A Parallel Algorithm for Maximum Cut Problem Using Gradient Ascent Learning of Hopfield Neural Networks

Student Member Rong Long WANG (Toyama University)
Non-member Zheng TANG (Toyama University)
Non-member Qi Ping CAO (Tateyama Systems Institute)

Maximum cut is an important example of a class of combinatorial optimization problems. It has many important applications including the design of VLSI circuits and design of communication networks. The goal of this NP-complete problem is to partition the node set of an undirected graph into two parts in order to maximize the cardinality of the set of edges cut by the partition. In this paper, we propose a parallel algorithm using gradient ascent learning algorithm of the Hopfield neural networks for efficiently solving such optimization problems. The proposed learning algorithm is tested on a 2-variable quadratic polynomial and applied to the MAX CUT problem. Extensive simulations are performed and its effectiveness is confirmed.

Keywords: Maximum cut problem, Hopfield neural network, Gradient ascent learning, NP-complete problem

1. Introduction

The maximum cut problem (MAX CUT) [1] is a representative problem of combinatorial optimal problems. In this problem, we have a weighted, undirected graph \(G = (V, E) \) and we look for a partition of vertices of graph \(G \) into two disjoint sets \((S, S') \), such that the total weight of the edges that go from one to the other is as large as possible. Besides its theoretical importance, the maximum cut problem has applications in the design of VLSI circuits, the design of communication networks, circuit layout design and statistical physics [2], [3]. This problem is one of the Karp's original NP-complete problems [1], and has long been known to be NP-complete even if the problem is unweighted [4]. For planar graphs this problem has been shown to be polynomial solvable [5]. However, in general the weighted graph may not be planar. Because of its theoretical and practical importance and because efficient algorithms for NP-complete combinatorial optimization problems are unlikely to exist, many polynomial time approximation algorithms have been proposed to solve it.

In 1976, Sahni and Gonzales [6] presented a approximation algorithm for the MAX CUT problem. Their algorithm iterates through the vertices and decides whether or not to assign vertex \(i \) to \(S \) based on which placement maximizes the weight of the cut of vertices \(1 \) to \(i \). This algorithm is essentially equivalent to the randomized algorithm that flips an unbiased coin for each vertex to decide which vertices are assigned to the set \(S \). Since 1976, a number of researchers have presented approximation algorithms for the MAX CUT problem. Hsu [7] developed a greedy algorithm to approximate the solution to the maximum cut problem on general graphs with arbitrarily weighted edges. Using semidefinite programming [8], Goemans and Williamson [9] presented randomized approxima-

2. MAX CUT Problem and Its Hopfield Neural Network Representation

Let $G = (V, E)$ be an edge-weighted undirected graph, where V is the set of vertices and E is the set of edges. The edge from vertex i to vertex j is represented by $e_{ij} \in E$. $d_{ij} = d_{ji}$ defines weights on edges whose endpoints are vertex i and vertex j. The maximum cut problem is to find a partition of V into two nonempty, disjoint sets A and B, such that $A \cup B = V$ and $A \cap B = \emptyset$, and $\sum_{i \in A, j \in B} d_{ij}$ is maximum. The maximum condition can also be represented as $\sum_{i \in A} d_{ij} + \sum_{j \in B} d_{ij}$ being minimum.

An objective function can be formulated for this optimization problem whose minimum value corresponds to the optimal solution. In a reasonable formulation there are two components to the objective function: one which is to realize the maximum condition described above, and one which is to satisfy that every vertex is distributed into one and only one vertex set. Thus, this optimization problem can be mathematically stated as finding the minimum of the following objective function:

$$E(v) = \sum_{i=1}^{N} \sum_{j \neq i}^{N} d_{ij} (v_{iA}v_{jA} + v_{iB}v_{jB}) + \sum_{i=1}^{N} |v_{iA} + v_{iB} - 1|$$

where v_{ik} is 1 if vertex k is partitioned into vertex set K, 0 otherwise.

In general, the N-vertex MAX CUT problem can be mapped onto the Hopfield neural network with $2 \times N$ neurons where it consists of N clusters of two neurons. The output y_{ij} of neuron $i \neq j$ represents whether or not i-vertex ($i = 1, \ldots, N$) should be partitioned into vertex set j ($j = 1, 2$ which represents vertex set A and vertex set B). For example, the state of two neurons ($y_{11} = 1, y_{12} = 0$) indicates that the i-vertices is partitioned into set A. The following state ($y_{11} = y_{12} = 0$) and ($y_{11} = y_{12} = 1$) express no partition and double partition violation, respectively. These partition violation conditions can be expressed by follow:

$$\sum_{i=1}^{N} (y_{ij} - 1)^2 = 0 \quad \cdots \cdots \cdots \cdots \cdots \quad (1)$$

The maximum cut condition can be expressed by

$$\min \left(\sum_{i=1}^{N} \sum_{j=i+1}^{N} d_{ij} y_{ij} y_{kj} \right) \quad \cdots \cdots \cdots \cdots \quad (2)$$

where d_{ij} is weight on edges whose endpoints are vertex i and vertex k, and is the symmetric matrix. When we follow the mapping procedure by Hopfield and Tank [9], the energy function for the MAX CUT problem is given by

$$e = A \sum_{i=1}^{N} \sum_{j=1}^{2} (y_{ij} - 1)^2 + B \sum_{i=1}^{N} \sum_{k \neq j}^{2} d_{ik} y_{ij} y_{kj} \quad (3)$$

where A and B are constant coefficients.

In order to simplify the problem, we show a new Hopfield neural network representation in which only N neurons are used for the N-vertex MAX CUT problem. Neuron (y_i) expresses the i vertices. Two neuron states ($y_i = 1$ and $y_i = 0$) express that the i vertices is be partitioned into the set A and B, respectively. In this representation, the no partition and double partition violation can be avoided. Thus, the N-vertex MAX CUT problem can be simplify to

$$\min \left(\sum_{i=1}^{N} \sum_{j=1}^{2} \sum_{k \neq j}^{2} d_{ij} (y_{ij} + (1 - y_i)(1 - y_j)) \right) \quad \cdots \cdots \cdots \cdots \quad (4)$$

The energy function for MAX CUT problem can be expressed

$$e = A \sum_{i=1}^{N} \sum_{j=1}^{2} \sum_{k \neq j}^{2} d_{ij} (y_{ij} + (1 - y_i)(1 - y_j)) \quad \cdots \cdots \cdots \cdots \quad (5)$$

We rewrite this energy function into a standard energy function of the Hopfield network:

$$e = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} w_{ij} y_i y_j - \sum_{i=1}^{N} h_i y_i + \text{constant} \quad (6)$$

where, the weights and thresholds of the Hopfield network become

$$w_{ij} = -2A(1 - \delta_{ij})d_{ij} \quad \cdots \cdots \cdots \cdots \cdots \quad (7)$$
\[h_i = A \sum_{j=1}^{N} (1 - \delta_{ij})d_{ij} \quad \text{(8)} \]

In Eq.(7) and Eq.(8), the notation \(\delta_{ij} \) is 1 if \(i = j \), 0 otherwise.

The equations of motion is:

\[dx_i/dt = \sum_{j=1}^{N} w_{ij}y_j + h_i \quad \text{(9)} \]

The follow sigmoid function is used as input/output function of neurons.

\[y_i = 1/(1 + e^{-x_i/T}) \quad \text{(10)} \]

where \(T \) is a parameter called temperature parameter. It is proved by Hopfield [11] that such Hopfield network can be used as an approximate method for solving 0-1 optimization problems because, the network converges to a minimum of energy function provided that the weights are symmetric \((w_{ij} = w_{ji}) \) and there are no self-connections \((w_{ii} = 0) \).

The Hopfield network updating procedure can be viewed as seeking a minimum in a mountainous terrain. Thus, we can find the solution to the MAX CUT problem simply by observing the stable state that the Hopfield network reaches. But because of its inherent local minimum problem, the global minimum or good solution is usually difficult to be found.

3. Gradient Ascent Learning

In order to realize the global minimum convergence of the Hopfield neural network, we propose a learning method, which can help the network escape from a local minimum to the global minimum. In order to explain the learning method, we use a two-dimensional graph (Fig. 1) of energy function with a local minimum and a global minimum. The energy function value is reflected in the height of the graph. Each position on the energy terrain corresponds to a possible state of the network. For example, if the network is initialized onto the mountainous terrain A, the updating procedure of the Hopfield network makes the state of network move towards a minimum position and reach a steady state B (Fig. 1(a)).

Because the weights and the thresholds of the Hopfield network determine the energy terrain, we can change the weights and the thresholds to increase the energy at the point B so as to fill up the local minimum valley and finally drive the point B out of the valley. Here, suppose that a vector \(v \) corresponds to the weights and the thresholds of the Hopfield network. Since for a parameter vector \(v \) the learning requires the parameter change to be in the positive gradient direction, we take:

\[\Delta v = \eta \Delta e(v) \quad \text{(11)} \]

Where \(\eta \) is a positive constant and \(\Delta e \) is the gradient of energy function \(e \) with respect to the parameter vector \(v \) in the state B.

Applying this learning rule (Eq. (11)) to the MAX CUT problem, we can obtain the changes of the weights and the thresholds of MAX CUT problem from the partial differential of the energy function (Eq.(6)) to the weights and the thresholds at the state B:

![Fig. 1. The conceptual graph of the relation between energy and state transition in the learning process of the Hopfield network with two stable states.](image-url)
\[\Delta w_{ij} = p \frac{\partial e}{\partial w_{ij}} = -pq_i y_j \quad (\text{for } i, j = 1, \ldots, N \text{ and } j \neq i) \quad (12) \]
\[\Delta h_i = q \frac{\partial e}{\partial h_i} = -q y_i \quad (\text{for } i = 1, \ldots, N) \quad (13) \]

where, \(p \) and \(q \) are small positive constants and \(y_i, y_j \) correspond to the state of \(B \).

Now we show that after we change the weights and the thresholds according to Eq.(12) and Eq.(13), point \(B \) will be on the slope of a valley. Suppose \(y_{B_1} \) represents the state of point \(B \), \(y_{P_1} \) represent the state of any point \(P \) of energy terrain, then the change of energy in point \(P \) by the learning rule (Eq.(12) and Eq.(13)) will be:

\[\Delta E_P = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} w_{ij} y_{P_i} y_{P_j} + \sum_{i=1}^{N} h_i y_{P_i} \]
\[- \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} (w_{ij} - pq_i y_j) y_{P_i} y_{P_j} \]
\[- \sum_{i=1}^{N} (h_i - q y_i) y_{P_i} \]
\[= \sum_{i=1}^{N} \sum_{j=1}^{N} (y_{B_i} y_{P_i})(y_{B_j} y_{P_j}) \]
\[+ q \sum_{i=1}^{N} (y_{B_i} y_{P_i}) \quad \cdots \cdots \quad (14) \]

Because point \(B \) is a minimum of energy function and the output of neuron in point \(B \) is at or near 0 or 1 [11], from Eq.(14), we can know easily that the increase of energy is largest when point \(P \) is at the same point as point \(B \), and the larger the difference of state between point \(P \) and point \(B \), the smaller energy increases in point \(P \). Thus, we can see that the valley will be filled up in a most effective way. In general, point \(B \) may become a point on the slope of the valley. Thus, the learning (the second phase) makes the previous stable state \(B \) becomes a point on the slope of a valley (\(B' \)). After updating of the Hopfield network with the new weights and the new thresholds in the Hopfield network updating phase again, point \(B' \) goes down the slope of the valley and reaches a new stable state \(C \) (Fig. 1(b)). Thus, the Hopfield network updating (Phase 1) and the gradient ascent learning (Phase 2) in turn may result in a movement out of a local minimum, and lead the network converge to a global minimum or a new local minimum (Fig. 1(c) and (d)).

4. Algorithm

The following procedure describes the proposed learning algorithm for solving optimization problems. Note that there are two kinds of conditions for end of the learning. One has a very clear condition, for example, the N-queen problem in which the energy is zero if the solution is the optimal. Another one has not a clear condition, for example, the traveling salesman problem and the MAX CUT problem in which the energy is not zero even when the solution is the optimal. For the latter case, we have to set a maximum numbers of the learning (learn.limit) in advance. Learning stops if the maximum number of learning times for the system termination condition, we have,

1. Set \(\text{learn.time} = 0 \) and set \(\text{learn.limit} \) and other parameters.
2. The initial value of \(y_i \) for \(i = 1, \ldots, N \) are randomized in the range from 0.0 to 1.0.
3. The updating procedure is performed on the Hopfield network with original weights and thresholds until the network converges a stable state (Phase 1).
4. Record the stable state.
5. Use Eq.(12) and Eq.(13) to compute the new weights and new thresholds (Phase 2).
6. The updating procedure is taken on the Hopfield network with the new weights and thresholds until the network reaches a stable state.
7. Because the weights and the thresholds of the Hopfield network determine the energy terrain, once the weights and the thresholds are changed, the energy terrain may be changed and the position of global minimum in energy terrain may also be changed. In order to avoid the shift of the state of the global minimum to a specific problem, the updating procedure on the Hopfield network may be re-performed with original weights and thresholds until the network reaches a new stable state.
8. If the new stable state obtained from step 7 is better than the recorded stable state, then the recorded stable state is replaced by the new stable state obtained from step 7.
9. Increment the \(\text{learn.time} \) by 1. If \(\text{learn.time} = \text{learn.limit} \) then terminate this procedure, otherwise using the stable state obtained from step 6 go to the step 5.

5. Simulation Results

5.1 Simulation Results on 2-Variable Quadratic Polynomial

In order to test the efficiency of the proposed learning method, firstly we simulate the following minimum problem of a 2-variable quadratic polynomial function without square term in [0,1] topological space.

\[E = w_{12} x_1 x_2 + w_{23} x_2 x_3 + h_1 x_1 + h_2 x_2 \cdots \cdots (15) \]
This optimization problem can be performed using a 2-neuron Hopfield network. We set $w_{12} = w_{21} = -2.0$, $h_1 = 1.0$ and $h_2 = 0.9$. In simulations, the learning constants are $p = 0.001, q = 0.01$, and the temperature parameter $T = 0.24$. Fig. 2 is a 3-dimensional contour line figure of the energy of the network. The two horizontal axes correspond to the states of the two neurons, the vertical axis is the energy of the network. It can be seen that the relation between the energy function and the states of the two neurons forms a shape of a saddle. As shown in Figs.2(a), the network has a local minimum at the corners of $y_1 = 0, y_2 = 1$ and a global minimum at the corner of $y_1 = 1, y_2 = 0$. Fig.3 shows the energy of the Hopfield network, and its state change during the learning intuitively. First, in an initial state A at time $s=0$ ($y_1 = 0.95, y_2 = 0.95$), the energy takes very large value -0.475287. From the initial state, the network goes down to lower the energy as shown in the figure, and converges to -0.930935 by the energy and $y_1 = 0.118270, y_2 = 0.940722$ by the state B. Next if the learning using the Eq.11 is performed, the energy in state $B(y_1 = 0.118270, y_2 = 0.940722)$ will go up to $E = -0.911195$ and becomes a point B' on the slope of the valley again. This is called the first learning ($s = 1$). If the network updates using the new weights and the new thresholds in time domain from B' again, it will converge to $E = -0.911226$ by the energy and $y_1 = 0.124065, y_2 = 0.932768$ by the state C. In this way, the updating phase and the learning phase are repeated on the Hopfield network. After the 4-th learning ($s = 4$), the network goes up to the energy $E = -0.8546609$ and the state E' ($y_1 = 0.142568, y_2 = 0.902425$). Thus, the local minimum valley of the energy of the network disappears, and the network updates to a state G ($y_1 = 0.996728, y_2 = 0.007408$) from the state E' through F, thus resulting in an escape from the local minimum valley. The energy also decreases abruptly from $E = -0.8546609(E')$ to $E = -1.389895(G)$ after a small decrease from $E = -0.8546609(E')$ to $E = -0.868840(F)$. The details of the energy change during the learning are shown in Fig.4. Fig.5 shows the changes of the weights and the thresholds during the whole learning process. Fig.2(b) shows the 3-dimensional contour line figure of the energy of the network after learning. By the above simu-

Fig. 2. 3-dimensional energy contour map for a two-neuron Hopfield network: (a) before learning, (b) after learning.

Fig. 3. Simulated energy of Hopfield network and its state change during learning.

Fig. 4. Details of energy change with time during learning.
lation results, the valley (the local minimum) of energy is extinguished, namely, is understood that the learning method proposed in this paper is effective in making a Hopfield network escape from a valley (a local minimum). Furthermore, according to Fig.3 and 4, by updating phase after the 4-th learning, the energy decreases from E' to F gently first and falls in the minimum G from F abruptly. This is because the energy has an extraordinary loose hill as shown in Fig.2(b). These simulation results are in agreement with our learning algorithm. Furthermore, the information such as the structure of the energy and the feature may be acquired from the energy change during the learning by this learning method.

5.2 Simulation Results on MAX CUT Problem Using the proposed learning algorithm, we simulat MAX CUT problem on IBM NetVista A40 (PentiumIII 733MHz). The Hopfield network updating phase uses the weights and thresholds matrix defined in

Fig. 6. A 20-vertex 30-edge MAX CUT problem

Fig. 7. The matrix of weight on edge of Fig.6

Fig. 5. Changes of the weight (a) and the thresholds (b1 and b2) during learning.
Eq(7) and (8) and the gradient ascent learning phase uses the rules defined in Eqs(12) and (13). Simulations refer to parameter set at $A = 1.0$. In the experiments learn limit is set to 20. The initial values of neurons are randomized in the range of 0.0 to 1.0. The temperature parameter T in Eq.(10) was set to 0.25.

The first problem that we test is a graph with 20 vertices and 30 edges which is shown in Fig.6. The matrix of weights on edges is shown in Fig.7. Fig.8 shows the results of a simulation on the MAX CUT problem of Fig.6, which illustrates a typical progressive intermediate partition of vertices during the Hopfield network updating phase (Phase 1) and the gradient ascent learning phase (Phase 2). Initially the Hopfield network converges to a time independent state (Fig. 8(a)). The value of CUT of this partition is 57. It is obviously not a maximum CUT. After the first, 4th and 5th learning, the value of CUT increases to 58, 62 and 64, and generates the partition of vertices (b), (c) and finally (d). In order to gain some insight into the optimization process, the energy can be studied by plotting the energy as time. Fig.9 shows the variation of the energy during the Hopfield network updating and the gradient ascent learning. It can be seen from the figure that the 2nd and 3rd learnings do not lead to a movement out of local minimum, and therefore no new partition of vertices is generated. The first, 4th and 5th learning do yield a movement out of local minimum, thus resulting in new partition of vertices (Fig.8 (b), (c) and (d)). To see if our solution is a global optimal solution, we use exhaustive search to this graph on the full searching space, and found that our solution is a global optimal solution. In order to widely verify the proposed algorithm, we also test the
algorithm with a large number of randomly generated graphs [17] defined in terms of two parameters, n, and p. The parameter n specifies the number of vertices in the graph; the parameter p, 0 < p < 1, specifies the probability that any given pair of vertices constitutes an edge. Integer numbers are randomly on edges as weight. The range for weight was from -1 to 5. To evaluate our results, we compare our results with the results of LORENA [10]. For each of instances, 100 simulation runs are performed. Information on the test graphs as well as all results are shown in Table 1. The results that we record for each graph are the average cut, average computational time and best cut produced by the LORENA [10], and by the proposed algorithm. The average learning epochs of 100 runs for every graphs are also shown in Table 1. From Table 1 we can see that the proposed parallel algorithm is superior to the LORENA [10] in terms of solution quality and computational time.

To evaluate the performance of the proposed method, simulated annealing is also executed on MAX CUT problems for comparison. We use the annealing algorithm given by Johnson et al [17]. Starting with a randomly generated assignment, it repeatedly picks a random variable, and computes the change (Δ) of energy
when the state of that variable is flipped. If $\Delta \geq 0$, make the flip. Otherwise, flip the variable with probability $e^{-\Delta/T}$. We slowly decrease the temperature (T) from 3.0 to 0.00001. 100 simulation runs are performed for each graph. To compare the proposed method with the simulated annealing, the average cut, average computational time and best cut produced by the proposed learning algorithm and simulated annealing are shown in Table 2. From this table, we can see that the proposed learning algorithm works better than the simulated annealing in terms of the solution quality and the computation time.

6. Conclusions

We have proposed a near-optimum parallel algorithm for solving optimization problems, and showed its effectiveness by simulation experiments. This parallel algorithm has two phases, the Hopfield network updating phase and the gradient ascent learning phase. In the first phase we implemented the Hopfield network for optimizing the energy function in state domain. In the second phase we intentionally increased the energy of the Hopfield network by modifying parameters in weight domain in a gradient ascent direction, thus making the network escape from local minimum. The proposed learning algorithm was tested on 2-variable quadratic polynomial and applied to the MAX CUT problems. Extensive simulations were performed and its effectiveness was confirmed.

7. Acknowledgment

This work was supported in part by the grant-in-aid for Science Research of the Ministry of Education, Science and Culture of Japan under Grant (C)(2)12680392. (Manuscript received November 7, 2001, revised June 27, 2002)

References

(5) F. Haddock: "Finding a maximum cut of a planar graph in polynomial time," SIAM J. Comp., vol.4 no.3 pp.221-225 (1975)

Rong Long Wang (Student Member) received a B.S. degree from Hangzhou teacher’s college, Zhejiang, China and an M.S. degree from Liaoning University, Liaoning, China in 1987 and 1990, respectively. Since 1990 he has been a lecturer in Benz University, Liaoning, China. Now he is working toward the Ph.D degree at Toyama University, Japan. His main research interests are neural networks and optimization problems.

Zheng Tang (Non-member) received a B.S. degree from Zhejiang University, Zhejiang, China in 1982 and an M.S. degree and a D.E. degree from Tsinghua University, Beijing, China in 1984 and 1988, respectively. From 1988 to 1989, he was an Instructor in the Institute of Microelectronics at Tsinghua University. From 1990 to 1999, he was an Associate Professor in the Department of Electrical and Electronic Engineering, Miyazaki University, Miyazaki, Japan. In 2000, he joined Toyama University, Toyama, Japan, where he is currently a Professor in the Department of Intellectual Information Systems. His current research interests include intellectual information technology, neural networks, and optimizations.

Qi Ping Cao (Non-member) received a B.S. degree from Zhejiang University, Zhejiang, China and a M.S. degree from Beijing University of Posts and Telecommunications, Beijing, China in 1983 and 1986, respectively. From 1987 to 1989, she was an Assistant Professor in the Institute of Microelectronics at Shanghai Jiaotong University, Shanghai, China. From 1989 to 1996, she was a Research Student in Nagoya University, Nagoya, Japan. From 1990 to 2000, she was a Senior Engineer in Sanwa Newtech Inc., Japan. In 2000, she joined Tatsuya Systèmes Institute, Japan. Her current research interests include multiple-valued logic, neural networks, and optimizations.