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A modeling and control method for a class of nonlinear systems whose dynamics depend on a process variable is presented.
Two ExpARMAX (exponential ARMAX) models, a type of global NARMAX (nonlinear ARMAX) model are used to develop
a multi-step predictive control algorithm which does not use on-line parameter estimation for the nonlinear system. One
ExpARMAX model is used as the internal model of the predictive controller, and the other is used to predict future values of
the measurable disturbances used in the predictive controller. The global ExpARMAX models only require off-line
identification, and their local linearization forms are similar to linear ARMAX models. Case studies taken from a selective
catalytic reduction (SCR) process for the reduction of Nitrogen Oxide (NOx) emissions of thermal power plants verify the

effectiveness of the method.
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1. Introduction

In practical control problems, there is a class of nonlinear
processes where the dynamic characteristics described by static
gain, zero, and/or pole efc. depend on some process variable. If the
variable is used efficiently, a more suitable model and control may
be built for the process under study. In some industrial processes,
it is not hard to find which variable caused the nonlinearity. For
example, in thermal power plants, a signal called load demand
causes the steam temperature response process and the SCR
process to be nonlinear. In these processes, the relations between
the input, output and exogenous variables may be treated as linear
at certain fixed load levels or operating points, but at different load
levels the linear relations are not the same, i.e. the gain, poles and
zeros of the processes vary with the load level. This paper
considers the modeling and control problem for such a class of
nonlinear systems.

In the general nonlinear modeling framework, the time-varying
linear model resorting to on-line parameter estimation usually uses
a local linearization model for describing smooth nonlinear
dynamics, especially in process control. If the operating-point of
the process changes quickly, as happens in the SCR process, the
model/plant mismatch may become very large because of the limit
of convergence velocity in on-line parameter estimation. In the on-
line estimation case, also, sometimes a suitable additional noise
has to be added into the plant in the case when the plant dynamics
are sufficiently exciting. This may not be acceptable for reasons of
safety and reliability.

If a nonlinear system is BIBO stable, and thus may be
approximated by a linear model around the operating point, then it
can be described by a global NARMAX (nonlinear ARMAX)
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model® . The NARMAX model may represent a large class of
nonlinear systems when necessary smoothness conditions are
satisfied. However, the problem is how to construct a NARMAX
model that may be conveniently estimated and be used to design a
control algorithm. Johansen and Foss® discussed a method of
constructing a global NARMAX model using a set of linear
ARMAX models. In this way, the local ARMAX models valid
within certain operating regions are interpolated to construct a
global NARMAX model. Prasad et al.®) applied the method to
control thermal power plants. The load demand which results in
system nonlinearity is used as a parameter, not contained in the
models, which is used to switch among different plant models
identified at different load levels. Although standard system
identification algorithms can be used to identify the NARMAX
model in that scheme, the identification of those local linear
ARMAX models may be quite expensive of experiment time and
cost in an actual application.

Before the idea of NARMAX model was presented, a nonlinear
system local linearization method based on the exponential auto-
regressive models had been proposed. Although the exponential
auto-regressive models are a special type of NARMAX model,
miany studies have shown that the exponential auto-regressive
models are important tools for analyzing nonlinear phenomena.
The several versions of the model built on the idea of exponential
auto-regression models have been applied in different types of
nonlinear time series analysis, such as the machine tool chatter
analysis®, among others. In process control, such as the
temperature control of thermal power plants, there have also been
applications®?,

In this paper, modeling and predictive control based on two

. global exponential auto-regressive-type models (ExpAR-type

1940

models) which do not use on-line parameter estimation are
investigated for a class of systems with nonlinearly measurable
signal dependent dynamics. One ExpAR-type model is used as an
internal model for the proposed predictive control algorithm, and
the other is built to predict the future values of some process
variables treated as disturbances in order to improve control
performance.. The measurable signal resulting in system
nonlinearity is introduced into the ExpAR-type models, so that the
models may change their inherent characteristics to describe the
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system dynamics at a new operating-point.

The generalized predictive control (GPC) algorithm® which uses
on-line parameter estimation is effective in coping with some of
the smooth nonlinear systems which may be modeled by using
slowly time-varying linear model. In some of the nonlinear model-
based GPC algorithms, it is very hard to represent the multi-step-
ahead predictions of output as a linear formula of the future inputs.
The result is that the optimal control may not be obtained easily®.
Using the proposed nonlinear ExpAR-type model as an internal
model to design a multi-step predictive controller may avoid the
above problem. In this paper, some of the beneficial properties of
GPC i.e. rolling optimization (on-line optimization), muiti-step
prediction based on an internal model and feedback correction will
be applied to design a multi-step predictive controller. The goal is
to avoid the problems which result from the on-line estimation of

time-varying parameters, and -to obtain satisfactory control’

performance.
2. Nonlinearity Caused by Process Signal

An example of a nonlinear system is provided by the SCR
process in thermal power plants. This is a typical nonlinear system
with nonlinearly measurable signal-dependent dynamics. The
purpose of SCR process control is to reduce the NOx
concentration in exhaust gas from the boiler of a thermal power
plant by injecting a chemical reducing agent, NH3 gas, into the
SCR device for protecting the environment. The diagram of the
SCR device and control system configuration is shown in Fig.1.
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Fig. 1. A diagram of a SCR device and control system.

The main variables in a general SCR process'” and the proposed
predictive controller as is shown in Fig.1 are as follows
*¥(?) : outlet NOx concentration which is the variable to be
controlled;
u(t) : the output of proposed predictive controller;
*m(?) : load demand causing nonlinearity;
v (f) : disturbance, inlet NOx concentration;
*v, (7) : disturbance, existing PI controller output;

*v3(2) : disturbance, fuel flow;

v, (7). disturbance, air flow.

The control performance of the existing feedback PID controller
plus feedforward compensator is not satisfactory because of the
effect of the larger time-delay (about 120 seconds) of the NOx
analyzer and the load-dependent non-linearity, especially during
larger load variation. Only under PID control, larger oscillations
may occur in  y(f) around the set-point, so that too much of the
expensive NH3 gases (input) have to be injected, resulting in an
increased running cost. In general, improving control performance
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can reduce the consumption of NH3 gas.

At certain fixed load levels or operating points, the dynamics of
the SCR process may be described using a linear model.
Considering the system structure in Fig.1, a linear CARIMA
model may be used to describe the process dynamics at some fixed
load level as follows

A(GHy(t)=B(g  Yu(t—ky)+Dy(g Wi (- 1)
+B(q Wy (1 - kg) + D3(q Hvs (1 ky)
+ Dy (g Wyt —kyg) +C(g HEDA

here A, B, Dy, D3,D,, and C are the order
ko, ky, kg,kz3,k54, and k, polynomials in the operator g~
respectively; the first element of A and C are 1; £is a white
noise, A is the difference operator (1—¢ '), and k,is pure time-

delay. A set of identification experiment data (sampling period
10s) is used to identify model (1) off-line by means of the iterative
Gauss-Newton algorithm™Y (IGNA) which is realized by the
function ‘armax’ in the MATLAB System Identification Toolbox.
The unit-step response, the static gains, and the pole/zero
distribution maps of the SCR process obtained at three load levels
are showed in Fig.2-4.
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Fig. 2. Unit-step-responses of SCR process; the static gains
are -1.32(660MW), -1.90(365MW), and -2.14(225MW) ;
k,=10, k,=12,and k, =k, =k, =k, =k =10.

Fig.2 clearly shows quite considerable changes in static gain on
the unit-step response at different load levels due to non-linearities.
The steady-state gain and step-response sequences monotonously
vary with load. The poles and zeros of the process also vary
remarkably with load level as is showed in Fig.3 and 4. Therefore,
the nonlinear properties of the SCR process are due to variation in
static gain and dynamic characteristics at different loads. The
temperature control process of thermal power plants has also
shown similar nonlinearity®.

3. Local Linearization Appi‘oach

(3-1) ExpARMAX Model Based on the nonlinear
modeling framework using exponential auto-regressive model™,
we propose a global ExpARMAX model which only requires off-
line identification to characterize a class of SISO smooth nonlinear
systems with nonlinearly measurable signal dependent dynamics
as illustrated in Section 2 as follows '
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here, v R is the disturbance vector and D is the related vector
m(t) is the signal causing system nonlinearity,
¢, and @, arethe constants, A, and A, are the scaling factors,

polynomial,

and m, is the center point.
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Fig. 3. Poles of the SCR process described by model (1) at
some load levels.
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Fig. 4. Roots of the control polynomial B(q'l).in model (1)
at some load levels.

Remark 1: The variable m(f) causing nonlinearity is introduced
into the coefficients of A4, determining inherent dynamics and

B, affecting dynamic response, so that the model may
characterize the nonlinear dynamics caused by the change of the

signal. The varying zomes of the coefficients are
a€[9,(0),9,(0)+¢,(],b€lp,(0),0,(0) +o,(D]. ¥ m(l)
is fixed at some specific time, model (2) gives a locally linearized
description of the system at the operating-point.

Remark 2: Model (2) may be regarded as a kind of linear
parameter-varying (LPV) model in some cases, but it may describe
more complicated dynamics than a general LPV model if we let
m(t) be y(f), or u(t), or their compositions. Besides, some
LPV-style models" require on-line parameter estimation, with all
its attendant problems. To avoid such problems, all the parameters
of model (2) are estimated off-line.

(3:2) ExpARX Predictor - In a general multi-step
predictive control algorithm with measurable disturbances, the
influence of the future value of disturbances to control
performance is usually not considered. Actually, it is important
that more accurate future values of disturbance variables are
obtained to improve control performance. Therefore, the following
ExpARX model which only requires off-line identification is
constructed as a predictor of disturbance variables

D, (g7 )z(t) = Dy (g a(t —kg) + (D)
where

z(f) = Av(t)/C(q™V)
D,(q ") =diag{®, (g7, P (g™}

0 D) o Dyl )
v | @op(g7! 0 @, (q "
®b(q 1): Zlb:(q ) : Zlb:(q )
D@ @pp(ah) 0

(D;a (qil ) =1+ ¢ia,] qil +eet ¢ia,kp q—k,,
(ng (q-l) = ¢yb,1 + rjb,zq_l tret ¢qb,kp q_ka

P,(q)=0  1,j=12:]

— - 2
b = o )+ (e o)
+ ¢, ~(2)e_’tf“:2(Am(t)_mlﬂll)2
ia,j
Am(t)y=m(t)—m(t—-1)

=12,k j=120k,

_ - 2
¢i,6b, = ¢iiBb, 7 (0) +¢i’,6’b, J (l)e Fai (n(®) 1)

' D 2 (Am(O) =2 1Y
+dipp,;(2)e Ha2 (A1)~ )
i=12---1; ﬂ:l,Z,.'.-,l; j:1’2"">kp

Assume (1)< R in (3) is an independent white noise vector.
After identifying model (3) off-line, the multi-step-ahead
prediction of the measurable disturbances can be computed on the

. basis of the estimated model as follows

1942

2+ 1=~ D, (g e+ jlo)
+ @y (g7t~ ky + jD)

2t +k|H=2(t+k) if k<0, j=12N,

Remark 3: The variable m(f) causing nonlinearity is also
introduced into the predictor so that it describes the nonlinear
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2
dynamics. The exponential factors ¢ rar(mB-@a1)” 3)

introduce a message about the system operating-point into the

o, 5 ) .
predictor, and the factor ¢ a2 (AmD~0a2)" akes the predictor

express the effect caused by the varying rate of operating-point.

(3-3) The Hybrid Identification Algorithms (HIA)
Identification of model (3) is a nonlinear optimization problem,
since the parameters to be estimated include the nonlinear factors
of the exponential functions. Although model (3) only requires
off-line identification, it must be identified using the input-output-
data covering the whole operating range of the system. The
classical nonlinear parameter optimization methods, such as the
Gauss-Newton method, estimates all parameters simultaneously
regardless of the properties of the parameters, expending too
much computation time. A hybrid identification algorithm may be
used to estimate model (3) as follows.

Variable rotation methods (VRM):

For model (3) without parameter constraints, define
0,=(4,,(0),4, (1), (2),) the linear parameter-set of the

model, and 8, =(4,,, 4., 0.,,0,

1> Aa2> D1, Py p,+++) the nonlinear parameter-
set of the model. The following procedure is used to identify all
the parameters:

(1) Determine the model order

Fix 6, from prior knowledge. Use IGNA in Section 2 to
estimate 6, and to compute FPE (final predictive error) at various
orders. The suitable order is that with smallest FPE value.

(ii) Estimate 6, and 6, in turn

Take a suitable termination tolerance J,

e,mm

of the quadratic
estimation error function J,(6,,6,), so that the estimation

terminates within reasonable time:
(A1) Fix 6, . Use IGNA to estimate 6,

6, —argmmJ( ,6,) . If J,(6, n)< J, mm » then terminate

), yielding

the estimation procedure, else:
(A2) Fix 6,. Apply the trust region method!? Arpendi n to

estimate ., yielding

0, =arg m]_n-]( ,6,) . If J,(6,,0,)<J, .., then terminate

the estlmatlon procedure, else go back to Al).
In (Al), estimating 6, is equivalent to a linear system estimation

problem. In (ii), 6, and 6,

optimum parameters, and the problem of convergence is similar to
that of classical nonlinear parameters optimization methods. If the
SCR process presented in Section 2 is taken as an example,
comparisons of identification accuracy between the ExpARMAX
or ExpARX model and a global linear ARMAX or ARX model
with the same orders are shown in Fig.5 and Fig.6. The two plots
show that the fitting or multi-step-ahead prediction accuracy of the
ExpAR-type models is far better than that of the global linear
models.

will converge to a set of locally

4. Nonlinear Predictive Control Based on Exp-type
Models

{4-1) The Jth-step-ahead Prediction Consider the
system described by 2). If we constrain
{Au(t), Au(t +1),---,Au(t+ N, - 1)} to be F,- measurable, where
F, denotes the o -algebra generated by the data up to and

including time ¢, then the jth-step-ahead optimal output
prediction is

BEWC, 122&% 1158, Frkld &

- The derivation of (4) is similar to that given by Kinnaert
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Ja+J10=E@+ ]| F}
=G (g )Mu(t+j-D+y,(t+j|9)

................................................................. (4)
where
L Fg) H(q")
t+jl)= + Au(t—1
Yo+ jln)= @) (0 C(qﬁl) u(t—1)
E@),. .
NP D(g )AV(t+j~k,)
................................................................. (5)
E F,, G'j ,and A, are recursive solutions of two Diophantine
equations below
C(q_') :E; (q_])A,(q_l)A—}—q_]Fj(q_l) .............................. -(6)
E(q)B,,q" =C(gHG (@) +q H (q") = ™

19, and it

is omitted here.



{4-2) Multi-step Predictive Control Take the
prediction horizon N, and the control horizon N, . Define

Y(@0) = [t +kg 0,0, 3+ N, [ D]

o) =Lyo(t+kg [0+, yo(t+ NI

AU(t) =[Au(t), Au(t +1), -+, Au(t + N, = D]

Y () =1y, (t+kg [, 5, (t+ N, | 0]
here, Y, (¢)is the desired output sequence. From (4) and (8), and
assuming Au(f+ j)=0, j = N, , we obtain

V(1) = GAU(L) + Y (£) wwooeeerereeeomemmmmmmomns ©)
where G, is composed of the coefficients of polynomial
Glj (/= Np) in the Diophantine equation (7), and

| 8ky-1 82 0
G, - gl.cd gkirl gk‘f—z

g _ g _ _ s _
N,-1 8N,-2 &N,-3 8N,-N, kgt XN,
where G, is a (N, —k; +1)x N, matrix with zero entries g,

for i<0 . Minimizing the cost function below, the optimal control
increments can be obtained:

min 7 =[¥(1) -, (z)HiN k
PFp

2 ........................
min, Lt |lau)|, (10)

subject to
At SAu(t+j-1)<Aug,, ,

Ymin S I+ 1D S Yipay » forj=ky tONp

forj=1to N,

where ||X“i2 =xTQx,
(Np—kp +1)x(Np—kp,+1) identity matrix, with weighting
R =diag(y,,7,,-,¥y,) - The constrained optimization problem
(10) can be reformulated as a constrained quadratic optimization
problem below

min J =— AU(t)T (GG, +R)AU(Y)
AU(t) 2

+[Yo ()~ Y, ()] G,AU(2)

subject to

|:Gt }AU(I) |: max YO(t) :|
-G Yn +Yo()

AU iy SAU() AU
The Quadratic Programming (QP) algorithm available in
MATLAB SIMULINK Toolbox is applied to the above
optimization. Of the N,, future control actions that minimize .J ,

only the first one is used

u(l):u(t—1)+Au(t) ....................................................... (12)
At the next sampling time, a new optimization problem is
formulated whose solution provides the next control action. This is
referred to as the receding horizon principle. In (5) and (8), the
future value of disturbances will be applied. Use the predictions
computed from the estimated model (3) to replace the future
values.

5. Case Studies

Simulation results for the proposed predictive control algorithm
(EEPC) based on ExpARMAX model (2) and ExpARX model (3)
for the SCR. process showed in Section 2 are shown in Fig.7-9

I is the
Np—ky+l

with N, =20, N,=4, y;=1, the desired output is 39.5 ppm.

A comparison of the control performance of the basic EEPC using
the true future values of the disturbances and the PID is showed in
Fig. 7. From Fig.7 we can see that the basic EEPC greatly reduced
the vibration amplitude of the outlet NOx concentration y(7) and
the consumption of expensive NH3 gas #(f) compared with PID
control.

Looking at the result for EEPC without ExpARX predictor (dot-
dashed plot in Fig.8), the disturbances are assumed to remain
constant at the current value during the prediction horizon. Fig.8
shows that during large load variance, the control performance of
EEPC is far better than PID control, and after using an ExpARX
predictor of the future measurable disturbances the EEPC control
result is obviously improved. It is also verified in Fig.9 that the
multi-step-prediction accuracy of the ExpARX mode! is much
better than the global linear ARX model whose order is same as
the ExpARX model and which is identified off-line by using the
same identification data as the ExpARX model.
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Fig. 7. Comparison of the control performance of basic
ENPC (solid) and PID (dot-dashed).
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Fig. 9. Comparison between the EEPC using ExpARX
predictor (solid) and the EEPC using the global linear
ARX predictor (dot-dashed) of future disturbance.

6. Conclusion

For a class of nonlinear systems whose static and dynamic
characteristics are dependent on a measurable signal, a multi-step
predictive control algorithm based on two global nonlinear
exponential auto-regressive-type models (ExpAR-type models)
was presented. The proposed ExpAR-type models, which do not
need on-line estimation, have a basic structure similar to linear AR
models, and have the capability of describing the nonlinear
dynamics of the system because they have time-varying
coefficients dependent on operating- point state. The significant
advantages of the proposed predictive control algorithm for
nonlinear systems are that (1) its internal model does not need on-
line estimation as is usually done in GPC, (2) the multi-step-ahead
prediction of output can be formularized as a linear version of
future control since its internal model structure similar to linear
AR, and (3) more precise multi-step-ahead prediction of
measurable disturbances could be used to improve control
performance.

(Manuscript received August 30, 2001; revised April 4, 2002)
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Appendix A. The trust region method

The solution of the unconstrained nonlinear parameters
optimization problem below

min/, (6,,0,)

may be obtained by solving a series of easier quadratic
programming subproblem as follows™®)

Injn{l//k (s)2gls +%STBkS : ||l_)ks" <A, }

where the increment s, b,r 82V, (0,0,1), By
the

V2J,(6.6,;), D is a scaling matrix, A, is a positive scalar

= 6n,k+1 -

is a symmetric approximation to Hessian matrix

denotes the 2-norm. Let

representing the trust region size, and

O<pu<n<l, and O<y; <l<y,. For £=0,1--, the detailed

procedures are as follows
1) Compute J,(6,,0,,) and the model ;(s);

2)
3)

Solve the solution s to the subproblem (14);
Compute

PL =010, +3) = T, (01,0, vy (51) 5
[’

4) then set 6, Otherwise ~set

I pl>p
9n,k+l = en,k >

J
If p
If p

If pf

il = Onp +5p

5)
6)
7)

<u thenset Ay, €(0,7,A:1;
<(u,7) thenset Ay, €[rdp,ArT;
>7n thenset A, €[Ar,7,A;].
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