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We propose a method to extract the QRS wave in an electrocardiogram (ECG). It is extracted by detecting
two characteristic points (CPs), the Q and S points. There are two main problems that make detection of
CPs difficult: 1) noise contaminating the ECG and 2) individual variation of waves and complexes in the
ECG. We use DP matching for overcoming the problem of noise contamination and a neural network of
ART?2 for overcoming the problem of individual pattern variation. These two methods are fused using a
multichannel ART-based neural network (MART) for reliable detection of CPs. The method was evaluated

using an MIT/BIH arrhythmia database. It was found that the rates of accuracy within 6 ms error were
99.6% for S point detection and 96.4% for Q point detection, indicating that the present method has good

potential for detection of CPs on an ECG.
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1. Introduction

An electrocardiogram (ECG) is a record of the electri-
cal potential induced by heart beats, which is recorded
by attaching small electrodes on the body (Fig. 1).
Since recording an ECG is simple, noninvasive, and
inexpensive procedure, it is widely used to diagnose
heart diseases ™. For a precise diagnosis, the ECG
is recorded for a whole. day with a Holter device that
records an ECG of more than 100,000 cardiac cycles. A
reliable ECG analyzer is needed to analyze such a large
number of cardiac cycles. Furthermore, recent develop-
ments in telecommunication and information technol-
* ogy have enabled expert-based health care to be pro-
vided at home, and a reliable ECG analyzer is also an
essential component of such system ®~®,

A widely used ECG analyzer is a beat-to-beat ana- i

lyzer that detects the QRS complex in the ECG and
diagnoses rhythm irregularity . One cardiac cycle is
determined by detection of a point in the ECG that
falls between onset and the end of the QRS complex.
The durations of two QRS complexes are measured for
rhythm analysis. Nine algorithms for detection of QRS
complexes are widely used. Friesen et al. evaluated the
noise sensitivities of these nine algorithms for detecting
QRS complexes ™. They concluded that an algorithm
using a digital filter had the best performance for com-
posite noise. It could be concluded that the algorithms
used for detecting QRS complexes are sufficiently reli-
able for rhythm analysis.

An ECG analyzer is also used to diagnose an ischemia
episode and myocardial infarction ®~0%, To diagnose
ischemia, the ST-segment, which is a part of the ECG
from the J point to onset of the T wave, must be de-

tected. To detect an ST-segment, the S point must
first be detected and then the J point, which is the in-
flection point following the S point, must be detected.
Stamkopoulos et al. pointed out the following prob-
lems in detection of the ST segment: slow baseline
drift, noise, sloped ST change, patient-dependent ab-
normal ST depression level, and varying ST-T patterns
in an ECG of the same patient. A number of methods
have been proposed to detect the ST-segment (® (14
Stamkopoulos et al., using 34 files of the European ST-
T database *”, found that overall classification indexes
are 79.32% for normal beats and 75.19% for abnormal
beats. More effort is needed to improve the classifica-
tion indexes.

As mentioned above, the reliability of an ECG ana-
lyzer depends on how precisely it can detect the char-
acteristic points (CPs), i.e., onset and/or offset of the
waves and complexes constituting the ECG. There are
two main problems that make detection of CPs diffi-
cult: 1) noises contaminating the ECG and 2) indi-
vidual variation of waves and complexes in the ECG.
Typical noises that contaminate an ECG are power line
interference, electrode contact noise, motion artifacts,
muscle contraction, and baseline drift and ECG ampli-
tude modulation with respiration 9. Since the pattern
of waves and complexes are patient-dependent, they are
slightly different for each individual. Moreover, patterns
in the ECG change according to patient’s body condi-
tion. In this sense, it is difficult to determine template
patterns to recognize waves and complexes. To develop
a reliable analyzer, a method that overcomes these two
problems must be found. )

The QRS wave is the most remarkable pattern in the
ECG, as shown in Fig. 1, and is therefore used as a ref-
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Fig.1. A cardiac cycle of an ECG that consists
of waves and complexes. The complexes and waves
are extracted by detecting CPs. A part of the ECG
from the Q point to the S point is called as a QRS
wave in this paper.

erence pattern for detecting other waves and complexes.
We call a part of the ECG from the Q point to the S
point a QRS wave in this paper. Thus, the establish-
ment of a method for accurate detection of the QRS
wave would be a starting point in the development of
a reliable ECG analyzer. Furthermore, the QRS wave
provides useful information for diagnosis of heart dis-
eases. This wave is detected by detecting two CPs, the
Q and the S points.

One widely used method for detecting these CP is
based on first and second derivatives of the ECG in the
search region; which are determined on the basis of prior
physiological knowledge **’. The method could not be
robust to noise. Another popular method is the syn-
tactic method *®. In this method, the ECG is divided
into primitives, which are waves, complexes, and seg-
ments. This method is reliable if the primitives of the
ECG do not change greatly from the primitives that
are prepared in advance. Recently, Wavelet transform
(WT) has been used to detect CPs@"~?  This is a
powerful method for detecting CPs, but a large amount
of computation is needed for convolution of the input
signal with a modulated pulsation to provide a time-
frequency distribution. Therefore, this method cannot
be used for real-time monitoring in coronary care unit.

We have developed two methods for detecting two
CPs, i.e., the Q and S points. One method is based
on a neural network (NN) of ART2 0% ART? has
capabilities that are learning and self-organization to
newly input patterns. The template patterns stored in
the NN are modified in response to new input patterns,
and pattern recognition is carried out using these modi-
fied template patterns. The method overcomes pattern
variation of the ECG. The other method is based on dy-
namic programming (DP) matching *®. DP matching
is a robust pattern recognition method and overcomes
the problem of noise contamination in an ECG.

In this paper, we present a method for detecting two
CPs, the Q and S points, in order to extract the QRS
wave. This method overcomes the current problems in
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problem of noises contamination, and a neural network
of ART?2 is used to overcome the problem of individual
pattern variation. These two methods are fused using a
multichannel ART-based neural network (MART'). The
paper is organized as follows. In the next section, a pre-
processor used to extract the QRS wave is described.
The method for detecting the CPs using ART? is de-
scribed in section 3. In section 4, detection of CPs with
DP matching is described. Fusion of the two meth-
ods, ART2 and DP matching, using MART is described
in section 5. The result of evaluation of the present
method using an MIT/BIH arrhythmia database are
presented in section 6. Finally, conclusions are pre-
sented in section 7.

2. Preprocessor

We used ECGs in an MIT/BIH arrhythmia database
for this study. The ECGs have been digitized at a rate of
360 Hz, a sampling rate that is not sufficient for precise
detection of CPs. We therefore transformed the ECGs
into analog signals using Fourier and inverse Fourier
transforms and then sampled them at a rate of 500 Hz.
This was performed using MATLAB. An ECG must be
divided into cardiac cycles to detect CPs. Division into
cardiac cycles is performed by detection of the R point.
The R point is detected using an algorithm proposed
by Hamilton and Tompkins . In this algorithm, high-
and low-frequency components that are not components
of the QRS are removed with low-pass and high-pass fil-
ters. After elimination of low- and high-frequency com-
ponents, the algorithm enhances the QRS complex and
suppresses other parts of the ECG using differentiation
and squaring filters. Then time averaging is carried out
by adding the 32 most-recent values of the ECG from
the squaring filter. The R point is located by detect-
ing the location of the largest peak of the time-averaged
ECG.

3. Detection of CPs with ART?2

In this section, we describe pattern recognition with
ART2 and the method for detecting CPs using ART?2.

3.1 Pattern recognition with ART2 Carpen-
ter and Grossberg proposed the ART?2 neural network
for self-organizing pattern recognition with stable pre-
sentation of stored patterns *®. The ART2 neural net-
work consists of an attentional subsystem and an ori-
enting subsystem. As shown in Fig. 2, the attentional
subsystem consists of an F1 layer of a feature detector,
an F2 layer of a category representation, and bottom-
up and top-down long-term memories (LTMs). Each
node in the F1 layer is connected to all nodes in the F2
layer, and all nodes in the F2 layer are also connected
to each node in the F1 layer. The connections from all
nodes in the F1 layer to one node in the F2 layer form
the bottom-up LTM. The bottom-up LTM is also called
an instar. Conversely, the connections from one node
in the F2 layer to all nodes in the F1 layer form the
top-down LTM, which is called a outstar.

ART?2 recognizes input patterns through the hypoth-
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Fig.2. An architecture of ART2.

esis testing cycle as follows. When a pattern is inputted
into the F1 layer and the activity of the node in the F1
layer is sufficiently large, the node generates an excita-
tory signal along the bottom-up LTM to the node in
the F2 layer. The signal is multiplied by the bottom-up
LTMs. Each nodes in the F2 layer receives the signal
and is activated in proportion to amplitude of it. Since
the F2 layer is a competitive network, each node sends
an inhibitory signal to all other nodes in the F2 layer.
Then only one node is chosen a winner through this
competitive interaction among nodes. The winner node
associates a pattern to the F1 layer through the top-
down LTM. In the F1 layer, the associated pattern is
compared with the input pattern, and if the difference
between the two patterns is larger than the predeter-
mined threshold, the F1 layer sends a reset command
to the orienting subsystem. The orienting subsystem
then sends a reset pulse to the winner node so that it
is strongly inhibited and cannot be activated again un-
til the hypothesis testing cycle ends. After that, input
pattern is reinstated and generates an output pattern to
the F2 layer, again. The hypothesis testing cycle ends
when the top-down LTM associates a pattern that ap-
proximately matches the input pattern. After pattern
recognition, the bottom-up and top-down LTMs, which
are linked to the winner node in the F2 layer, learn new
information about the input pattern. In other words,
weights can be modified by the input pattern.

3.2 Detection of CPs To detect the CPs using
ART2, we assume that the part of the ECG from the R
point to the Q point or to the S point can be approx-
imated by a right-angled triangle as shown in Fig. 3.
Fifty, right-angled triangle patterns are stored in both
the bottom-up and top-down LTMs. The lengths of the
bases of the triangles are different. These triangles are
used as the initial values for pattern recognition. For Q
point detection, the part of the ECG 100 ms in length
from the R point towards the P wave (the QR part) is
inputted into the F1 layer of ART2. ART?2 recalls the
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Fig.3. Principle of detection of CPs using ART2.

right-angled triangle that is closest to the input pattern
from the top-down LTMs. If the recalled pattern is suf-
ficiently similar, ART2 recognizes this recalled pattern
as the input pattern. Then the left end of the triangle
locates the Q point. The S point is also located in the
same manner.

4. DP Matching for Detection of CPs

Dynamic programming (DP) was originally proposed
by Bellmann to provide an efficient mechanism for se-
quential decision-making. DP matching is a robust pat-
tern recognition method and is widely used in engineer-
ing problems. The algorithm of DP matching is based
on the principle of optimality *®. DP matching is a
technique of pattern matching. In DP matching the
distance between patterns is computed using the prin-
ciple of optimality. We prepare template patterns that
are compared with reference pattern by the algorithm of
DP matching. The template pattern with the smallest
distance to the reference pattern is chosen. For detec-
tion of CPs, we prepared two template patterns, shown
in Fig. 4, which have been empirically established by
observing a large number of QRS waves *”. The QR
part is used to detect the Q point. Since the ECG is
digitized at a rate of 500 Hz, there are 50 ECG samples
in the QR part.

The template and reference pattern are each repre-
sented by a time series. The distance is computed by
these time series according to the principle of optimal-
ity. In the process of DP matching, the template pat-
terns are stretched and/or shrunk by the algorithm of
DP matching.

The distance between the template pattern (a) and
the QR part is computed using the DP matching algo-
rithm. The distance between the template pattern (b)
and the QR part is also computed. The template pat-
tern showing the smaller distance is employed to detect
the Q point.

The template pattern chosen is stretched and/or
shrunk by the algorithm of DP matching, which is rep-
resented by QR. The Q point is detected in QR using
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Fig.4. Template patters for detection of CPs by
DP matching.

a slope detection technique. This is found heuristically
through trial and error. An established region is deter-
mined to locate the Q point. A sample QR(s) is chosen
in the QR part. The established region is from QR( ) to
QR(s+10). We compute A = QR(s+n+1)—QR(s+n)
for (n =1,2,...,10). If the number of A > 0 is greater
than or equal to seven, QR(s) is detected as the Q point.
The first QR(s) is set at the left end of QR(s). QR(s)
is tested to find the Q point in the direction towards
the R point, and once the QR(s) satisfying the above
condition is found, the QR(s) is located as the Q point.
The S point is also located in the same manner.

5. Fusion of ART2 and DP matching methods
by MART

As mentioned in section 1, two problems must be
overcome for reliable detection of CPs. The first prob-
lem is individual pattern variation in the ECG and the
second problem is noises contaminating the ECG. The
learning and self-organizing abilities of ART2 overcome
the first problem, and DP matching overcomes the sec-
ond problem. These two methods are therefore fused to
reliably detect the CPs using MART.

51 MART MART is a multichannel neural net-
work @®. The each channel of MART is ART2." The
basic architecture of MART is divided into two parts,
upward and downward flows of information, as shown
in Fig. 5. In the upward flow of information, a set
of patterns is inputted into the corresponding channel
of ART2. Information from the activated nodes in the
F2 layers of ART?2 of the each channel are sent to the
F3 layer of MART. Competitive interaction among the
nodes in F3 layer results in activation of only one winner
node, and the other nodes are inhibited to be inactive.
The winner node represents a global similarity to clas-
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Fig. 5. Basic architecture of MART. The upper
and lower panels show upward and downward flows
of information, respectively.

sify the set of input patterns to a specific category.

In the downward flow of information, the winner node
activated by the upward flow of information associates
a set of template patterns to corresponding difference
channels. The distance d between the set of input and
associated patterns is computed in the global orienting
nodes. This is a global difference. When d is smaller
than a global vigilance parameter py, the current set of

- input patterns are assigned to the category. Then, if d is

also smaller than a similar criterion, p,, the set of tem-
plate patterns is modified by the set of input patterns
according to the learning equation of MART. Moreover,
if d is larger than pg, a reset signal is sent to the F3
layer, and the activated node is inhibited and a new
pattern recognition cycle begins. The cycle is repeated
until either a category is found for which d is smaller
than p, or the set of current patterns is assigned to a
new category.

5.2 Fusion of ART2 and DP matching meth-
ods to detect CPs MART with two channels is
used to fuse ART2 and DP matching methods. Two
patterns are prepared for Q point detection. One is the

" QR pattern in the ECG. It is inputted into channel one
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of MART. There are 50 right-angled triangles stored in
both bottom-up and top-down LTMs of ART?2 of chan-
nel one of MART as template patterns. The lengths of
the bases of the triangles are different and the heights
of the triangles are 1.0. The QR pattern is then filtered
by the bottom-up LTMs and activates nodes in the F2
layer. Each node in the F2 layer is activated in pro-
portion to the similarity between the input ECG and
the right-angled triangle patterns. Each node in the
F2 layer sends a signal to the F3 layer of MART. The
strength of the signal is in proportion to the activation



level of each F2 node.

The other pattern is prepared as follows. From the
QR pattern, the Q point is detected using the algorithm
based on DP matching described in section 4. A rectan-
gle is made using that Q point that is detected by DP
matching. The base of the rectangle extends from the
R point to the Q point. This rectangle is inputted into
channel two of MART. There are 50 rectangles stored
in both the bottom-up and top-down LTMs of ART?2 of
channel two as template patterns. The lengths of the
bases of the rectangles are different, and the heights of
the rectangles are 1.0. The nodes in the F1 layer of
ART?2 receive the rectangle pattern, and each node is
activated in proportion to the input signal. Each node
sends a signal to nodes in the F2 layer through bottom-
up LTMs, and then the nodes in the F2 layer also send
signals to the F3 layer of MART. In this manner, nodes
in the F3 layer receive signals from both channel one
and channel two, so that the two methods, ART2 and
DP matching, are fused by MART.

CPs detection in MART is performed as follows. In
the F3 layer, the signals from both F2 layer of the chan-
nel one and two are fused to compute the global simi-
larity for the set of input patterns. The activated node
associates right-angled triangle pattern to the difference
channel one and it also associates a rectangle to the dif-
ference channel two. Then each associated pattern is
compared with each corresponding input pattern, and
the difference is summed to compute d.

d = z31dy + x2ds,

where x1, zo are the credibility of channels and d;, ds
are the difference between the input pattern and the
template pattern for the winning category in channel
one and channel two, respectively. If d is smaller than
Pg, the winner node in the F3 layer classifies the set of
these patterns to a specific category. At that time, the
left end. of the associated rectangle locates the Q point.
On the other hand, if d is larger than pg, a reset signal

is sent to F3 layer and the process continued until a -

match is found or all the selected categories exhausted.
In this case, the input ECG is largely different from
the previously input ECG by irregular rhythm and/or
measuring error. This ECG is classified into different
category as an abnormal ECG. By this classification,
we can monitor the abnormal ECGs. The S point is
also detected in the same manner. After the CPs have
been detected, stored patterns in the LTMs of ART2 of
channel one z;;~ are updated by the learning equation
of MART, when d < py and di < p,.

_ [Azzjk* (n) + Alfj (’I’L)] — M+

2k (’ﬂ + 1)

2

]\rfk* —~ MMj*
1,2,..,50; k=1,2,...,50)

Y

Mpr = mlin[Azzlk* (ﬂ) + Alfl(’l’b)] (3)

M~ = mlax[Azzlk*(’n) + AIIZ(”)]
(

1,2,...,50).
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In (2), k* is the index of the winner node in the F3
layer, I;(n) is the input signal to the jth node in the F1
layer, and A, and A, are parameters of MART. The pa-
rameters are pg = 0.37, p, = 0.1, A; = 0.25, A, = 0.75,
X = 0.8, and Iy = 0.2.

6. Results and Discussion

The reliability of an ECG analyzer depends on how
precisely it can detect the characteristic points. The
QRS wave is the most remarkable pattern in the ECG
and is therefore used as a reference pattern for detec-
tion of the other waves and complexes. Thus, accurate
detection of the QRS wave is a starting point in the de-
velopment of a reliable ECG analyzer. There two main
problems that make detection of these CPs difficult: '1)
noises contaminating the ECG and 2) individual varia-
tion of waves and complexes in the ECG. We proposed
a method to overcome these problems. DP matching
is used for overcoming the problem of noise contamina-
tion, and a neural network of ART? is used for overcom-
ing the problem of individual pattern variation. These
two methods are fused by MART. '

The reliability of the present method for detection
of CPs in an ECG was tested using ECGs stored in
an MIT/BIH arrhythmia database. For precise evalua-
tion, we chose ECG record numbers in which CPs can
be visually located clearly. The record numbers of the
ECGs used were 100, 103, 112, 113, 115, 117, 122, 123,
and 124. A total of 1,800 cardiac cycles of the ECGs
were used for evaluation. For the evaluation, the Q
point is defined as the first inflection point in the part
of the ECG from the R point towards the P point ¢%.
The S point is also defined as the first inflection point
in the part of the ECG from the R point toward the
T point. However, since the.ECG is contaminated by
noises, these definitions might not be effective for the
ECG in practical measurement. To evaluate detected
CPs correctly, a part of the ECG including the QRS
wave was expanded and drawn on a display of a per-
sonal computer. A referee found the locations of the Q
and S points visually. This was carried out by examin-
ing the slope change of the ECG and the wave form of
the ECG before and after the visually found Q and S
points. An example of detection of the CPs is shown in
Fig. 6.

The detection error was computed as

where n. is the point on the ECG where a CP was de-
tected using our method, and n, is the point on the
ECG where a CP was located by the referee. Fig. 7
shows a summary of the results of evaluation. The
rates of accuracy with S.,ror < 6.0 ms were 99.6% for S
point detection and 96.4% for Q point detection. Table
I shows the standard deviations (SDs) between detected
CPs and CPs visually located, in which the results of
detection of CPs by the present method are compared
with those using DP matching and ART2. The SDs of
the present method are lower than those for detection
of both Q and S points.
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Fig.6. Example of the CPs detection.
solid lines indicate detected CPs.
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The limit of SDs determined by the CSE committee
for detection of the onset of a Q wave and the end of a
QRS complex are 6.5 and 11.6, respectively *®. These
limits were determined by data obtained from the CSE
ECG library, which are different from ECG obtained
from the MIT/BIH arrhythmia database. The Q point,
S point, the onset of a Q wave, the end of a QRS com-
plexes are characteristic points of a QRS complex as in
Fig. 1. Furthermore, ECGs in the MIT/BIH database
are abnormal, which could provide severe condition for
the evaluation. Therefore, it can be consider that SDs
determined by CSE committee could be an index to
evaluate the present method. As shown in Table I, the
SDs of Q and S points detection by our method are 3.2
and 1.8, respectively, which are within the limits. These
results show that the present method has good potential
for detection of CPs on an ECG.

THHC, 1225108, FRUE
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Fig.7. Summary of results on detection of CPs.
Table 1. Standard deviations of Serror.
SD Q point S point
Present method 3.2 1.8
ART 3.8 2.9
DP matching 4.9 24




7. Conclusion

We proposed a new method to detect the CPs, the
Q and S points, in ECG by fusion of DP matching and
NN. The methods overcomes two problems to detect
CPs: 1) noise contamination, and 2) individual varia-
tion of waves and complexes in the ECG. Experimental
results showed that the present method has good po-
tential for the detection of CPs.

(Manuscript received Nov. 18, 2001)
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