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A learning method of the Hopfield neural network is presented for efficiently solving combinatorial opti-
mization problems. The learning method adjusts the balance between the constraint term and the cost term
of the energy function so as to keep the Hopfield network updating in a gradient descent direction of energy.

" This paper describes and analyzes the learning method and shows its application to the traveling salesman
problem (TSP). The performance is evaluated through simulating 100 randomly generated instances of the
10-city traveling salesman problem and some TSPLIB benchmark problems. The simulation results show
that the performance of the proposed learning method on these test problems is very satisfactory in terms
of both solution quality and running time. The proposed learning method finds the optimal solutions on the
test TSPLIB benchmark problems in very short computation time.
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1. Introduction

The idea of using neural networks to provide solutions
to difficult NP-hard optimization problems {1], [2] orig-
inated in 1985 when Hopfield and Tank demonstrated
that the traveling salesman problem (TSP) could be
solved using a Hopfield neural network [3], [4]. Since
Hopfield and Tank’s work, there has been growing in-
terest in the Hopfield network because of its advantages
over other approaches for solving optimization problems.
The advantages include massive parallelism, convenient
hardware implementation of the neural network archi-
tecture, and a common approach for solving various op-
timization problems. The greatest advantage of this
method is that a physical device for solving the prob-
lem can be constructed, generating a solution. As the
device is in the form of a complex multiple-feedback cir-
cuit, it is possible to implement it in silicon [5]. To test
the possible device all that is necessary is to simulate on
a computer the response of the circuit in actual working
conditions. Although it may seem a disadvantage that
the particular information of the problem is encoded in
the circuit it must be appreciated that the success of the
basic method opens the way to improvements in which it
is the general information of the problem which becomes
encoded in the circuit. Such circuits could then be used
routinely to solve repeatedly occurring problems in al-
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most a reflexive manner. Without this advantage the
method would be simply a competitor for the solution
of the Travelling Salesman Problem, and as such would
not compare with analogue algorithms such as that of
Durbin and Willshaw [6] or other optimization models
[7][8][9]. Unfortunately, the technique, which requires
minimization of an energy function containing several
terms and parameters, was shown that it often failed to
converge to the valid solutions and when it converged,
the obtained solution was often far from the optimal
solution by Wilson and Pawley [5] in 1988. Since then,
various modifications have been proposed to improve the
convergence of the Hopfield network.

Focusing on the energy function, Brandt [10], Bout
[11] and Aiyer [12] showed that the convergence of the
Hopfield network could be improved by modifying the
energy function. Protzel et al. [13] studied Brandt et
al.’s formulation with different parameters. They found
that despite the improved convergence of the modified
versions of the Hopfield network, the network might not
converge to the solutions with good quality. Takefuji et
al. showed that the decay term in the Hopfield neural
network increases the energy function under some condi-
tions [14]. They modified the motion equation in order
to guarantee the local minimum convergence. However,
with the Hopfield neural network, the state of system is
forced to converge to a local minimum. In other words,
the neural network cannot always find the optimum so-
lution. Therefore, several neuron models and heuristics
such as hysteresis binary neuron model [15], neuron fil-
ter [16], hill-climbing term and omega function [17], La-
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grange relaxation [18] and pots spin [19] have been pro-
posed to improve the convergence of the networks. In
addition, some researchers tried to modify the internal
dynamics of the network to improve the search quality
of solution of the Hopfield network [20] [21]. Smith [22]
summarized the works and demonstrated the potential
of the Hopfield neural networks for solving combinatorial
optimization problems.

Despite the improvement of the performance of the
Hopfield network over more than a decade, this model
still has some basic problems [23], [24], [25]. One of the
problems is that the performance of the Hopfield net-
work is very sensitive to the weights (parameters) of the
constraint term and the cost term in the energy function.
There is no rule of thumb to find out an appropriate pa-
rameter set. Instead, trial-and-error has to be applied.

In this paper, we present a Hopfield network learning
method for efficiently solving combinatorial optimization
problems. The learning method adjusts the balance be-
tween the constraint term and the cost term of the en-
ergy function so as to keep the Hopfield network updat-
ing in a gradient descent direction of energy. This learn-
ing method provides a mechanism for shifting the local
minimum by adjusting the parameter set. We analyze
the learning method theoretically and evaluate the per-
formance experimentally through simulating the TSP.
The simulation results based on 100 randomly gener-
ated instances of the 10-city traveling salesman problem
and some TSPLIB benchmark problems [26] show that
the proposed learning method can find one hundred per-
cent valid solutions which are optimal or near optimal
solutions of these problems.

2. Hopfield Neural Network for Combinatorial
Optimization

The Hopfield neural network consists of many neurons
that are nonlinear elements. In the Hopfield neural net-
work approach, a problem is represented by a Liapunov
energy function including cost and constraint terms that
reflect the objective of the solution. The objective of the
constraint term is to find the valid solution. The objec-
tive of the cost term is to find the best solution. Thus,
in general the energy function of the Hopfield network
with N neurons can be described as following:

BE(Vi,Va, .., Vo) = A By (V1, V2, .., Vi)

B Ey(Vi,Va, oy Vi) -+ (1)

where Fj is the constraint term and FEs is the cost term,
Vi(i =1,--, N) is the output of neuron.

The gradient descent method seeks the local minimum
of the energy function F by using the motion equations
of neurons. Hopfield et al. proposed that the motion
equation is composed of the partial derivation term of
the energy function as the gradient descent method, and
the decay term with a time constant 7 [3]. '

dU; (t)

_OB(VA, Vo, Va)
dt

oV; T

........... (2)

where Uj(t) is the internal state of neuron i
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Takefuji et al. showed that the decay term increases
the energy function under some conditions [14]. They
modified the motion equation in order to guarantee the
local minimum convergence.

dU(t)  OE(V1,Va, ..., Va)
dt aV;

Each neuron updates its input value U; based on the
motion equation. Specifically, the value U;(t + 1) at it-
eration step (¢ + 1) is given by:
dU; (1)

dt

The output is updated from U; using a non-linear func-
tion called neuron model. In the binary Hopfield neural
network, the following McCulloch-Pitts [27] binary neu-
ron model has been used as the input/output function:

:{é

Bach neuron updates its input potential according to
the updating rule (Eq.(4)) and sends its output in re-
sponse to the input according to the input/output func-
tion (Eq.(5)). All neurons operate in parallel and each
adjusts its own state to the states of all the others; in
consequence, the network converges to a final configura-
tion. In this way, we can find the solution to the problem
simply by observing the final configuration that the net-
work converged.

Ui(t + 1) = Ui(f) +

if Uy >0
if U, <0

Vi

3. Learning of Hopfield Neural Network

Although Hopfield and Tank’s simulation [3] on a 10-
city TSP instance showed that the Hopfield neural net-
work was able to obtain a good solution in a reasonable
amount of time, this model has some practical limita-
tions: performance is not always good, and performance
becomes poorer with large problem, typically larger than
10 cities [5]. Furthermore, in the Hopfield network, there
is no way to reach the global minimum from a local min-
imum. As can be seen from the equation of the energy
function (Eq.(1)), the parameter A is used as the weight
for the constraint to ensure the feasible solution, and B
as weight for the optimization criterion. If the value of
A is chosen too small compared with B, the network will
emphasize optimizing the cost term (E2) without giving
enough consideration to the solution feasibility. A high
A does the opposite, may lead to a valid solution, but it
may be far from optimal.

We now propose a learning method that adjusts the
balance between the constraint term and the cost term
of the energy function by modifying the parameters of
these terms so as to keep the network updating in a
gradient descent of energy.

For a energy function consisted from the constraint
term (E4) and the cost term (E3) as described in Eq.(1),
the terrain of the energy function is determined by
the terrain of the constraint and cost terms and the
weights for the constraint and cost terms. We use a
two-dimensional conceptual graph (Fig.1) to describe a



B=1.0
, AE1+BE2
50k, E1

(c)

Fig.1. A two-dimensional conceptual graph of a
part of terrain of energy function.

part of the terrain of the energy function. The value of
the constraint, cost terms, and the total energy function
are reflected in the height of the graph. Abscissa of the
graph corresponds to the possible states of the network.
We consider the case that the constraint term has a local
minimum valley and the terrain of cost function is a de-
scent slope in neighborhood of the local minimum of the
.constraint term as shown in Fig.1 (a). When we set A
and B to 1.0, the terrain of total energy can be expressed
as Fig.1 (b). We can see that the terrain of the total en-
ergy has a local minimum engendered by the constraint
term. However, after we increase the value of B to 3.0,
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the local minimum of the total energy vanishes as shown
in Figl.(c). It will be the same for the case that the
cost term has a local minimum valley and the terrain of
the constraint function shows a descent slope. Although
for simplicity we assumed two-dimensional cases, it will
work in a space of any dimension. Unless the minimum
of the total energy function is not only the minimum of
the constraint term but also the minimum of the cost
term, it is easy to find the direction like Fig.1 of the
minimum. Thus, we can design a learning method for
eliminating the local minima by modifying the parame-
ter set of the energy function.

First, we analyze the mathematics characteristic of the
binary Hopfield neural network at a minimum. It is well
known that at a minimum, the energy function always
satisfy: '

AE; >0 for

i=1,2,..N

The variation of energy of the network with the state
change of neuron s (i = 1,2,-*, N) can be written as:
_ OE(V1,Va,...,VN)
= V.

AEFE; AV, e (7)

where V1, Vo, -+, Vv are the states of neurons at the min-
imum. Using Eq.(1) we have:

OBy (4, Va, s Vi)

g I —
AE; = (A oV,
0E(V1,Va, ..., Vi)
- . .
+B av; ) - AV
for i=1,2,..., N «cieeivriii... (8)

Because the aim of the learning is to make the energy
value of the Hopfield network decrease with the state
change of at least one neuron, we can modify the pa-
rameters A and B to make one of Eq.(8) smaller than
zero. To do this, we establish the following learning rule
from Eq.(8): ,

1. Select one neuron that satisfies the following equa-
tion:

8AEI(‘/rl)‘/27 “‘7VN) A 8E2(‘/17‘/2) >VN)

oV, v, ) <0 (9)

Eq.(9) is equivalent to assuming that the variation of
the constraint and cost terms with the state change of
neuron #i has different direction like Fig.1. Thus it is
possible to make Eq.(8) of neuron i smaller than zero
by modifying the parameters A and B. It is easy to find
the neuron with the relation of Eq.(9) at a general local
minimum. As mentioned above, there is a kind of min-
ima in the total energy function that it is not only the
minimum of the constraint term but also the minimum
of the: cost term. In this kind of minima, there is no
neuron with the relation of Eq.(9) and the local mini-
mum cannot be eliminated using the proposed learning
method. However, this kind of minima is always near
to global minimum. It can be used as the condition of
terminating the learning.
2.Learning rule
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Under Eq.(6) and Eq.(9), we can have two and only
two cases about the values of the two terms of Eq.(8).

Case 1: ——aEl(Vlé‘(ﬁ’ VN) . AV; < 0 and ————8E2(V1’6V2’ Vi)
AV; > 0. In this case, learning is performed by modi-
fying the parameter A according the following learning
rule:

8E2(V1,...,VN)/8E1(V1,...
ov; ov;

7VN)

Anew =-B.

Case 2: —aEz(Vlé“/f’ Yv) . AV, < 0 and 951 (Vs Va,..., V) Viv)
AV; > 0. In this case, . In this case, the parameter B is
modified according the following, learning rule:
8E1(V1,...,VN)/BEQ(%,...,VN)

oV, ov;

Bnew =-A.

where ¢ is a small positive constant that controls the
learning speed. Using Eq.(9) we can see that the mod-
ified parameter (Aney and Bpew) will be positive. In
case 1, after learning, the parameter set becomes A, ¢y,
B, and with the state change of neuron i, the variation
of the energy of the network can be described as the
following formula by applying Eq.(10) into Eq.(8).

OF1(V1,Va, ..., Vi)
oV

AE; =6 - AV s (12)
Using the condition of the case 1, we can see that Eq.(12)
is smaller than zero.

8E1(V1, Vo, ey

Vi)
v, AV<0‘

AE; =§-

(13)
Similarly, in the case 2 the modified parameter set (A4,
Bhew) can lead the following inequation.

8E2(Vvla‘/29 ?VN)
v AV; <0 ----

AE;=6- (14)

From Eq.(13) and Eq.(14), we can see that energy of
the network decreases with the state change of neuron i
under the above learning rule. Furthermore, the modi-
fied parameter set can also lead energy of the network
decrease with the state change of some other neurons.
Thus, the learning eliminates the local minimum that
the network falls into.

Although, we described the proposed learning method “
on the energy function with the constraint term and the |

cost term, other kind of problem with only the constraint
term in the energy function (for example the N-Queens
problem) can also be mapped onto the proposed learning
method by dividing the energy function into two parts.

4. Parallel Algorithm

The following procedure describes the algorithm pro-
cedure for solving combinatorial optimization problems
using the proposed learning method in synchronous par-
allel mode. For the practical problem, in order to re-
duce the computation time we always set the maximum
number of the iteration step. When the iteration step
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exceeds the maximum one, the network is considered as
falling into a convergence state. This rule is usually used
in the binary Hopfield neural networks. If the targ_cost
is the target total cost set by the user as expected one,
we have:

(1) Set the learning parameter §, and initial parame-
ters A, B. Set targ_cost and other constants.

(2) Initialize the state of the network.

(3) Update the Hopfield network in synchronous par-
allel mode with the current parameter set until the net-
work converges a stable state or the iteration step ex-
ceeds the maximum one.

(4) Check the network, if constraint condition and
targ_cost are reached, then terminates this procedure.

(5) Check Eq.(9) for i =1, N

If there is no neuron with satisfying Eq.(9), terminates
this procedure. This means that the network falls into a
minimum that is not only the minimum of the constraint
term but also the minimum of the cost term, and is a
near global minimum.

(6) Select (randomly) one neuron with satisfying
Eq.(9)

(7) Use learning rule (Eq. (10) or Eq.(11)) to compute
the new parameter set.

(8) Go to the step 3.

5. Application to the
Problem

Traveling Salesman

The traveling salesman problem (TSP) is one of
the most famous combinatorial optimization problems.
Nowadays, it plays a very important role in the devel-
opment and testing of new optimization techniques. In
this section, we apply the proposed learning method to
the TSP.

The TSP consist of finding the shortest closed path by
which every city out of a set of N cities is visited once
and only once. In the Hopfield neural network approach,
a TSP instance is represented by an energy function in-
cluding cost and constraint terms that reflect the objec-
tive of the solution. The objective of the constrain is to
find a valid tour, which requires that each city must be
visited once and only once. The objective of the cost
is to find the shortest valid tour. For an N-city TSP
problem, the network consists of N x N neurons and
the neurons are fully inter-connected. The row index
for neuron represents the city. The column index rep-
resents the order of the city in the tour. Therefore, the
constraint term of the energy function can be described
as following:

N N N N
ZZ(EVij—l)2+Z Zsz—l

i=1 j=1 =1 k=1

- (15)

where ¢ and k are the row indices; j and [ are the column
indices; V;; is the state of neuron #ij. The first term of
Eq.(15) enforce the constraint that no city can be vis-
ited more than once and the second term of Eq.(15) does
not allow the salesman to visit two different cities at the
same time.

The cost term of the energy function is given by:



dieVij (Vi,iz1 + Vi,i—1) - (16)

where d; is the measure of the distance between cities
1 and k. Thus, the total energy function of the TSP can
be described as following:

E=A-E1+B-Ey

N N N N
=AY O Vi =12+ AY O Vi —1)?

i=1 j=1 I=1 k=1
N N N
299

i=1 j=1

Z
where A, B are parameters which are used as the weight
for the constraint to ensure feasible solution and the
weight for the optimization criterion, respectively.
The motion equation for neuron #ij is given by:

N
= —2A( Z Vim —1) = 240> Vo — 1)
n=1

By

k=1,k=1

Zk:‘/;/] (Vk: 1 + Vk i— 1) (17>

dU”

k(Visit1 + Viio1) -+ (18)

Applying Eq.(15) and Eq.(16) into Eq.(10) and
Eq.(11), the learning rule Eq.(10) (case 1) and Eq.(11)
(case 2) become:

OFy(V1, ..., Vn) 0E (W4, ..., VN)
Anew = =B - g %y,
+4
N
==B > dx(Veir1+ Vii1)
k=1 k=ti
N N
2[(> Vim — 1) Z ) +6 (19)
m=1 n=1
OFE,(V1, ..., VN) 5E2(V1, o V)
Brew = A =5/ %y,
+4é \
N N
= 24[()  Vim - 1) = (Q_V,
m=1 n=1
N
/ Z dit (Vi,iv1 + Vi,iz1) +0 --- (20)
=1, ki

where § is a small positive constant. According to the
algorithm procedure described in Section 4, we simulate
the TSP. The simulation results are given in the next
section. ‘

6. Simulation Results on TSP

In order to assess the effectiveness of the proposed
learning method, extensive simulations were carried out
over randomly generated instances of the 10-city trav-
eling salesman problem and some TSPLIB benchmark
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problems on PC Station (PentiumIII 800MHz). Simula-
tions referred to initial parameter set at 4=2.0 B=1.0.
In the experiments, § was selected to 0.2. In order to re-
duce the computation time, we set maximum number of
iteration step to 800, when the iteration step exceeds the
maximum iteration; the network is considered as falling
into a convergence state.

The first TSP instance that we tested was a randomly
generated 10-city traveling salesman problem. Figure
2 showed the location distribution of the cities of this
instance. Figure.3 showed the results of a simulation
on the instance that illustrates a typical progressive in-
termediate solution  during the learning. Initially the
Hopfield network converged to a stable state (Fig.3(a)).
From this stable state, we found that in 4¢th visiting, the
salesman did not visit any city, and in 6th and 7th vis-
iting, the salesman visited the same city (city #4). City
#2 and 9 have not been visited. It was obviously not
a valid solution. After the 18th learning, the Hopfield
network found the path of Fig.3(b) with a closed path of
31.196. In this problem, the network performed totally
29 learnings and finally found the shortest closed path
of 28.067 as shown in Fig.3(c). The computation time
of the run on this problem was 4.02 seconds.

Many previous studies used only one data set (the one
used by Hopfield and Tank in their original paper [3])
or a small number of data sets (for example, 10 data set
in [5]) in their simulations. This may result in an unre-
liable conclusion when used in evaluating an algorithm.
The reason is that the performance of an algorithm of-
ten depends on the location distribution of the cities in
a data set. In order to reduce this effect and exactly
evaluate the proposed learning method, we randomly
generated 100 data sets of 10-city problems. For each
data set, 100 runs with different initial input value of
neuron were performed. In these 10000 runs, we found
that the proposed learning method can find one hundred
percent valid solutions in short computation time, and
the solution quality is very good. The average learning
epoch and computation time of these 10000 runs were
24 times and 5.80 seconds, respectively.

Although we generated the very good solutions for 10-
city problem, we could not identify if the solution found
by the proposed learning method is optimal solution. In

9
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Fig. 2. Location distribution of the cities of 10-city

TSP instance.
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Fig.3. Results of a simulation on 10-city TSP
instance.

order to see if the proposed learning method can find
optimal solution, we also tested the proposed learning
algorithm on some TSPLIB benchmark problems [26].
We selected ulysses22 (22-city) and eil51 (51-city) to
test the proposed learning method. The shortest path of
ulysses22 and eil51 generated by the proposed learning
algorithm were 7013 and 426, respectively which were
the same as the best paths proclaimed at TSPLIB [26]
and have been proven to be global optimality. Further-
more, for each of the two instances, 100 simulation runs
with different initial input values of neuron were per-
formed. We found that the proposed learning method
could find one hundred percent valid solutions and the
rates of optimal solution were 63

It is worth to note that our simulations were per-
formed on a series computer for generating optimal or
near-optimal solution to TSP, and naturally result in
large CPU times that were uncompetitive with alterna-
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tive techniques. We adhered to the philosophy that the
model being tested should be always having a possible
“silicon implementation” [5][22]. Thus on a parallel com-
putation device the computation time of the proposed
method will become very short. Furthermore, because
of the simplicity of the proposed learning method, it is
easy to implement the proposed method on electronic
circuits.

7. Conclusions

A Hopfield network learning method for efficiently
solving combinatorial optimization problems was pro-
posed in this paper. The learning method adjusts the
balance between the constraint term and the cost term
of the energy function so as to keep the Hopfield network
updating in a gradient descent direction of energy. The
learning method was analyzed theoretically and evalu-
ated experimentally through simulating the TSP. The
simulation results based on 100 randomly generated in-
stances of the 10-city traveling salesman problems and
some TSPLIB benchmark problems showed that the pro-
posed learning method could find hundred percent valid
solutions that are optimal solutions or near optimal so-

" lutions. The proposed learning method is not limited for

solving the local minimum problem of Hopfield network;
it can be also used to solve the local minimum prob-
lem of quadratic polynomial function in [0,1] topological
space. ’
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