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In this paper, Universal Learning Networks with Branch Control (ULNs with BC) is proposed. The point
of the paper is to adjust the outputs of the intermediate nodes of the basic network using an additional branch
control network. The adjustment means to multiply the nodes outputs by the coefficients ranging from zero
to one, which is obtained from the branch control network. Therefore, the following are done in ULNs with
BC, (1) the branch is cut when the coefficient of its branch is zero, and (2) multiplication is carried out in
the nodes outputs adjustment when the coefficient takes a nonzero value. ULNs with BC is applied to a
function approximation problem and a two-spirals problem. The simulation results show that ULNs with
BC exhibits better performances than the conventional neural networks with comparable complexity.
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1. Introduction

In buman’s brain, it has been recognized that there
are many special intellectual parts related to mathemat-
ical knowledge, musical knowledge, gymnastic knowl-
edge and so on, and each intellectual part is activated
depending on the action of each knowledge. This is
called “functions are locally processed in the brain ™”.

But commonly used neural networks, especially lay- .

ered neural networks, have the structure with all the
nodes being connected, that is, the connection between
the nodes never changes depending on the input val-
ues. Therefore, functions localization of the networks
can not be realized in the conventional networks. Here,
functions localization means that only parts of the net-
works are activated depending on the input values of
the network.

To obtain such a brain-like model in artificial neural
networks for solving the large-scale real-world problems,
one of the most important things is how to divide a large
problem into smaller and simpler subproblems; and how
to guide the training algorithm to realize the functions
localization. :

In this paper, an artificial functions localized net-
work is proposed using Universal Learning Networks

with Branch Control (ULNs with BC) and it is stud- -

ied why and how much ULNs with BC can improve the
performance of the networks compared to the conven-
tional neural networks. ULNs with BC is composed of
two kinds of networks. One is a basic network, which is
a conventional layered neural network. The other one is
a branch control network, which controls the branches
from the intermediate nodes to the output node of the
basic network in a way that the outputs of the inter-
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mediate nodes are multiplied by the coefficients rang-
ing from zero to one, which is calculated by the branch
control network.

Therefore, ULNs with BC can realize an artificial
functions localized network, where the basic network
is divided into smaller and simpler networks by cutting
some branches of the basic network, when the coeffi-
cients calculated by the branch control network become
zero. The connection or disconnection of the branches
of the basic network depends on the input values of the
network. On the other hand, when the coefficients of
the branches do not take a value of zero, the multiplica-
tion operation in the nodes outputs adjustment plays an
important role for improving the performance of ULNs
with BC.

Modular networks ® ) have similar module struc-
tures to ULNs with BC. But, the structure of the modu-
lar networks is different from the one of ULNs with BC.
While the modules in modular networks are completely
separated, the ULNs with BC has the module structure
where the different modules have the identical nodes
and ‘branches, in other words, the modules in ULNs
with BC are overlapped. In addition, the multiplica-
tion operations exist in ULNs with BC in the case of
non-zero coefficient values like modular networks. Any-
way, the proposed method does not necessarily affirm
that the real brain has the branch control mechanism,
it is just a model for functions localization found in the
real brain.

The remainder of this paper is organized as follows:
In Section 2, ULNs are reviewed briefly, because ULNs
are used to construct a ULN with BC which uses vari-
ous kind of node functions including multiplication. In
Section 3, we present the basic structure and training al-
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gorithm of ULNs with BC. In addition, the reasons why
ULNs with BC have better representation and general-

ization ability than the conventional neural networks -

are also stated in Section 4. In Section 5, we give simu-
lation conditions and simulation results both for a func-
tion approximation problem and a two-spirals problem.
Finally, conclusions are presented in Section 6.

2. Universal Learning Networks

In this section, the structure of ULNs are explained
briefly .

The purpose of ULNSs is to provide a general frame-
work for modeling and control of the complex systems
widely found in the real world. It is generally recognized
that any dynamical system can be described by using a
set of related equations. Depending on prior knowledge
available about the system, the equations may be fully
known, partly known, or totally unknown. To model
such dynamical systems, ULNs consisting of two kinds
of element, nodes and branches, have been introduced.

As shown in Fig.1l, Universal Learning Networks
consist of a number of nodes and branches for inter-
connecting the nodes. The nodes may have any contin-
uously differentiable nonlinear functions in them, and
each pair of nodes can be connected with each other by
multiple branches with arbitrary time delays. Multiple
branches and their arbitrary time delays can be effec-
tive to model the dynamical systems in a very compact
network.

The generic equation that describes the behavior of
ULNSs is expressed as follows:

h;(t) = fi({hi(t — Di;(p))li € JF(j),p € B(i,5)},
{Amlm € M(7)}, {rn(t)ln € N(5)}), (1)
jed, teT,
where
h;(t) output value of node j at time ¢;
Tr(t) value of nth external input varlable at
time £;
- Am value of mth parameter;
b nonlinear function of node j;
D;;(p) time delay of pth branch from node i to
node j;
J set of suffixes of nodes {j};
JF(3) set of suffixes of nodes which are con-
nected to node 7;
N set of suffixes of external input variables
{n};
M set of suffixes of parameters {m}
B(i, 7) set of suffixes of branches from node 4
to node 7;
T discrete set of sampling instants.

The ULNSs operate on a discrete-time basis. Each pair
of nodes 7 and node j may have multiple branches be-
tween them, i.e., set B(4,j) may contain more than one
elements. Functions f;(-) that govern the operation of
the nodes can be any continuously differentiable func-
tions; typically, sigmoidal functions can be employed.
In this case, Eq.(1) can be expressed specifically as fol-

EY¥HC, 122%108, FRl4E

1813

Dy (M) o
#

Diitp) o
L

Dt o
&

/

D0 o

—

&
T Dy

Dy(iBas Dix( 18600

Fig.1. The structure of Universal Learning Net-
works (ULNSs)

lows:
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where
w;;(p) weight parameter of pth branch from
node ¢ to node j;
0; threshold parameter of node 7;
@; slope parameter of node j ;
2j gain parameter of node j.

Therefore ULNs can be recognized as a framework
for modeling more general systems in the sense that af-
ter being processed by each function at each node, the
output signal of the node is transferred to another node
through multiple branches with arbitrary time delays,
then it is again processed by another node with its func-
tion. The static version of ULNs used in this paper is
reduced to a simpler form without feedback loops(see
reference 4).

3. Structure of Universal Learning Networks
with Branch Control

3.1 Basic Structure of ULNs with BC ULNSs
with BC is composed of a basic network and a branch
control network (see F'ig.2). The relationship between
the outputs of the branch control network and the
branches from the intermediate nodes to the output.
node in the basic network is one to one correspondence.
As a result, the output of the branch control network
can control the connection of the corresponding hidden
branches of the basic network with a coefficient of rel-
ative strength. When the coefficient R in Fig.2 takes
zero value, the corresponding branch is deleted from the
basic network, otherwise, the corresponding output of -
the intermediate node is multiplied by non-zero coeffi-
cient R.

In this paper, a commonly used three layered neural
network is used as the basic network to study the com-
parison between ULNs with BC and neural networks,
while a fuzzy inference network is used as the branch
control network, because the localized property of fuzzy
inference networks is used to execute the branch control
effectively. .

To be more concrete, the following notations are used
for the three layered neural network and fuzzy inference



network.

o Neural Network
Supposing a static network whose inputs are h; (i € N)
and output is h,, then,. h, can be described as follows
according to Fq.(1),

hy = E Wiochi R(Zj) 4 py wvvereveennnn (4)
JEJTF(0) ‘
1—e %%
h; = fila;) = G e (5)
oy = Z Wighi 405, oo (6)

where R(Z;) € [0,1] is the coefficient between the in-
termediate node j and the output node, which depends
on the output Z; of the fuzzy inference network.

Here, multiple branches and time delays are not con-
sidered because the neural network is a static network.
As being stated before, the functions localization can be
realized in ULNs with BC by appropriately calculating
R(Z;).

o Fuzzy Inference Network
In this paper, the following fuzzy inference network us-
ing Gaussian membership functions is used.

quQ[fq(h)quﬂjq]

A SRR AT "
Tp-1
fo(h) = capl— (h — ping) I;hq (h uh‘q)]v . (®)
0,(Z;) = emp[_(_?#], ............... (9)
Tiq
where
Z; the output of the fuzzy inference net-
work corresponding to the intermediate
node j of the basic network;
fo(R) membership function of the I'F part of
the ¢th fuzzy rule;
94(Z;) membership function of the THEN
part of the gth fuzzy rule;
h = (hi1, hg,- -+, hx), input vector;
Hhg vector representing the center of the IF
part of the gth fuzzy rule;
Tr ,qu matrix representing the width of the IF
part of the gth fuzzy rule;
Hiq parameter representing the center of
the THEN part of the qth fuzzy rule,
Hjq € [0,1];
032;1 parameter representing the width of the
THEN part of the gth fuzzy rule;
Q set. of suffixes of fuzzy rules.

The most important coefficient R(Relative Strength)
is calculated by Egq.(10) as shown in Fig.3.-
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ZiT %50y . > 70
R(Z))={ 1°% £2z;22; (10)
0 if Zj < Z_;?,
where _
ZJ‘? threshold value to determine whether

the intermediate node j is connected to
the output node of the basic network;

(Fuzzy
—»  Network)
N
Branch Control
Network
D.
—»  (Neural
Network)

Basic Network
Fig.2. Structure of ULNs with BC

Z3

Fig.3. Relative strength R calculated by Z;

Therefore, if Z; < Z?, then the connection between
the intermediate node j and output node of the basic
network is cut, as a result, a functions localized net-
work is reallzed On the other hand, if Z; > Z3, then
the nodes outputs adjustment is done, that is, the out-
put f; of node j is multiplied by R(Z;) as shown in
Eq.(4).

In this case, as being stated later, the multiplication
plays an important role to improve the performance of
ULNs with BC.

3.2 Training of ULNs with BC  As for train-
ing of ULNs with BC, parameters of the basic network
could be trained in the same way as the commonly used
neural networks with supervised learning.

But, as branch connection with a coefficient of rela-
tive strength or disconnection of the.basic network of
ULNs with BC depends on the input values of the net-
work, it is difficult to train the parameters by using the
gradient method like back propagation algorithm.

So, a kind of random search method named RasID
was used to train the parameters of the basic network.
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RasID is an abbreviation of Random Search with Inten-
sification and Diversification, and executes the search
for optimal parameters in a unified manner, where in-
tensified search and diversified search are carried out

iteratively, systematically and effectively using the in--

formation on success and failure of the past search.

Furthermore, as being explained later, it is notice-
able that even though the parameters of ULNs with BC
are trained in the following way, ULNs with BC shows
distinguished performances: (1) only the parameters of
the basic network are trained, (2) the parameters of IF
parts of the fuzzy rules such as ppg and I‘,‘M; are set at
appropriate values in advance, and the parameters of
THEN parts of the fuzzy rules like pjq are randomly
set in [0, 1].

As can be seen later, up, and F;ql are set in such a
way that the whole input space is covered by each IF
membership function f,(h) with an appropriate overlap.

The whole process of the training of ULNs with BC
is arranged as follows:

Step 1 Choose an initial value set for g, l",:ql,
Tjq, Mjg> 7; and ¢j;
Given a threshold value Z7;

Step 2 Choose an initial value set for w;;, 5,
Wjo, and fo;

Step 3 Calculate the output Z; of the branch
control network; (see Eq.(7) — (9))
Compute the relative strength R;(see
Eq.(10))

Step 4 Calculate the output h, of the basic
network; (see Eq.(4) — (6))

Step 5 Train the parameters of w;j;, 0;, wjo,

and 6, using RasID algorithm;
Stop if a certain pre-specified condition
is met, else, go to Step 4.

4. Theoretical Analyses of ULNs with BC

In this section, theoretical analyses of ULNs with BC
are described in term of functions localization and mul-
tiplication processing.

4.1 Effects of Functions Localization The
branch connectivity p of the basic network can be ad-
justed by setting the threshold Z7 at an appropriate
value:

where [ is the number of the connected branches with
a coefficient of relative strength between the intermedi-
ate nodes and output node of the basic network, and
L (i.e.|JF(0)| in Eq.(4)) is the total number of hidden
branches of the basic network. The branch connectivity
p is increased when Z7? takes a small value, and vice
versa.

When functions locally processed networks like ULNs
with BC are used for many applications, it is gener-
ally expected that there exists a connectivity where the
criterion function is minimized like Fig.4. This means

EHFWC, 122%108, FRI4E
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Criterion Function (E)

Connectivity (p) 10

Fig.4. Relation between connectivity and crite-
rion function of the network

that higher performance can be obtained than the com-
monly used neural networks by using the network with
some branches being cut depending on the input val-
ues of the network. This fact has been already verified
by using Learning Petri Network - ) developed in our
laboratory.

The reason why the optimal connectivity exists in the
networks is that it is appropriate to use the compact
partial networks rather than the total big network for
the whole problem. In addition, it can be also stated
that since the compact partial networks have a small
number of parameters, parameter training of functions
localized networks is expected to carry out smoothly.

4.2 Effects of Multiplication Operation In
this subsection, it is discussed theoretically why the per-
formance of ULNs with BC is improved by the multi-
plication operation, that is, by multiplying the output
h; of node j by relative coefficient R(Z;).

Supposing a static network, whose input are h; i € N,
and output is h,, then, the output deviation Ah, caused
by the changes of the inputs Ah = (Ahy, Ahg, -+, AhN)
can be calculated approximately by Taylor expansion
like Eq.(12).

:
%Ahil

Ahy =
0 Ohg1

il1EN

42 Sy _O%ho_ \p A,
2 L La Bhy0hy T2
11EN 12N

a'h
uZ D By iy A

11EN ilEN

Generally speaking, it is recognized that the networks
with high representation ability can train the parame-
ters easily so that the output deviation Ah, can take
any values from small to large when the change of the
input vector Ah occurs.

Therefore, it is said from Eq.(12) that if the higher

. + t2
order derivatives of the network such as 2o 0" ho
Ohi1? Ohi1Bhiz?



1 ..
-+, and %i—f"—éh; can take any values by training the

parameters, the network shows high representation abil-
ity.

The higher order derivatives can be calculated by us-
ing the forward propagation algorithm of ULNs® as
follows.

Pl(k,hii) =

Ohy,

oh

ko,
B_MPI(]’h“)] +

JEJF (k)

where

hi

Shy
Ohi

the output value of node k

if k=
otherwise

L,
0,

|

- 9t2h
P (k h117h12) Oh. 13;;2

JEJF (k)

Shy
Bh;

o' (Fhx)

Py (g, hil):l

p>

JEJF (k)

’—P2 .77 313 hz2>
.7

| a9

O hy

Ohsy -+

Pk, hir, hig, -+, ~ohy

_x l
at=2(

JEJF (k)
ahz3

h'zl)

811 l(ah )

oh.

bhzz—Pl(J’ hzl)]

p>

JjEJF(k

a—m
8 (.77 hzlahz2)

Py(j, hix, hil)J

)

OhaOhis - - Ohy

Ly

JEJF (k)

P (4, hia, hiz, hiz)

aTl—B(
* Ohi0h;3 - -

=

o' (3)
ah'i,l

hi

=)
ahzl 2

Ps3(j, hi1, hi—1, hil)]

up>

JEIF (k)

t(Qhe
Oh

)

-F)l 1(.7, h'le h’t37 "ty h"il)

-Pl I(Jahzlah‘t27 : 'vh"il——l)]
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+ Z [—Pl Jahzlah'LQa"')h’il) - (15)
FEJF (k)
gf?ﬁ in Eq.(13) takes a value of 1.0 or 0.0. There-

fore,- whether P; can take any values from small to
large or not depends on whether in Eq.(13) can
take any values or not. Here after, P1, Py, ---, and B
etc. are used to denote P;(k,h;1), Pa(k, hi1, he), -+,
and Py(k, hi1, h z2, -, hi) etc., respectively. "

o) in Eq.(14) can be expressed by

In addition,
P], if
that case whether P, in Eq. (14) can take any values or
not also depends on whether 2k« ah can take any values or
not. Likewise, it is clear from Eq.(15) that whether —g—}hﬂ;—

can take any values or not is essential to study whether
P, can take any values or not.
Let us study the following sigmoidal function:

h
3h.

%{ﬁ is a function of the nodes . Therefore, in
7

1— e %rok
h = zkm’ ...................... (16)
ay = Z Wikhg 4 Ope wveeeeeeen (17)
JEJF (k)

In fhis case, the following holds:

Ohi _ wikPrzk hy
- = IR (1 — (_)2). ..............
Bh] 2 Zk
Therefore, even when |w;|, ¢x and zj are set at large
values, it is difficult to train the sigmoidal network so
that |3—h’i| takes any value, because |ay| should be small.

Therefore, 2
Bh;

large in the sigmoidal networks.
On the other hand, when the following multiplication
operation is carried out in the nodes,

can not take any values from small to

hi = 2k H (hjr —wirk) + O wevvvene (19)
JEJF(K)
then,
Oh
R H (hjr —wjig) =eeeees (20)
Oh; ) )
J'E€JF(k)~j
holds.

As a result, it is clear from Fq.(20) that ‘—g%;ﬂ can take

any values in the network with multiplication.
5. Simulations of ULNs with BC

Simulations were carried out by adjusting the thresh-
old Z7 in order to study the fundamental characteristics
of ULNs with BC, that is, to study whether there exists
an optimal connectivity as shown in Fig.4, even when
parameters p;, € [0,1] of the fuzzy inference network
are randomly set. :

5.1 Simulation Conditions  The parameters of
the membership functions of the IF parts of the gth
fuzzy rules f,(h) are fixed in such a way that the in-
put space of the network is appropriately covered with
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Fig.5. Membership Functions of IF part

Yaptewon

()

(®)

Fig.6. The training inputs and testing result for
function approximation: (a) shows 256(16 x 16)
training inputs and (b) shows an output result by
using 441(21 x 21) test inputs, which are different
from the 256 training inputs.

5 fuzzy rules as shown in Fig.5.
Here, two dimensional input space is supposed.

(0.25, 0.25), (0.25, 0.75), (0.75, 0.25),
(0.75, 0.75), (0.5, 0.5)

Hhgq

I‘,:ql is a diagonal matrix with its element being ﬁ,
0jq is equal to 1.0, and pjq is a random value in [0, 1],
which will be fixed during the whole training process .
Therefore, it is clear from Eq.(7) — (9) that 0 < Z; <1
holds.

As being stated before, it is a distinguished point of
ULNs with BC that ULNs with BC is expected to have
higher representation and generalization ability than
commonly used neural networks even when p;, € [0,1]
is randomly set.

5.2 Function Approximating Problem In
order to study the characteristics of ULNs with BC
for a function approximation problem, the simulation
is executed by using the following two dimensional
function approximation problem which is defined on
0<z<1,0<y<1 (see Fig.6(a)).

THHC, 1225108, FR4E
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Flz,y) = 0.5(0.475((1.35 + e®sin(13.0(z — 0.6)?) -
e Ysin(Ty)) — 2.5) — 0.2)

The training inputs set contains 256(16 x 16) data
patterns, and the testing inputs set are composed of
441(21 x 21) data patterns, which are different from the
256 training inputs.

The basic network is a three layered neural network.

The parameters of the basic network are initialized
with random numbers.

Fig.7. Connectivity shown by input space with re-
gard to each intermediate node when Z7 is set at
0.4 (The number under each small figure represents
the number of the intermediate nodes in the basic
network)

Fig.6(b) shows one of the output results of ULNs
with BC after 500 000 epochs training of the basic net-
work with twenty intermediate nodes, when the thresh-
old value Z7 is set at 0.2, in this case the connectivity
p = 86.31% is obtained by counting the number of con-
nected branches. ,

Comparing Fig.6(a) with Fig.6(b), it can be seen that
the function is well approximated by the proposed net-
work. The Mean Squared Errors(MSE) of training is
3.48 x 10~* and the MSE of testing is 3.80 x 1074

F'ig.7 shows an example of the states of the connec-
tion and disconnection of the branches from twenty in-
termediate nodes to the output node in the basic net-
work respectively, when Z7 is set at 0.4, in this case the
connectivity p = 59.38% is obtained by counting the



Table 1. Mean Squared Errors (MSE) for Differ-
ent Thresholds Z7

(The number of hidden nodes: 20)

Z2 ONN[00 o1 |02
P 1.00 | 1.00 [ 0.95 | 0.88
MSE (x10~%)(Training) | 3.96 | 3.20 | 3.31 | 3.80
MSE(x10~%)(Testing) | 4.32 | 3.39 | 3.47 | 3.99
z2 0.3 [04 [05 |06

p 0.79 | 0.63 | 0.51 | 0.35
MSE(x10~*)(Training) | 4.16 | 5.00 | 5.82 | 10.24
MSE(x10~%)(Testing) | 4.36 | 5.27 | 6.39 | 10.83

“ Thw rwmber of the kiternwdmle nodos 20

Criteddon Function (x10* )

(Y] aa [ 06 07 [

Conrmenulty

, Fig.8. Mean Squared Errors for different thresh-
olds Z7 :
(The number of hidden nodes: 20)

number of connected branches.

The dotted parts stand for the connection, i.e., R #
0.0, while the white parts show the disconnection shown
by input space (z, y).

It is shown in Fig.7 that some areas in the input space
(,y) correspond to the connection of the branches from
the intermediate nodes to the output node, while other
areas correspond to the disconnection, although the
shape of areas is different branch by branch. According
to this, one can say that the functions localization is
realized by ULNs with BC.

Tab.1 and Fig.8, Tab.2 and Fig.9 show how the
performance and the generalization ability of the pro-
posed network change as the connecting rate p varies
by adjusting the threshold Z7 (They are the average
results over 10 times for each threshold value). Here,
the threshold value Z3 described as ONN in T'ab.1 and
Tab.2 corresponds to an ordinary neural network, that
is, ULNs without branch control meaning R(Z;) = 1.0
and the threshold value Z3 ranging from 0.0 to 0.6 cor-
responds to ULN with BC, i.e., the relative strength
R(Z;) is calculated by using Eq.(10).

From the results, we can see that ULNs with BC owns
better performance and generalization ability than the
ordinary neural network.

53 Two-Spirals Problem Learning so that
two spirals apart should.be classified is a neural net-
work benchmark task . Each of the two spirals of
the benchmark task makes three complete turns in the
plane, with 32 points per turn plus an end point, total-
ing 97. During one epoch, the outermost circle point is
presented first, then the outermost star point, and so on,
working into the center of each spiral. Specifically, the
training set exemplar sequences (a(¥), b)), (a(®, b(2)

1818

Table 2. Mean Squared Errors (MSE) for Differ-
ent Thresholds Z7

(The number of hidden nodes: 50)

z2 oNN [ 0.0 |01 |0.2

o 1.00 | 1.00 | 0.94 | 0.89
MSE(x10~%)(Training) | 3.21 | 2.27 | 2.12 | 2.14
MSE(x10~%)(Testing) | 3.51 | 2.43 | 2.25 | 2.33
Z2 03 [04 [05 |06

) 0.77 | 0.64 [ 0.527 0.35
MSE(x10~%)(Training) | 2.36 | 2.27 | 2.93 | 3.54
MSE(x10~?)(Testing) | 2.56 | 2.43 | 3.38 | 3.83

Tha manbur of the Intenrudude nodex 20

@——8 Trwirang Esvor
» —— o Toutrg

Emer

o ~ - © 3

Crterlon Furevon (x10¢ }

o

03

Fig.9. Mean Squared Error for different thresh-
olds Z7
(The number of hidden nodes: 50)

-+, with a® = (a{?,a’) € R? and b® = () € RY,
are given by the following equations. Forn = 1,2, ---, 97,

a?™ D =1-6aP =1 sina, 4+ 0.5, -+ (21)
P S al™ = 1, cosam + 0.5, «---en (22)
\;xrhere
105 —n
rn = 0.4 (.TM_> ) reetrerereeereiienas (23)
w(n—1
e TN -
br‘)n_l =1 [circle], ....................... (25)
and
b2n = O [Star]_‘ ........................ (26)

The data set consists of 194 points belonging to two
interspersed spiral-shaped classes, with 97 samples for
each class (Fig.10).

The task is to construct a classifier able to distin-
guish between the two classes. Lang and Witbrock v
constructed a back-propagation system that learned to
distinguish points on the two intertwined spiral. They
reported this task could not be accomplished using a
standard three layered network, and had to use addi-
tional connections to achieve convergence. 19 (12)~116)

Here, the proposed ULNs with BC is used to com-
plete this task. The simulation condition is the same as
the function approximating problem.

Also, the basic network is a three layered neural net-
work but with the number of the intermediate nodes
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Fig.11. An output result by using test inputs for
the two-spirals problem

being -100. And the testing inputs set consists of
2601(51 x 51) data patterns, which is different from the
194 training inputs.

Fig.11 shows one of the output results of ULNs with
BC for the two-spirals problem after 10% epochs train-
ing, when the threshold value Z? is set at 0. 3, in this
case the connectivity p = 81.43% is obtained by count-
ing the number of connected branches in the basic net-
work. The Mean Squared Errors(MSE) of training is
equal to 0.0173.

From F'ig.11, we can see that the two intertwined spi-
rals can be clearly separated, while this result is hard
'to obtain by an ordinary neural network with full con-
nections Y.

Tab.3 and Fig.12 show how the performance of ULNs
with BC changes as the connectivity p varies by adjust-
ing the threshold Z2? (They are the average results over
6 times for each threshold value).

From our results, one can see that ULNs with BC has
better performance and generalization ability than an
ordinary neural network, because it can fulfill the clas-
sification task for the two-spiral problem even if there is
only one intermediate layer in the network. It is clearly
stated that ULNs with BC has the tendency to have op-
timal connectivity, around which the best performance
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Table 3. Mean Squared Errors (MSE) for Differ-
ent Thresholds Z7

(Two-spirals Problem)

Z? ONN 0.0 0.1 0.2
p 1.00 1.00 0.99 0.94
MSE | 0.0419 | 0.0333 | 0.0295 | 0.0306
zZ |03 0.4 0.5 0.6
o 0.84 0.68 0.54 0.35
MSE | 0.0174 | 0.0151 | 0.0198 | 0.0218
“The numbet of the intermediale nedes. 100
0.048| mw\.
0,041
0035)
3o
EGMS
o0
bs ] 2% as a7 e m 1
‘Connactivty
Fig.12. Mean Squared Error for different thresh-
olds Z7

( Two-spirals problem)

is obtained like Fig.4.
6. Conclusions

In this paper, a new type of functions locally pro-
cessed network named ULNs with BC is proposed. It
consists of two kinds of networks such as basic network
and branch control network. The branch control net-
work can control the branch connection and disconnec-
tion of the basic network with a coefficient of relative
strength, depending on the input patterns in the input
space. From our simulation results, it has been clarified
that ULNs with BC owns better performance and gen-
eralization ability than an ordinary neural network and
also there exists an optimal connectivity where the best
performance of the network can be obtained. Even for
the well-known “two-spirals” benchmark problem, the
samples can be classified correctly by ULNs with BC
only with one intermediate layer in the basic network,
although the same results can hardly be obtained by an
ordinary neural network as many scientific researchers
showed. It means that commonly used neural networks
are not always the best in terms of their architecture.
This fact is not well known in the neural network com-
munity.

(Manuscript received April 20, 2001, revised June 7,
2002)
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