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The problem of decentralized stabilization is considered for a class of large scale linear time-varying systems
with delayed state perturbations in the interconnections. In the paper, the upper bounds of the perturba-
tions are assumed to be unknown, and a class of adaptation laws is introduced to estimate such unknown
bounds. By employing the updated values of these unknown bounds, a class of decentralized memoryless
state feedback controllers is also proposed. Based on Lyapunov stability theory and Lyapunov—Krasovskii
functional, it is shown that by employing the proposed decentralized controllers, the solutions of the resulting
adaptive closed-loop large scale time—delay system can be guaranteed to be uniformly bounded, and their
states can converge uniformly asymptotically to zero. Finally, a numerical example is given to demonstrate

the validity of the results.
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1. Introduction

It is well known that the problem of decentralized con-
trol of large scale interconnected systems has received
considerable attention, and many approaches have been
developed to synthesize some types of decentralized lo-
cal state (or output) feedback controllers (see, e.g. Refs.
(1)~(3) and the references therein).

On the other hand, in many practical control prob-
lems, there are a number of time—delay systems, and
the existence of delay is frequently a source of instabil-
ity (see, e.g. Refs.(4),(5) and the references therein).
Therefore, the problem of decentralized stabilization for
large scale interconnected time-delay systems has also
received considerable attention, and some results have
also been obtained. In Refs. (6) and (7), for example,
the decentralized stabilization problem of linear time—
invariant large scale systems with time-delay is con-
sidered, and some sufficient conditions on decentralized
local state feedback control are derived. In Ref. (8),
based on the assumption that each isolated subsystem
is strictly feedback positive real, a class of decentral-
ized stabilizing output feedback controllers is proposed
for large scale systems with time—varying delays in the
interconnections. In Ref. (9), the problem of the decen-
tralized stabilization of large scale nonlinear and linear
systems including time—varying delays in the intercon-
nections is considered, and a class of decentralized sta-
bilizing state feedback controllers is presented.

It is worth pointing out that a salient feature of those
schemes is that the decentralized state (or output) feed-

back controllers explicitly depend on the upper bounds
of the interconnections. Therefore, for the decentral-
ized controller design problem, one has to assume that
such upper bounds are known. However, in a number
of practical control problems, when the delayed state
pertufbations are included in the interconnections, such
upper bounds may be unknown, or be partially known.
In some cases, it may also be difficult to evaluate the
upper bounds of the uncertainties. Thus, one must de-
velop some new controller design methods to relax this
assumption. For composite systems with delayed state
perturbations, some updating laws to such unknown
(or partially known) bounds have been introduced to
construct some types of adaptive robust feedback con-
trollers (see, e.g.” Refs. (10), (11)). However, few efforts
are made to consider the problem of decentralized feed-
back control for large scale time—delay interconnected
systems with the unknown upper bounds of uncertain-
ties because of its complexity. It seems that for such un-
certain large scale time—delay interconnected systems,
the similar results have not been reported yet in the
control literature.

In this paper, we consider the problem of decentral-
ized stabilization for a class of large scale linear time—
varying systems with delayed state perturbations in the
interconnections. Here, the upper bounds of the pertur-
bations are assumed to be unknown, and control inputs
are represented by the nonlinear functions satisfying the
condition of the so—called series nonlinearity. For such a
class of uncertain large scale interconnected time-delay

‘systems, we want to develop some decentralized stabiliz-
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ing memoryless state feedback controllers. For this pur-
pose, we first propose some adaptation laws to estimate
the unknown bounds of the perturbations in the inter-
connections. Then, by employing the updated values of
these unknown bounds we construct decentralized mem-
oryless state feedback controllers. Moreover, on the
basis of the Lyapunov stability theory and Lyapunov—
Krasovskii functional, we prove that by employing the
proposed decentralized controllers, the solutions of the
resulting adaptive closed-loop large scale time-delay
system can be guaranteed to be uniformly bounded,
and their states can converge uniformly asymptotically
to zero.

The paper is organized as follows. In Section 2, the
decentralized control problem to be tackled is stated
and some standard assumptions are introduced. In Sec-
tion 3, we propose a class of continuous decentralized
adaptive robust controllers for the considered large scale
systems. In Section 4, a numerical example is given to
illustrate the use of our results. The paper is concluded
in Section 5 with a brief discussion of the results.

2. Problem Formulation and Assumptions

We consider an uncertain large scale time—delay sys-
tem S composed of N interconnected subsystems S;,
1=1,2,---, N, described by the following differential—
difference equations:

d.’Ei (t)
dt

= Ai(t)g;i(t) + Bi(t)ui(t) ...........
where t € R* is the time, z;(t) € R™ is the current
value of the state, and u;(t) € R™ is the input vector.
Each dynamical subsystem is interconnected as

N
wi(t) = D Aig(Gir )z (t—hig)

j=1
In (1) and (2), for each i € {1,2,..., N}, Ai(t), Bi(t)
are continuous matrices of appropriate dimensions, and
the matrices A;;(-) accounts for the interconnection be-
tween the subsystems S; and S;, which is assumed to
be continuous in all their arguments. Moreover, the un-
certainty (; € ¥; C Rl is Lebesgue measurable and
take values in a known compact bounding set €;, and
the time delays h;;, 4,7 =1,2,..., N, are assumed to be
any positive constants which is not required to be known
for the system designer. In addition, z(-) € R™ de-
notes the vector [ z{(-) = (') T ]—,rwhere

Ty To Zy
n=ni+ng+---+n,.

The initial condition for each subsystem with time
delays is given by

i (t) = Xi (t)v

BY¥HMC, 1225102, FR14E

te [to ~ hq, to]
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where x;(t) is a continuous function on [tg — h4, to], and
h; is defined as follows.

h; = max{hij, j=1,2,...,N}

For this class of input—interconnected large scale sys-
tems with delayed state perturbations in the intercon-
nections, we introduce a decentralized local state feed-
back controller @;(t) given by

ai(t) = pilwy, t),

for each subsystem which modifies (2) to

........

i=1,2,...,N

N
uit) = &; (W) + Y Aij(Gir t)aj(t—hag) -+ (5)

=1

where p;(-) : R™ x RT — R™: is a continuous func-
tion which will be propoée_d later, and the control input
nonlinearity‘is represented by the continuous function
®; (Uy;).

Now, the main objective of this paper is to synthe-
size the decentralized memoryless local state feedback
controller @;(t) given in (4) such that some types of
stability of the large scale time—delay dynamical sys-
tem, described by (1) and (5), can be guaranteed in the
presence of delayed state perturbations in the intercon-
nections.

Before giving our synthesis approach, we first intro-
duce for the large scale time-delay system the following
standard assumptions. '

Assumption 2.1. All pairs {A;(-), Bi(-)}, ¢ =
1,2,..., N, are uniformly completely controllable.

Assumption 2.2. The series nonlinearity ®;(-) :
R™i — R™i is any continuous function satisfying the
following inequality:

(6)
where 70 and ~} are two positive constants.

Remark 2.1. It is well known that Assumption 2.1
is standard and denotes the internally stabilizability of
each nominal isolated subsystem, i.e., the subsystem
As-
sumption 2.2 introduces a condition on the so—called

in the absence of the uncertain interconnections.

series nonlinearity which can well capture the inexact
behaviour of an actuator. In general, v} is referred to
as the gain margin and 7Y as the gain reduction tol-
erance. It is well known @® % that the optimal state
feedback control law, derived from an optimal linear
quadratic problem, can tolerate an infinite increase in
gain and 50% gain reduction.

For convenience, we now introduce the following no-
tations which represent the bounds of the uncertainties.



, i,j=1,2,...,N

4i4(i )|

pi(t) = max |

where || - || is the spectral norm of a matrix “”. More-
over, p;;(t) is assumed to be continuous and bounded
for any ¢t € Rt. However, it should be pointed out that
the values of p;;(t) is unknown.

Remark 2.2. It is well known that the decentral-
ized stabilizing memoryless state feedback controllers
proposed in the control literature for the large scale
time—delay interconnected system described by (1) and
(5) are based on the fact that the bounds of the un-
certainties in the interconnections are known. That
is, pi;(t), 4,5 = 1,2,...,N, are assumed to be the
known continuous and bounded functions, and the pro-
posed decentralized control laws include such bounds
pii(t), 1,7 =1,2,..., N. However, in a number of prac-
tical control problems, such bounds may be unknown,
or it is difficult to evaluate them. Therefore, some up-
dating laws to such unknown bounds must be intro-
duced to construct adaptive robust controllers (see, e.g.
Refs. (10) and (11) for composite systems). In this pa-
per, we propose a class of decentralized adaptive robust
memoryless state feedback controllers for such uncertain
large scale interconnected time—delay systems.

3. Decentralized Adaptive Stabilization

Since the bounds p;;(t), 1,7 =1,2,..., N, have been
assumed to be continuous and bounded, we can sup-
pose that there exist some positive constants Pijs bJ =

1,2,..., N, defined by
P = max{ pij(t) : te RT }

Here, it is worth pointing out that such positive con-
stants pj;, 4,7 = 1,2,..., N, are unknown. Therefore,

such unknown bounds can not be directly employed to -

construct decentralized memoryless local state feedback
controllers.

Here, without loss of generality, we also introduce the
following definition:

- . \2 w2 k2
Y = [ (Pi1)” (i) (Pin) ]
where for any i € {1,2,...,N}, ¥} € RN is still obvi-
ously unknown constant vector.

T

It follows from Assumption 2.1 that for any symmet-
ric positive definite matrix Q; € R™*™, and any pos-
itive constant 42, the matrix Riccati equation of the
form

dP;(t)

o + AT (®)Pi(t) + Pi(t) Ai(t)

—P(t)Bi(t)B] (t)Pi(t) = —Q; -+~ (8)

has a solution which satisfies
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afily, < PBi(t) < ably,

for all t € R, where o, and a}, are positive numbers
(see, e.g. Ref.(14)), and P(tg) is any given positive
definite matrix.

Thus, for the large scale time—delay system described
by (1) and (5) we propose the following decentral-
ized adaptive robust memoryless state feedback con-
trollers:

a;(t) = pi(xi(t), 1)
_% ki(t) B () Pi(t)z4(t)

where i € {1,2,..., N}, and the control gain function
k;(t) is given by
-1 ~
ki) =1+ () nf du(t)

and where for any i € {1,2,...,N}, Pi(t) € R»*™ ig
the solution of the Riccati equation described by (8),
and 7; € RY is a constant vector defined by

_ _ 117
']71: = [ a‘ill a’i21 al]\} ] ........ (100)
where a;, 4, = 1,2,...,N, are positive constants
which are chosen such that
Qi— NIy, > 0 coveeee (10d)

where for each ¢ € {1,2,..., N}, the constant o; is
defined as follows.

Q; max{aj;-, j:1,2,...,N}

In particular, for any i € {1,2,..., N}, %;(t) in (10b)
is the estimate of the unknown ¢} which is updated by
the following adaptive law:

dip(t) _
dt

AT || BT (P00

where I'; € RVXYN is any positive definite matrix, and
¥;(to) is finite. Moreover, (t) € RV * denotes

D) = [T PF(t) ORN

Remark 3.1. In this paper, though v;(t) is called as
the estimate of the unknown ¢, we do not mean that
i(t) should converge to ¥ ast — oco. In the paper, the
main purpose is to synthesize some decentralized state

feedback controllers such that the considered systems
are stable. ‘

For each subsystem, applying the decentralized mem-
oryless state feedback controller given in (10) to (1) and
(5) yields the uncertain closed-loop time—delay subsys-
tem S;, i € {1,2,..., N}, of the form:
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dzi(t)
dt

— Ame) + Bilt) [@ (1))

N .
+ 3 Ag(Gtiny(e by - (12
j=1
where the decentralized control law @;(t) is the one as
given in (10).
On the other hand, letting
Filt) = Bit) — v,
we can rewrite {11) as the following error system

i (t)
dt

Here, §(t) € R¥” denotes

b0 = [0 HE© - de ]
In the following, by (z,%)(t) we denote a solution

ie{1,2,...,N}

_1r BT
= 2rmz||3i (t)Pi(t

of the closed-loop large scale time—delay system and
the error system. Then, the following theorem can be
obtained which shows the globally boundedness of the
solutions of the adaptive closed—loop large scale time—
delay system described by (12) and (13).

Theorem 3.1. Consider the adaptive closed-loop
large scale time-delay system described by (12) and
(13), which satisfies Assumption 2.1 and Assumption
2.2. Then, the solutions (z, 1) (t; to, z(to), ¥(to)) of the
closed-loop large scale time—delay system described by
(12) and the error system described by (13) are globally
bounded and

(1) Jim 2t to, z(to),P(te)) = 0 -+ (14a)
o dd(t)
(if) tli{go — = o B (14b)

Proof: For the adaptive closed—loop large scale time-
delay system described by (12) and (13), we first define
a Lyapunov-Krasovskii functional candidate as follows.

N
Viz, ) = Y {al OPywi(t) + 67 OT7 it) }
i=1
+ Olj T)zi(T)dT --- (15
ZZ / ] )t - (1)

where for each i € {1,2,.. .,N}, P;(t) is the solution
of differential Riccati equation (8), Fi_l is any positive
definite matrix, and &;; is positive constant.

Let (z(t), ¥(t)) be the solutions of the closed-loop
large scale time—delay system described by (12) and the
error system described by (13) for ¢ > to. Then by tak-
ing the derivative of V(-) along the trajectories of (12)
and (13) we can obtain that

BHHC, 122% 108, FRI4F

1789

V(z, ) / dt
—Z{ B0 AT ORG) + P A)|=
i (1))

42z, (t)Py(t)B;(t)®

+2z (t)Pi(t)B; Z Aij(Giy 1)z (¢ — hj)
j=1
= _ydii(t)
+29] (1)T; IT}
N N
+ 30D ] (1)
i=1 j=1 i
*%T(t—hij)xj(t—hij)] -+ (16)
From (6) and (10) we can obtain that
2] () Pi(t) Bi(t)®: (1))
< =7 ki(t)z] () Pi(t) Bi(t) B (t) Filt)z:(t)
............................... (17)

Thus, substituting (17) into (16) yields
av(z, 1,5) / dt
N
=Z{ F0| 50 4 AT RO + PO
=1
PO B(OBT (OP(0)]ax()
Pi(t)z] (t)Pi(t)Bi(t)B] (t)P;(t):(t)

N
+2z] () Py(£)B; Y | Aij(Girt)m;(t—hij)
j=1

_..nt

£ a (=] ®)z;(0)
j=1 :
—xj (t—hs)z; (t—hij)}

dt
Pi(t)zi(t)
‘N
+2x] (t)Pi(t)B; ZAij(Civ t)z;(t—hij)

Jj=1

+Zaw[|% P = llz (=i

}

+29] (7

N
i=

23

1

{ -z (£)Qizi(t)

—nT $u(t) | BT (8) I

 difi(t)

T _



| A

N N
Z { Q'ﬂ% + Z Qij ”IJ(t) g

i=1

—m ) | B )Pt )fvz(t)H

*Z%’ [H%‘j(t—hij)ﬂz :

=205 | BT (0P (O)i(0)| 5 (¢~ iy

g7 (t)r_ld%t( )} """""""" e

It can easily be verified that

N N N N
Yo allz ) < Y03 oy |z

i=1 j=1 i=1 j=1
_Nzaz xy(E) ceeeens L (19)
Therefore, from (19) we can rewrite (18) as
(z,9) / dt
N
<> {
i=1

t) Qi — ayNI, ] )

—m i(t) || BI () Pi()as(t)||”

S [nzj(t—hij)n
i=1

—-1*

1_7 p’L]
N 2
+3 a5 (o)’ BT 0P (t)z:()|
Jj=1
_1d9i(t)
+29] (BT }
N
< Z { - [Qz - aiNIm]mi(t)
=1
—mz ) |IBT () P(t)z.(0)|°
+Za (o1))" [1BT @) PaCe)as ()]
_1dii(t)
+2¢T( )1-\ 1 - } ............ (20)

Notice that the facts that for any i € {1,2,...,N},
a; has been chosen such that

Qi = Qi-a,-NIm >0
and
hit) = Pilt) + oF

where

aT

%k = [ (/9;(1)2 (P%)z (P:N)Z ]

it follows from (13) and (20) that
dv(z,) / dt

N -~
< Z { -z (t)Qizi(t)

—n i(t) || B () Ptz (t) ||
+n; ¥} | B (t) itfvz(t)l\z

+0] (t)yn: ||BY (8) Pi(t)za(t)||” }

Thus, we obtain the following inequality, i.e. that for
all (t,z,9) € R x R* x RN?,

dV(z '(/))< Z)‘mm( )sz @[> - (22)

Moreover, letting

#t) = [aT(t) §T) 1"

and
[hmin 1= min{ )\min(Qi), 1=1,2,.. .,N}

we can obtain from (22) that for any ¢ > ¢,

dv (Z(t)) <

dt -

On the other hand, in the light of the definition,

given in (15), of Lyapunov—Krasovskii functional, we

can known there always exist two positive constants
Omin and max such that for any ¢ > to,

— i [|Z@)][F e (23)

Tz < V(E®) < %0z@1) - (24)
where .
HUE@N) := mmin 1Z(2)]|>

F2(IEE) 1= max 1E(2) I
N N
+2_D aihi;__sup
[th

i=1 j=1 TE[thi;, t]

llz; ()1

Now, from (23) and (24), we want to show that the so-
lutions Z(t) of the adaptive closed-loop large scale time—
delay system, described by (12) and (13), are uniformly
bounded, and that the state z(t) converges uniformly
asymptotically to zero.

By the continuity of the adaptive closed—loop large
scale time—delay system described by (11) and (12), it
is obvious that any solution (z, ) (t; to, z(to), ¥ (to)) of
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the system is continuous.

It follows from (23) and (24) that for any ¢ > to,
0 < n(z@)) < V(E®)

= V(&(to)) + / V(&(7))dr

to

IA

’Vz(lli(to)ll)—/t Ya(llz(m)ldr ---- (25)

where the scalar function 43(||z(¢)||) is defined as

5o (O)) = i [£(E)]* oo (26)

Therefore, from (25) we can obtain the following two
results. First, taking the limit as ¢t approaches infinity
on both sides of inequality (25), we can obtain that

0< Sa(latta)l) - Jim, [ Fallar)Dar - (20)
It follows from (27) that
Jim [ Salle(r)hdr < (i) - (28)

On the other hand, from (25) we also have

0 < n(Iz@®)) < F(EE)) - -ereveeee (29)

which implies that Z(t) is uniformly bounded. Since Z(t)
has been shown to be continuous, it follows that Z(¢) is
uniformly continuous, which implies that z(t) is uni-
formly continuous. Therefore, it follows from the defi-
nition that 43 (||z(t)||) is also uniformly continuous. Ap-
plying the Barbalat lemma ** to inequality (28) yields
that

tllf?o Blz@)|) = 0 cooveer (30)

Furthermore, since 43(-) is a positive definite scalar
function, it is obvious from (30) that we can have

Jim lz(t)] = 0

which implies that (14a) is satisfied. From (13) and
(14a) we can also easily obtain (14b). [ |

Remark 3.2. It is obvious that the solutions of
the resulting adaptive closed—loop large scale intercon-
nected time—delay systems are continuous. Moreover,
the decentralized local state feedback control laws pro-
posed in (10) are memoryless, and the adaptive schemes
given in (11) are independent of the time delays. There-
fore, in the light of the proof given above, we can know
that the time—delay constants h;;, 4,5 =1,2,...,r, are
not required to be known for the system designer.

Remark 3.3. In the paper, we have considered large
scale systems with multiple constant delays. That.is,

EH¥EC, 12234105, PR 14F

the delays hij, 4,7 =1,2,...,r, have been assumed to
be any positive constants. However, by employing the
method presented in this paper, one can easily extend
the results of this paper to such a class of uncertain large
scale interconnected systems with the time—varying de-
lays hq;(t), 4,7 =1,2,...
the delays hy;(t), 4,5 = 1,2,...,r, are any continuous
and bounded nonnegative functions, and their deriva-
tives are less than one, i.e. hij (t) < 1, we can use the
same Lyapunov—Krasovskii functional as the one given
in (15) for the large scale systems with time-varying
delays to obtain similar results.

,7. In fact, if assuming that

Remark 3.4. From linear control theory, we know
that for time—invariant case, A; and B; are two con-
stant matrices and the matrix differential Riccati equa-
tion, given in (8), can be replaced by the much simpler
algebraic Riccati equation of the form

A Pi+ PiAi —]BiB{ P, = —Q; -+ (31)

Generally, it is difficult to find an analytical solution
of the Riccati differential matrix equation given in (8).
However, one may resort to numerical solutions to (8)
by some computer algorithms.

4. An Illustrative Example

Here, a large-scale dynamical system, with delayed
state perturbations in the interconnections, is composed
of three dynamical subsystems described by

i

dx;t(t) _ [_32 _01 Jiﬁl(t)

+ [ é ] (<I>1 (a1 (t)) +§;Au(41,t)%(t*hu))
....................... (32a)

dx;t(t) = [_13 _21 J(Ez(t)

+ [ (1) } (<I>'2 (ta(t)) +§;A2j(c2vt)mj(t_h2j)) |
....................... (32b)

L

+[ i ] (@3 (ﬂg(t?)+§;A3j(c37t)xj(t_h3j)>

........................ (32¢)

where for i € {1,2,3},

Q; (4;) = by, 5 < by

IA
00



and

Aun()=[-1 a@® ], An()=[1 0]
A() =] G) 2]

An() =] —G) &) ], Aga() = [0 Ca(t) ]
An()=[1 G@) ]

Asi() = [ G(t) 20 ], As() = [ G(t) G(8)]
Asz()=1[ G@) 0]

Here, we choose @; as a unit matrix I;, for each
i € {1,2,3}, and from (6) we can also have 70 = ~8
49 = 5. Then, solving the Riccati equations yields

1.433 ~-0.167

Pi=1 T e 33
Y7 0167 0.430 } (33)
p,_ [ 0196 0131 (33b)
>~ 10131 0.954
0166 —0.143
 P3= T (33¢)
| —0.143  1.564

For the decentralized local state feedback controller
given in (10) and the adaptation laws described by (11),
we select the following parameters:

aij =025, T; = diag{s, 3, 3}, i,j=1,2,3

Thus, for large scale system (32) with delayed state per-
turbations in the interconnections, from (10) with (11),
we can obtain the decentralized adaptive robust mem-
oryless state feedback controllers, by which the solu-
tions of the resulting adaptive closed-loop large scale
time-delay system can be guaranteed to be uniformly
bounded, and the states are uniformly asymptotically
stable. ‘

For simulation, we give uncertain time-varying pa-
rameters (;(t), i = 1,2,3, time delays h;;, 4,7 = 1,2,3,
and initial conditions as follows. ‘

(1 =1+ 0.5sin(2t),
¢3 =1+ 0.5cos(2t)

¢2 = 0.5sin(3t)

hig = 1.0, Rhiz =20, hi =30, i=1,2,3
z1(t) = z2(t) = z3(t)

= [3.0cos(t) —3.0cos(t)]—l— te[-3,0]
$1(0) = 2(0) = (0) = [0 0 0]"
by = random[S, 8], i=1,2,3

where b; = random[S, 8] means that b; can take any
value from the interval [ 5, 8] for simulation.
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4 T T
2 ,
o
0 o
/x
_2 ]2 -
-4 t+
1 1 I — 1 L. 1,
0 2 4 6 8 10 12
Time
Fig.1. Response of state variable x1(t).
4 T

-2
_4 -
L1 1 2. 1 1 I
0 2 4 6 8 10 12
Time
Fig.2. Response of state variable za(t).
6 rr T
4 M xa
2
0}
-2 _g X32
_4 -
1 1 1 1 1 1
0 2 4 6 8 10 12
Time

Fig.3. Response of state variable x5 (®).

With the chosen parameter settings, the results of a
simulation are shown in Figs.7 to & for this numerical
example.

It can be observed from Figs.1-8 that the decentral-
ized adaptive robust memoryless state feedback con-
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trollers stabilize indeed large scale interconnected sys-
tem (32) with delayed state perturbations in the inter-
connections, and the states of the resulting adaptive
closed-loop large scale time—-delay system converge uni-
formly asymptotically to zero.

5. Concluding Remarks .

The pfoblem of decentralized stabilization has been
discussed for a class of large scale linear time-varying
systems with delayed state perturbations in the inter-
connections. Here, the upper bounds of the uncertain-
ties in the interconnections are assumed to be unknown,
and control inputs have been represented by the nonlin-
ear functions satisfying the condition of the so—called se-
ries nonlinearity. We have proposed the adaptation laws
to estimate the unknown upper bounds of the perturba-
tions in the interconnections. Furthermore, by making
use of the updated values of these unknown bounds we
have constructed a class of decentralized memoryless
On the basis of the Lya-
punov stability theory and Lyapunov—Krasovskii func-
tional, we have shown that by employing the proposed

state feedback controllers.

decentralized controllers, the solutions of the resulting
adaptive closed—loop large scale time-delay system can
be guaranteed to be uniformly bounded, and their states
can converge uniformly asymptotically to zero.

Finally, a numerical example is given to demonstrate
the synthesis procedure for the proposed decentralized
adaptive robust controllers. It is shown from the exam-
ple and the results of its simulation that the results ob-
tained in the paper are effective and feasible. Therefore,
our results may be expected to have some applications
to practical decentralized control problems of large scale
dynamical systems with delayed state perturbations in
the interconnections.

(Manuscript received October 31, 2001,
March 11, 2002)
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