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This paper explores some improvements in the parallel FDTD algorithm using system of linear equations.
The objectives are to be able to simulate realistic size models of urban wireless communications using FDTD.
The obstacles are the need of large memory and processing time. The previous research has dealt with de-
creasing the use of memory. From now, the research deals with the improvement of the speed of the algorithm.
This is done by using the properties of the impulse response in the system of equations and using it to store
pre calculated results that are the most common calculations in FDTD equations.
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1. , Introduction

Wireless communications is already an important seg-
ment of telecommunication traffic and it is one of the
most fast expanding technologies. Between the funda-
mentals of this technology, there is the propagation of
electromagnetic waves. The wave propagation and scat-
tering happens in big areas with many kind of geome-
tries. Because this arbitrary geometry, FDTD method
is useful (3), but it demands a great amount of memory
and computer time. Most research has been done to
improve the speed by using FDTD parallel algorithms,
but no effort has been put to being able to solve prob-
lems needing more memory than available. This limits
the size of problems FDTD can deal with. In previous
papers we have presented an initial research done to de-
crease the need of memory. A big size FDTD solver
could allow simulating many interesting behaviors in re-
alistic size models. But this saving in memory came
with a cost in yet longer computing time (8). First, we
will- present a brief summary of the method, and then

“we will discuss some steps done in the improvement of
the speed of our parallel FDTD algorithm.

2. Basis of the algorithm

This is a summary of the basis of the algorithm, which
is discussed in detail in (1), (2), (7). The Yee'’s formula-
tion for the FDTD method in the 2-D case, TM mode
is used (Fig. 1). If there is only linear, isotropic nondis-
persive materials, the Yee’s FDTD formulation is:

EY(i,5) = Col B (i, )]
+Ca[Hy (i +1,5) — H}/ (i, j)]
—Cy[H (1,5 +1) — Hz (i, 4)]
+f"(%,4)
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HZ (i, 5)
= H(i,j)—Dy[Ez (i, 5)—
+1/: -

Hy ™ (4, 5)

Where Cy, Cy, Cy, D, and Dy are constants with re-
spect to cell (i,7) with the m-th material, and F is re-
lated to current J (in this case only J, component) of
the source antenna:

ft) = f(nAt) = %Jsrc(nAt)

In these equations, the time variable is expressed as
integer, that is, the time n and n + 1/2 are both ex-
pressed as m as a convention in this paper. Function f
is the signal expressed in the same units as E (V/m),
operating in this special point (i,j), that is, zero every-
where except at antenna point. In this paper, standard
FDTD means the original formulation of Yee’s FDTD
in Cartesian coordinates and 2nd order accuracy.

1 — (o(m)At/2e(m))

Cu(m)lz 14 (o—(m)Af/2€(m))

Com) = t/e(m L
o 1+ (o(m)At/2e(m)) Az

Cotm) — At/e(m) e - (5)
y 1+ (g(m)At/QE(m)) Ay

Da(m) = —r S Ae

Dy(m) = — 2t
v p(m)Ay

The Yee’s formulation can be expressed as a coupled
system of matricial equations as in Ref. (6). The sys-
tem is shown in eq.(14),(15), X; is a vector with all the
variables E,, H;, H, in time step i, and in most simu-
lations Xo = 0. Matrix A; in eq. (15) represents the
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Fig.1. Fields in the 2-D, TM problem

linear relations which transforms variables of time step
n into variables of time step n+1, and it is a matrix of
size 3pg X 3pq. The coefficients for the rows (equations)
corresponding to E, are the 5 coefficients of the right

_side of eq. (1), one coefficient for each independent vari-
able (Cy once, C, twice, Cy twice). The coefficients for
H, and H, are derivated by substitution of the value of
E, in eq. (1) into eq. (2), (3) as follows:

Hy (i, 5)
= Hy(i,7) — Dy(m1)[Co(m1)EZ (i, 5)
+Cg(ma) (Hy (i + 1,5) — Hy (i, 7))
—Cy(ma) (H2(, 5 +1) — H2 (i, 5)
~Ca(ms)E2(i,5 — 1)
~Co(mo)(Hy (i +1,5 — 1) — H} (4,5 — 1))
+Cy(ma) (H2 (6, §) — HE (6,5 —1))] -+ (6)
Hy (i, 5)
= H;L(Z’J) - Dm (ml)[ca(ml)E?(l,j)
+Co(ma)(Hy (i +1,5) — Hy (4, 7))
—Cy(m1)(Hg (4,5 + 1) — Hy (3,5))
—Co(ms)E7 (i —1,7)
—Cy(ms)(Hy (4,5) — Hy (i — 1, 7))
+Cy(ms)(Hz (i — 1,7 +1) — Hy (i — 1,7))]

The equations for variables near the boundaries are
different, because it is required to use some absorbing
boundary condition (ABC). This algorithm uses the 1st
order Mur ABC for its simplicity, its tolerable reflection
and its dependence on on variables for time step n and
. n+1 only. The equations are:

HY(a0) = Hyp (5.2) + My (Hp ' (i,2) ~ H (1))

.................... (8)
Hy (1) = Hy (24) + My (Hy P (2.0) = HJ(15))
.................... (9)

El Y p5) = EXp—14) + M B (p-1.4)— B} (.5))
(10)
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B Nia) =B (is0-1) + My(BZ Y (i.0-1) — EZ (1.0))

e (11)
cAt — Az
= AT Ay (12)
cAt — Ay
VS Rip Ay (13)

Again, the values in the right side must be replaced
by its equivalents using eq. (1)~(3) in order to express
the left side variables at time n+1 as dependent on vari-
ables at time n. While it is true that 1st order Mur ABC
has more undesired reflections than others ABCs, if the
simulation can be big, more space between the scatter-
ers and the boundaries can be arranged and this lessens
the impact of undesired reflections.

The coeflicient matrix A of linear equation (16) is
formed by the same components as matrix 4;. Ma-
trix A can be expressed as a block banded matrix with
two block components, matrix I (diagonal has only ‘1’
components) and the sparse matrix A;, see eq.(16), and
the constant matrix b consist of small matrices ¢,, where
n = [0,0, ..., fu(nAt),...,0]", 0 < n < T, fr(nAt) is the
value of E, component in the k — th antenna at time
nAt.

X, = [Ha: 1,1,R;Hy 1,1,n5 E, 1,1,m5 «+3 Ezp,q,n],, : (14)

Let be A; fixed matrix = X,,11 = 41 X,, -- (15)
I O : 0 0 X1 ' AlXO
—A; T - 0 0 X o)
0 0 - I 0 || Xpq ¢r-1
0 0 - —A; I Xt o7
................... (16)

In eq.(14), p is the number of cells in the x direction,
and q is the number of cells in the y direction. In.eq.(16),
T is the number of time steps through the simulation,
and ¢9 = A1Xp. The matrix A; is an operator that
express the relation between the variables at time step
n and time step n+1, its elements are the coeflicients
of eq.(1),(6),(7). And matrix A is the coefficient matrix
of a linear system of equations (big matrix at the left
side of eq.(16))that is equivalent to solving the FDTD
simulation. ]

From this point, the unknown components of E and
H will be represented as x variables, and the following
notation is defined: ;; ;. represents HZ(i,j) if c=0,
H,(i,7) if c=1 and E%(i,j) if c=2. Other notation
will be z, which is equivalent to some z;; ;. where
L = (t —1)(3pq) + 3gz + 3y + ¢; this formula works in
both ways. Matrix A is an sparse matrix and its rows
are stored in memory using sparse matrix techniques.

Gaussian back-substitution is generally used for solv-
ing upper triangular systems(10). Here, it is used
in a lower triangular system. Partial Gaussian back-
substitution is carried from the equation for z,
TT40,50,c0 (greatest time step T), many times, changing
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the original equation of the following type, where each
zf§ are the equivalent to some variable zp_q ;5. and cf
are constant coefficients:

1

1.1 1.1 1 1
TL 4 CTy + %y + .o € T,

:'bL

Into an equation with independent variables zZ, by
substitution of the variables z} using the same eq.(17)
but for a different z/, = z}:

zp+ A1t + Bad o+ 2 ad = bl
This process is carried out n times until getting:
xﬁ+civwiv+cévwév+...+ci\;xi\; :bg.... (19)

For a simulation of T time steps, if we split the calcu-
lations along the time using eq. (19) in equations ad-
vancing N time steps. The size of the array (zy =
6N% +4N — 1 for H, or H, and 6N? — 2N — 1 for E,)
storing the data of eq. (19) multiplied by the number
of equations (T/N) yields the necessary memory, and
for some value of "N”, the necessary memory becomes
larger than the available memory. Then we take the
variables z7_y ; ;.. one by one, create a new array and
process this variable in the same way as we processed
z.. Each stage of processing is called a level, where
the stage processing z, until getting all the z7_n;,j.c
is called level 1; the stage beginning with the processing
of any z}Vis level 2, and so on. Each level uses a dis-
tinct array to represent the respective equations. The
algorithm is recursive in nature, that is, a process that
calls itself. The flowchart of the algorithm called “solu-
tion” is as shown in Fig. 2. The initial call would use

Solution(t,,i,j,c)

¥
| Initialize for time=t; , level=1+(T-t)/n|

Generate equat

N N, L N N N
xt¢, X, +C +....+C

1X4¥C2X, Zlevel

Compute i'j',c¢' where Xt -Ni'j,c!

I,),c
YES @ NO

PartialSolution= PartialSolution=0
Solution(tg-N,i',j',c")
¥

on for time=t;-N
N

Zlevel ~

X b

—y N
=il

Solution=Solution+
PartialSolution

| Return Solution|

Fig.2. Flowchart of the recursive algorithm
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the parameters (T\i,j,c).

The parallelization is done by distributing the storage
and calculation of variables in the sparse arrays to dif-
ferent processors. Each processor stores one subset of
variables and solves an different sub-summation which
is later gathered into the final answer:

P
N

Tp=— Z(Z cf)vch)v) + constant

u=1 v=1

Where p is the number of processors and 2%, is the
load of each processor, which should be proportional to
the speed of the each processor.

3. Improvement using Impulse Response

Analyzing the algorithm, we can see that the savings
in memory comes because the standard FDTD method
stores all variables of time step N to calculate all the
variables of time step N+1. We using back-substitution,
we can solve some variables at time step s using only a
small set of dependent variables of time step t;— N. The
number of variables is proportional to 6 /N2, the number
of step is T/N, then we need only stored variables in the
order of 6TN. By choosing an appropriate n, this value
6TN becomes smaller than the 3pq variables of any time
step. But this process also causes the repeated calcula-
tion of many variables. For example, for N > 3, to calcu-
late the variable E! (3, j), we need to know EL =V (i—1, §),
Ei=N(3,j) and EL"Y(i+1, j), and all this variables need
the value of E£=2N(4, 7). But in calculating those three
variables at time t-IN, the algorithm does not keep the
values of variables at time t-2N (to save memory) and it
must calculate EX~Y (541, ) three times. This increases
the processing time.

A second problem is that Gaussian back-substitution
using sparse matrix techniques in' A matrix is inefficient
when the substitution reach many equations, because
the matrix becomes less sparse and the sparse arrays
must constantly fill in new variables. That is, the con-
dition:

1 <isp(l) <isp(2) < ... <isp(z) < 3pgT -- (21)

must be hold for the array isp storing the columns of
the non-zero coeflicients of A. The requisite to keeping
the arrays values ordered by column means that there
is constantly insertion of new values when the matrix
becomes less sparse.

We have researched an improvément that can deal
mostly with the second problem and comply with the
condition in eq. (21). It is based in the properties of
the impulse response being used in FDTD linear equa-
tions. A Green’s function is an integrating kernel that
can be used to solve an inhomogeneous differential equa-
tion with boundary conditions. For any partial differen-
tial equation in a A dimensional domain:

With operator L, we can think of an integral which
solves that equation:



AN (23)
Here, G(x;x’) is the solution of:
LG(X, X/) = (5(x — X/) ...................... (24)

The physical meaning of the Green’s function in wave
and Maxwell equation is the dependence of some com-
ponent of the electric or magnetic field at some time t
and position r (x=(r,t)) on the values of the fields at
any time t’ (¢ > ¢') and any position; in our case of
study, this dependence is linear. Because those differ-
ential equations are hyperbolic, not all fields of time t’
affect the value of some variable at time t, but it is lim-
ited by the speed of the wave propagation. And G it
can be calculated solving the differential equation for
the delta function.

The discrete approximation of the impulse response,
g(r,t,r’t"), can be calculated by using the numeri-
cal delta function: a unitary impulse at t=1. That
is, in eq.(16), 1 = [0,0,..,0,1,0,...,0]' and &>
o3 ¢7 =0. The kernel or Green’s function
g(r,t,r’,t7)=g(i,j,t), with r=(i,j), r’ fixed (antenna point)
and t’=1 fixed, is the result of the FDTD simulation, and
for any general current source J(i,j)=f(t) = f(nAt) at
some point (1,j) we have:

"

It is true that the approximation is not the correct
Green’s function, but if we calculate this approximation
using a unitary pulse and FDTD, the computation of
any input function f(nAt) using eq. (25) is equivalent
to the FDTD simulation using directly f(nAt), for the
case of study (linear, isotropic nondispersive materials).
Because the FDTD equations are linear, we can use the
next decomposition formula:

AX = b AX7 = b, AX 7 = brp,
X=X+ X;5,b6=0b;+0b;;

And by expressing the vector X as summatory of vec-
tors X%, the eq. (16) can be expressed as:

AXD = (0,...e,...,0) & AXD =(e,0,...)

Where e=(0,0,..,1,0,...0), and the only value “1” cor-
responding to the position of the antenna. This rela-
tion is independent of the signal f(nAt), with ¢; =
[0,0,..., f(nAt),...,0]". In other words, there are two er-
rors that are present in the approximations: the error in
approximating Green'’s function and the error in using a
summatory as eq. (25) instead of an integral. But these
two errors cancels mutually as shown in eq. (26)~(28).

1034

There is also some research which validates the use
of FDTD-computed impulse responses and summatory
to approximate the complete numerical solution using
FDTD (11) using less accurate approximations. They
use the Green’s functions in 54 points as approximated
incident field instead of the complete incident field, but
the final result is very close to FDTD results for fre-
quencies around 835 MHz. Our approximation is better
because we use the Green’s function over all the cells at
free space, and exact substitution in other points.

| Coefficient of Hx

Fig.3. Kernel functions gi,ge2,g3(x' — 1) for E,
when t'=t-10
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The advantage of using the impulse response is that
in eq.(16), the constant matrix b have one value equal
to 1, and 0 elsewhere. The linear equation becomes sim-
pler. The physical meaning of g(i,j,t) is that they are
the influence in some variable X(x=a,y=b,time=c) of
the field components at time c-t and position (x-i,y-j).
Mathematically, they are the coefficients ¢¥ of the sys-
tem of linear equations shown in eq.(19). In this equa-
tion, bg = Q if there is no antenna in the vicinity of X.
This is a realistic assumption for urban communication
models. There is 3 different kinds of g functions, g1, g2
and g3, for the influence of each component H,, H, and
E, respectively, as seen in Fig. 3.

By the physical meaning of this functions, we can see
that the values of g(i,j,t) depends only on the materials
and sources around variable X, in a vicinity of "t cells,
because in FDTD, the values of the fields propagates no
faster than 1 cell each time step. The main material in
an urban communication channel is free space. Most of
the propagation is in free space, except the walls of the
buildings. Then, most of the values of g(i,j,t) and ¢
will be the same.

At the start, we calculate g1, go and g3 for a free space
environment with no sources and we store it in mem-
ory. This process is done only once, using the standard
FDTD method. The improvement into the algorithm
consist in checking the environments of each variable,
and if there is only free space and no sources, then in-
stead of doing Gaussian back-substitution, we used the
stored values of g1, g2 and gz as coefficients and b7 = 0.
Otherwise, we use the Gaussian substitution process.
This modification is shown in Fig. 4. The functions ¢,
go and gs are also different for each type of dependent
variable z,. To obeying eq. (21), it is only required that
the stored coeflicients are in ascendent order.

The arrays for sparse matrix structure here are sp and
isp. Array sp stores the values of the coefficients of ma-
trix A, and isp stores the columns. The pre-calculated
coeflicients are stored in array Value and the relative col-
umn displacements are stored in relat. Variable pos is
the column of the variable x. Variable typ is the previous
defined ¢=0 for H,, c=1 for Hy, c=2 for E,. The condi-
tion regarding the vicinity excludes also points near the

Is variabie x in
free space enviroment
ith no sources?,

NO YES

A
Generate equations for time t,-n
x+ ¢"x" + M =p"
11 zZz
(It includes Gaussian substitution)

=1

spllev]lj]=
Value[typ][i]

Ispllev]ii}=
relat[typ][ij+pos

NO

Fig.4. Improvement in the algorithm
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boundary of the simulation.
An important consequence of eq. (15) for impulse re-
sponse case is the following equation:

Xi+1 = Al

From this equation, the impulse response (stored co-
efficients) after t time steps is A{. The coefficients as-
sociated with g(i,j,t) are the elements of the P-th row
of matrix A%, where P is the index associated with the
variable H,, H, or E, at position (i,j) and time t, that
is P=(t-1)(3pq)+3qi+3j+c. In Fig. 5 is shown the spar-
sity of matrix Ai° for a model of size 28 x 28 in free
space. The power of matrix Ay becomes less sparse, and
the rows are the coefficients we should store.

The evaluation of the first condition in Fig. 4 is simple
to evaluate for scatterers with simple geometries. In the
case of buildings, the shapes are squares or rectangles.
The evaluation of proximity to boundary or antennas are
also quite simple. It adds a negligible step to the algo-
rithm. But the savings of process for a urban communi-
cation channel simulation are very big. In a model of size
10,000 x 10,000, with 9 buildings, for N=100, form a
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Fig.7. Comparison between parallel FDTD using Green’s function and non parallel FDTD without

Green’s function, t=90At

total of 10% cells, only around 12 million cells=12% need
to run the Gaussian back-substitution, the other 88%
can run the faster direct substitution using stored val-
ues. For a model of size 100,000 x 100,000, n=100, with
36 buildings, the number of cells which needs Gaussian
subsitution is around 203 millions=2.03% of the cells.
The value N=100 is a good value to run the simulation
using 4.5 Gb of memory. A sketch of this is shown in
Fig. 6, where shaded areas use Gaussian substitution
and white areas use faster, stored values.

In a practical point of view, the use of Green’s func-
tion allow us to advance the simulation not in 1 time
step, but instead in many time steps in many regions of
the simulation.

4, Results

To test the accuracy of the convolution equation
(25) as a way to calculated electromagnetic fields using
only impulse response in FDTD and then convolution.
The model is the same small model used in (1), with
propagation from the antenna at point (20,50) emit-
ting a signal like eq. (30), £=950 MHz, J¢ .. = 1000,

mam

tmaz=30At=1.131ns, and a block of concrete in the cen-
ter with parameters are:
¢ Frequency of source :
¢ Cell size, 6: 0.02 m
® Time increment At: 37.7 ps
® Relative permittivity(concrete): 3.0
¢ Conductivity of concrete, o: 0.005 S/m
® Current amplitude: 1000.0 A/m

Jhn = J¢

Fig.7 shows the calculated FE. at t=90At using the
normal FDTD method and the Convolution after im-
pulse response FDTD. The convolution of a discrete
Green’s function after 90 time steps=3.393 ns is quite
accurate to reproduce the resultant field when convolut-
ing with the signal of eq. (30). For our purpose, it proves
that we can use the impulse response stored values for
N=90. As our planned N for very big models could be

950 MHz

sin2w ft; for t < tpaz

1036

Table 1. Comparison table for parallel FDTD
algorithms
Cathegory Other parallel This algorithm

algorithms
Small, medium size: possible
Large size: Not possible
Small, medium size: fast

Space size
Large size : possible

Small size: fast

Processing
time Medium size: less fast

Large size: slow

Large size: Not possible

N=50 or N=100, the results should be accurate.

We have run the improved algorithm in a test case for
a 1000 x 1000 model in free space. There is only one
antenna is located in position (100,100). A simulation
process that takes 70.1 minutes running in 10 processors
with the original algorithm now takes only 5.2 minutes
with the new one = 7.42% of previous time. The value of
N=10, and the evaluated variable was F,(110,110). The
reduction is significant because this variable is near the
antenna source, and many variables in the calculation
will not qualify for the faster process. For other loca-
tions, the process was a bit faster but the balance was
very bad, because some processors got cells far from the
antenna and other processors got cells near the antenna,
so the result is not significant to evaluate the improve-
ment. The stored coeflicients were pre-calculated, stored
in a file and then read for the algorithm. The next ta-
ble shows the actual state of this research compared to
other parallel FDTD algorithms.

The source for the information in the first column
comes from ref. (4),(5),(9). In the standard FDTD
parallel methods mentioned there, the space size of
the simulation is severely limited for the total available
memory.

The second example is a medium ' size model, more re-
alistic, of size 80m x 80m, with the antenna in position
(11m,55m) after 5000A¢=188.5 ns. The urban area has
9 shallow buildings with concrete walls of width 30 cm.

T.IEE Japan, Vol. 122-A, No.12, 2002
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Fig.8. |E,/E;| in decibels. Medium size model
(80m x 80m), t=5000At=188.5 ns

The size of each building is 18 m x 16 m. Others
parameters are the same as at the first example. Fig. 8
shows the ratio | F,./ E;| in decibels, where E,. is the value
of E, at any point and FE; is the maximum value of E,
at the antenna point. It can be appreciated that the be-
havior of the waves is similar to the behavior obtained
by Uniform theory of diffraction (ray tracing).

5. Conclusion

Research on the use of impulse response in this algo-
rithm is being done. The use of impulse response has a
physical equivalent but also a mathematical one in our
system of linear equations. They are the coefficients of
the partial results of Gaussian substitution. In the case
of big urban environments, most of the calculation is
done around free space, therefore, more of the time the
coeflicients are the same. The parallel processing is done
in both cases: linear equations or impulse response coef-
fcients, without further change in the load balance of the
processors. By calculating the coefficients only once and
then using it when possible, we are increasing the speed
of a medium size simulation using parallel processing by
a factor of 13 for small problems, and now we can obtain
the same speed than non parallel algorithms for medium
size problems (80m x 80m). We expect that this process
will be fast enough in biggest problems. The merits of
the algorithm researched until now are the need of less
memory and a processing speed comparable with the
speed of non parallel FDTD for medium size problems.
Our next research will be the solution of the growing
complexity of the algorithm for very large problems with
long simulation times. Only then, combined with these
improvements, we should be able to carry out the huge
simulations of wave propagation in urban areas.

(Manuscript received February 19, 2002, revised July

3, 2002)
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