional
view along B-B’.

method which is built into the application functional-
ity © is used as the optimization method. The relation-
ship between ¢ and Ug is shown in Fig. 8. The area
differential coefficient of Ug at &ye = 0.39 is

s =~ 20000.

This value is equal to 2.6 mJ/m? by Eq. (14). The vs
calculated from Mastrangelo’s approximation formula
of square plates ¥ is 2.2 mJ/m?. The error of these val-
ues is 30%. The difference is due to the fact that C. H.
Mastrangelo and C. H. Hsu assumed that the adhesion
shape is of the same shape as the outer boundary.

3.2 Adhesion criteria of square plates - The
minimum value of dUg/0S of square plates is
T 2000. cceeieerinreneanenneeannasaassases (2]_)

This is a minimum of the differential coefficient that
is calculated from the discrete relationship between Ug
and £ as described in section 2.4. Hence the explicit
adhesion criteria formula of square plates called Np
is calculated by Egs. (14) and (21):

BEHHE, 122%958, FRU4E
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{a) w = 2000 pm. (b) w = 1100 pm.

Fig.7. Infrared microscope photograph of the ad-
hesion and peeling samples. (a) Adhesion sample
(w = 2000 um), (b) Peeling sample (w = 1100 pm).

7000

6000

Elastic energy Ug

5000
4000
~s = 20000

3000 (€me = 0.39)

2000

1000

0.2 0.3 0.4 0.5 0.6

Normalized area £

Fig.8. Relationship between adhesion area and
elastic energy (w = 2000 pm, &ne = 0.39).

T 2000  2000Et*h?
¥s  vs/(Uo/Sp)  12(1 —v?)vsS3
170Et3h?

N 22
(1= vH)ysw?’ #2)

where Sp is the area of the square (= w?) and w is the
width of the square plate. The meaning of this formula
is described in Eqgs. (18) and (19). C. H. Mastrangelo
and C. H. Hsu derived this formula in a different way.
They calculated that the numerical factor of Eq. (22)
is 186 as follows ™:

I 186Et°h?

== Tt (23)

They assumed the adhesion shape as a square. The
error of two numerical factors is derived from the de-
gree of approximation to calculate the adhesion shape.
Equation (22) is obtained by searching for the adhesion
shape numerically, so the numerical factor of Eq. (22)
is more precise than that of Eq. (23).

3.3 Example of design In this section, we re-
design a dimension of the adhesion sample in Sec. 3.1.



The width w is redesigned to prevent adhesion to the
substrate, and the thickness ¢t and gap h remain the
same. We calculate I'/7g of the original condition by

Egs. (20) and (21).
r 00
D00 -
75 20000

It is confirmed that I'/45(= 0.1) of the sample is less
than 1, so adhesion of the sample is confirmed by Eq.
(18).

The plate peels from the substrate when I'/73
from Eq. (18) and I'/7s is proportional to 1/w* from

Eq. (22), so the critical width of the plate, wpeel, is
calculated as follows:
1 1
; 10l = L, (25)
Wtick wpeel

where wgticr 1s the original value of the plate width
(Table. 1), and wyee is the redesigned value of the plate
width. It is necessary to make wpee to be 1100 pum
(=~ ¥/0.1 x 2000 pum) or less by Eq. (25). The sample,
the width of which is less than or equal to 1100 um,
does not adhere to the substrate as shown in Fig. 7(b).

4. CONCLUSION

A method of analyzing the adhesion of arbitrary-
shaped microstructures by using an optimization
method and FEM was proposed. We applied this
method to square plates, and obtained a more realis-
tic curved adhesion shape. We also proposed a numer-
ical calculation of surface energy s by using measured
adhesion area. For the convenience of the design, we
defined the dimensionless surface energy g in order to
compare different shapes, and redesigned the dimension
of the square plate that adhered in the experiment to
prevent sticking to the substrate.

(Manuscript received June 6, 2001, revised March 6,

2002)
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