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Partial discharge (PD) monitoring system by UHF (Ultra high frequency) method has high sensitivity and high S/N ratio.
This UHF PD monitoring system is suitable for PD diagnosis of GIS. Calibration technique of highly sensitive UHF sensor was
clarified by injecting the artificial PD pulses. PD sensitivity of each sensor was verified and calibrated results were fully
satisfactory. PDs were simultaneously measured with both the conventional method described in IEC-60270 and the UHF PD
monitoring system by using many kinds of PD sources and various tank sizes. Owing to this measurement, conversion of dBm
units in UHF PD monitoring system to pC units (apparent charge) became possible and it was clarified that the conversion
curve was independent of PD sources and tank size. These characteristics were confirmed by the theoretical analysis.
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Introduction

1.

Higher reliability is demanded with gas insulated apparatuses
such as gas insulated switchgear (GIS) and gas insulated circuit
breaker (GCB). Since gas insulated apparatuses are closed
structure, it is difficult to find internal defects from outside.
Therefore, development of a preventive maintenance technique is
necessary for GIS to prevent failures and to detect defects early.
Detection of PD is effective for these purposes . PD signals in
SF;, especially, have a frequency component of high and wide
bandwidth (UHF region), which is more than a few hundred Mz
®® We have developed the UHF method diagnostic system
which uses the neural network to improve the reliability of GIS ©.

UHF partial discharge monitoring system (UHE PDM) has
become popular for PD diagnosis of GIS in recent years, and has
been regulated as one of the PD measuring methods in TEC-60270.
Many experiences were reported to clarify its performance ¢% .
For accurate diagnosis, extremely high sensitivity of sensors and
proper algorithms for PD assessment are necessary. Moreover, PD
is measured in dBm units by UHF PDM, which is quite different
from the conventional pC unit (apparent charge). The conversion
between dBm and pC is demanded to help understanding of PD
severity.

The present paper describes the sensitivity and calibration of
UHF internal and external sensors. UHF PDM is experimentally
compared with a conventional PD measuring system described in
IEC 60270 and the obtained pC - dBm relationship is theoretically
discussed.

2. Highly Sensitive UHF Sensor

High sensitivity UHF sensor is required to measure PD in detail
by the UHF method. The UHF sensor used for this measurement
is explained below. ‘

2.1 Internal UHF Sensor The new internal UHF
sensor consists of two half-disc plates ©) Their size and
arrangement were optimized based on dipole antenna technology.
Sensitivity was greatly enhanced and directivity was negligible.
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Minute PD can be detected with this UHF sensor. Figure 1 shows
examples measured in coaxial electrodes of 60/250 mm diameter.
3-mm long particle could be detected with sufficient intensity and
S/N ratio even in the case where a particle was attached on a
spacer. Sensitivity of the new UHF sensor was confirmed to be
0.3 pC (apparent charge) at S/N=3 and 0.1 pC at S/N =1 (Fig. 2).
The dBm value was measured by spectrum analyzer. Signal
Intensity dBm define the maximum amplitude of frequency region
from 500 MHz to 1500 MHz. Noise level define the magnitude of
back ground noise which consist of white noise of measuring
apparatuses or external noise.
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_Fig. 1. Frequency spectra of PDs in 3 cases

T. IEE Japan, Vol. 122-B, No.11, 2002



Sensitivity Calibration of UHF PDM System
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Fig. 2. Sensitivity of developed UHF sensor

The pC value was measured at the same time with a conventional
method according to IEC-60270. ‘

2.2 External UHF Sensor The external UHF sensor
was designed to be fitted around the outer surface of a spacer. As
part of UHF waves emitted from PDs leak through the outer edge
of a spacer and its intensity is usually small, the structure of the
sensor was designed based on the antenna theory to obtain high
sensitivity. The developed sensor has the sensitivity of 2 pC at S/N
=3 (Fig. 2).

3. Sensitivity Verification

The artificial PD pulse for sensitivity calibration of the UHF
sensor was described in the document CIGRE TF 15/33.03.05 an
Tests were performed with a bus model of 100/400 mm diameter
(figure 3 (a)). The response characteristics of UHF sensors were
measured by injecting the artificial PD pulse (the rise time: 0.5 ns,
the time to half-value: 30 ns) from one UHF sensor and the value
of the UHF signal was measured at the other sensor. The pulse
magnitude was equivalent to an apparent charge of 5 pC. Fig. 3 (b)
and (c) show the typical spectra measured with the internal and
external sensors. PDs were generated at the vicinity of the sensor
by using a 5-mm long particle, and the measured spectrum is
shown in Fig. 3 (e). Equivalent spectra were obtained from 500 to
1500 MHz

Next, instead of the artificial PD pulse, a white noise
(equivalent to an apparent charge of 5 pC) was injected from the
tracking generator and the signal was measured. The near
spectrum pattern was obtained (Fig. 3 (d)). This means that the
white noise method is applicable for sensitivity verification.

Sensitivity evaluation- of each UHF sensor of extra
high-voltages GIS was performed using artificial pulses and white
noise signals as outlined in Fig. 3 and show the maximum of each
UHF sensor in Table 1. The variation in output value of a sensor is
less than several dB, with all sensors being found normal after
checking. ‘

Moreover, the propagation characteristics of the electromagnetic
waves between sensors were investigated. Since attenuation
characteristics of GIS components is known, the total amount of
attenuation can be calculated between sensors. We checked that
the measured and calculated values of the amount of attenuation
between sensors were in agreement. As it turned out, the same
results were obtained and both can use artificial PD pulses and
white noise signals for calibration of UHF sensors built in GIS.
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Fig. 3. Frequency spectra for artificial pulses and PD
Table 1. Calibration results for UHF sensor
Average value —30.93 dBm
Max value —29.57 dBm
Min value —32.50 dBm
Standard deviation 236 %

Input signal: artificial PD equivalent to 5pC

4. Relationship between pC and dBm

PDs are usually measured using a conventional instrument
based on IEC-60270, and estimated by the amplitude of PD charge
(pC). Since measurements are made for a low frequency band of
several 100 kHz - several MHz in the case of the conventional
method, we must prevent the penetration of noise from the power
supply and external side. Although it is possible to do this for
examinations in a fully shielded laboratory, it is difficult in actual
substations. However, the UHF method, which has excellent
sensitivity and S/N ratio, now serves as the global standard.
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4.1 Experimental method Figure 4 shows the
measuring circuit for pC - dBm conversion of PD magnitude.
Various PD sources were placed in the coaxial cylinder electrodes
of 60/250 mm diameter. Both the discharge detector by
conventional instrument based on IEC-60270 and the UHF PDM
system were connected to the calibration circuit. PD sources
included prot_ruéion, free metallic particle, particle on spacer, void
in spacer, etc. PD signals were measured simultaneously by both
measuring systems.

Moreover, we also investigated the tank diameter dependability
of pC - dBm conversion with tank diameters in the range of 250 -
850 mm. '

4.2 Experimental Results PDs were generated using
typical PD sources in SFg insulation. PDs were measured
simultaneously by both detectors. Figure 5 shows examples of
measured results for free metallic particles. Figure 5 (a) and (b)
show frequency spectrum and phase spectrum measured by UHF
PDM system, and (c) and (d) show phase characteristics, and ¢—q
characteristics measured by the conventional system. Comparing
(b) and (d), it can be observed that the phase characteristics are
almost identical. In this case, the magnitude, g, of the PD pulse
was 17.7 pC by the conventional method, and -27.6 dBm by the
UHF PDM system.

Figure 6 shows examples of frequency and phase spectra for
various defects. Here, we can observe which applied voltage phase
PD generated the phase spectrum. In fact, results showed that the
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PD pattern was different for each defect. Since the output in the
UHF method is measured in dB units, in order to judge the risk of
defects, we must convert these units pC units currently used from
the former. Figure 6 shows (a) —49 dBm at ¢ = 0.6 pC, (b) —50
dBm at ¢ = 0.5 pC, (c) ~48 dBm at g = 1.8 pC. Thus, dBm values
were calibrated as pC values for various defects. Figure 7 plots the
magnitude g (pC) of PD charges by the conventional method and
the maximum intensity (dBm) of 400 - 1500 MHz by the UHF
method. In Fig. 7, a remarkable difference for various defects was
not observed. Even for different kinds of defect, measured data
converges well to a single curve. This curve can be expressed by
equation (1).

(x+50)/20

q=10

That is, pC is easily converted from the measured dBm value from
equation (1).
Figure 8 shows pC - dBm characteristics of various tank sizes. It

is clear that even if the tank size changes, the relationship between
pC and dB converges well to a single curve. No dependency on
tank size is observed. The relationship between pC and dBm can
be expressed in equation (1).
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4.3 Theoretical Analysis of dBm-pC Conversion PDs
are generated in a minute space where electric field exceeds the
discharge initiation field strength, and the real charge of PDs is
determined by the capacitance of this minute space. However, the
magnitude of real charge cannot be measured. Therefore, apparent
charge g, which moves due to the capacitance between high
voltage electrode and grounding electrode, is measured. Since the
minute space is small sufficiently compared with the space
between electrodes, g is inversely proportional to the tank
diameter » ®_ Apparent charge, g,is expressed by the following
equation.

As the tank diameter increase, the apparent charge decreases, even
if the real charge remains constant.
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GIS structure is positioned in the coaxial cylinder wave-guide in
the environment of an electromagnetic wave. The coaxial cylinder
wave-guide is a special form of wave-guide, and three modes of
TEM, TE, and TM exist 9. Their radial component F,, and
rotational component £, in TE,, mode are given by the
following equation; L

E, _MZm(M]sinmgéeW ‘
r b
L e @)
- ! Smnr ¥z
E, —]a),wnCZm(——b—jcosmqﬁe

’

where ®=27f, M is permeability, Z, (x)= 47, (x)+ BY, (x)
in which J,(x) is the first kind Bessel function, 7,(x) is the
second kind Bessel function of the m’th order, and 4, B, and C are
constants determined by the boundary conditions. Since the

propagation mode generally becomes stronger than the next low

mode, evaluation is performed in the TE,;; mode. Figure 9 shows
the electromagnetic distribution E, in the GIS tank. In this figure,
the horizontal axis shows frequency and the vertical axis shows
electrical field distribution in the radial and the rotational direction.
The electric field is stronger near the conductor than on the tank.
As the sensor is usually fitted at the tank wall position, £, and

are obtained at » = b in eq. (3). E, is inversely proportional to b
and £, isindependent of b.

Figure 10 shows measured frequency spectra for different tank
sizes. Even for the same PD, when tank sizes differ the signal
output changes. Figure 11 shows calculated values from the
electromagnetic wave analysis by equation (3), the calculated
values of apparent charge by equation (2), and measured results.
The vertical axis was expressed as dB value for comparison. It is
clear that these three lines coincide well with each other. That is, |
even if the size of real charge is the same, when tank size
increases, the apparent charge decreases and the signal output
becomes smaller at the same rate. This means that one universal
curve is applicable even when different tank sizes are used, as
shown in figure 7.

5. Conclusions

UHF PDM system has advantages of high sensitivity and high
S/N ratio. Firstly, we clarified the calibration method of the UHF
sensor. By injecting the artificial PD pulses of rise time of 0.5 ns,
it was confirmed that the same characteristics as actual PDs are
acquired. Next, conversion of dBm to pC was investigated
experimentally and theoretically to help understanding of severity
of PDs. It was clarified that relationship between dBm and pC is
independent of different PD sources and tank size, and can be
expressed in the universal curve.

(Manuscript received August 27, 2001, revised April 24, 2002)
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