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Three-dimensional(3D) shape representation is a powerful tool in object recognition that is an essential
process in an image processing and analysis system. Skeleton is one of the most widely used representations
for object recognition, nevertheless most of the skeletons obtained from conventional methods are susceptible
to rotation and noise disturbances. In this paper, we present a new 3D object representation called a modified
exoskeleton (m.FS) which preserves skeleton properties including significant characteristics about an object
that are meaningful for object recognition, and is more stable and less susceptible to rotation and noise
than the skeletons. Then a 3D shape recognition methodology which determines the similarity between an
observed object and other known objects in a database is introduced. Through a number of experiments on
3D artificial objects and real volumetric lung tumors extracted from CT images, it can be verified that our
proposed methodology based on the m[S is a simple yet efficient method that is less sensitive to rotation,
noise, and independent of orientation and size of the objects.
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1. Introduction

Due to the progress of modern technology, 3D volu-
metric images with high resolution, such as multi-slice
CT images, are made available for use in image process-
ing, and the structure of a 3D object is more complicated
than that of the 2D which makes an image analysis by
a human observer even more difficult. Therefore, we
need a computer system for 3D shape description and
recognition.

This paper presents a new 3D object representation
and a shape recognition system for 3D binary images.
The system is comprised of two main processes: shape
description and matching processes. Given a database
of known objects which hereafter are called models, the
objective is to identify an unknown observed object with
one of the models in the database regardless of its size,
position, and orientation. In shape description process,
an object is generally reduced to its compact represen-
tation, such as boundary or skeleton, where important
information for use in the recognition process can be
retrieved. Besides, it frequently occurs that an object
may be distorted by noise, movement and other errors
during the process, therefore, a good selection of ob-
ject representation that is less susceptible to such er-
rors is also essential. Moreover, our concentration is on
shape representations which transform an object into
some meaningful numerical values used to calculate a
similarity measure between two objects. We define effi-
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cient representations as those which give small similarity
measure for similar shapes whereas large value for differ-
ent shapes. In the recognition system, once the object
is represented by its compact form, the observed object
is compared with each model by their representations,
and the similar models ranked by similarity measures
are returned as results.

During the past few decades skeleton and its applica-
tions have been attractive research areas in image pro-
cessing and analysis. Skeleton is a structural represen-
tation that provides an effective object representation
for shape recognition ) and visualization ® & @ in both
two. dimensions and three dimensions. A skeleton of a
volumetric object provides a compact description, and
can be extracted by various methods such as those in-
troduced in @ & & ® (M@ Tt is. however, sensitive to
subtle shape changes caused by rotation or noise. Exis-
tence of a small hole or cavity can cause major change
in skeleton structure. This sensitivity is an open prob-
lem that motivates us to derive an object representation
which is more tolerant of noise.

We have proposed a new object representation called
a modified exoskeleton (mFES) for two dimensional bi-
nary images . The mFES is a special type of skeleton
that is less sensitive to distortion caused by rotation
and noise. It contains significant information for use
in object recognition and reconstruction as the skeleton
does. In our previous work, exoskeletonization is based
on the 4-neighbor distance transformation and the effec-
tiveness of the proposed method has been demonstrated
only for 2D objects . It is well known that the skele-
ton obtained by the 4-neighbor distance transformation
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is sensitive to rotation, and the utilization of Euclidean
distance transformation is effective in alleviating the ro-
tation sensitivity. This paper shows that the mES is
effective in recognizing 3D objects whose skeletonization
is based on the Euclidean distance transformation. The
proposed 3D object recognition system, which uses mES
for shape description and has a matching process based
on. the mFES, is simple, fast, and independent of size,
position, and orientation of the 3D observed object. In
order to evaluate the effectiveness, we demonstrate how
well it can recognize 3D artificial and real objects, and
compare the results against those of the skeleton. A few
methods for shape recognition based on 3D skeletons
have been introduced in the literature, e.g., the method
presented in uses the mix application of the medial
axis transformation and the symmetry transformation
to extract a skeleton that makes the skeleton rotation
invariant, however, it is still sensitive to noise.

The remaining of this paper is organized into 4 sec-
tions. Basic notions and the exoskeletonization algo-
rithm for 3D objects are presented in section 2. The
matching algorithm is described in section 3. Several
experiments are discussed in section 4 followed by con-
clusions in section 5.

2. Basic Notions

In this section we review a fundamental definition of
the original exoskeleton and present a definition for 3D
mkES. Our proposed mES has been developed to alle-
viate the distortion caused by image noise and segmen-
tation error by combining the skeleton with the original
exoskeleton and the invariant property of a symmetri-
cal object. Then an exoskeletonization algorithm based
on Kuclidean distance transformation is described along
with illustrations.

2.1 Original Exoskeleton  In a binary image, if
we define an object as a set of feature pixels, a skeleton
can be extracted from either a set or the complement of
a set. A skeleton extracted from a set of feature pixels
is a typical skeleton, whereas a skeleton of the comple-
ment of the set is called an exoskeleton. Even though
the exoskeleton is not used directly as an object rep-
resentation, its concept is partially included in many
other object representations, such as Voronoi diagram,
Delaunay triangulation @ @ and a well-known tool in
segmentation, namely SKI1Z. ‘

J. Prewitt used the skeleton of the background of iso-
lated objects(called by her an ”exoskeleton”) in order
to characterize their zones of influence *». Let F be
a binary image or a set and Xi, Xs,..., X,, be isolated
objects of F:

F=|JXii#j = Xi# Xy (1)
=1

If S(F) defines the skeleton of set F' then the skeleton
of the complement of the set F called the exoskeleton of
F can be expressed as

BHHC, 123 %25, 2003 F

293

2.2 Modified Exoskeleton in Three Dimen-
sions The 3D mES is generalized from the 2D mES
® and is defined as follows:

Definition Let X = {(z,y,2)} be an object in the
binary image F, and C = {(z,y, z)} be the intersection
of X and a sphere that circumscribes the object X as
shown in Fig. 1. The mES and the exoskeleton function
mesf can be expressed as

mES(X) = {(x)y%z)l(xvyaz) €,

D(z,y,z) > max

D b 7"4 b
(P,qm)GN(w,y,Z)[ (,q,7)]
D(p,q,7) =

min

(lmn)eC

mesf(z,y,z) = {D(z,y,2)|(z,y,2) € mES(X)}

where N(z,y,2) is a set of neighbors of (z,y,z), and
d((z,y,2),(l,m,n)) is the Euclidean distance from a
voxel (z,y,z) in the intersection C to a voxel (I,m,n)
in C. In general an exoskeleton can be represented by a
local parametrization as mES = (z,y, z, mesf(z,y, z)).

Fig. 1. Illustration of an object in spherical back-
ground (Cross section of 3D image).

The general concept of the 3D mES is analogous to
the 2D mES except that a sphere is used as a symmet-
rical background and it is, in particular, a skeleton of a
sphere with the original object embedded in the center.
Beside the properties previously mentioned, the mES
also allows the original object to be partially or fully
reconstructed.

A typical example of the skeleton and the mES of
an ideal sphere and a sphere with a small hole and a
tiny crack are shown in Fig. 2. For better visualization,
only the central parts of the original object and the de-
formed object are extracted and displayed. It can easily
be notified that the skeleton structure is very sensitive
to noise.

2.3 Exoskeletonization Algorithm The ex-
oskeleton extraction in this paper is based on the al-
gorithms for exact Euclidean distance transformation
(EDT), and the skeleton extraction introduced in %
@4 The EDT converts a binary image into an im-
age whose each voxel has a value corresponding to the
distance to its nearest background voxel. In the past,
Euclidean distance transformation was seldomly used
because its computation time was quite costly. Fortu-
nately, many improved algorithms have been introduced
in the literature ¢ (:*) 48 which reduce the computation
time significantly and make it possible to compute Eu-
clidean distance for large binary images.

[d((p, q,7),(l,m, n))}}:



The exoskeleton extraction process is analogous to the

skeleton extraction, except that it requires a preprocess
to generate a spherical background. This process is ap-
plicable to any binary images, and can be performed in
the following steps:

Step 1. An object is embedded in the center of a gen-
erated sphere whose radius R is equal to the longest
distance from the centroid to the boundary of the ob-
ject plus a constant value e to ensure that the sphere
covers the original object thoroughly. The radius R can
be obtained from

R:

max {d((lga mg,ng), (,m,n))}+e- -

(I,m,n)eX

(3)

where (lg, mg, ng) is the centroid, (I, m,n) is any voxel in
the object, and d(.,.) is the Euclidean distance between
two voxels (see Fig. 3(b)).

Step 2. Next, the distance value D(z, y, z) for each voxel
in the intersection C of the sphere and X is computed
by using Euclidean distance transformation ¢4,

Step 3. Finally, the intersection C is reduced to the m S
in two scans ** and the distance corresponding to each
voxel is stored in the mesf (see Fig. 3(c)).

The advantage of the proposed mFES is that it is ro-
bust against rotation and noise disturbances, and the
reasons are as follows: (1) The main structure of any
conventional skeleton concentrates, in general, around
the center of gravity of an object where the skeleton
function values are large which makes the skeleton very
sensitive once the object is distorted by noise. The
mES, on the contrary, disperses around the object (see
Fig. 2(c)) and so every voxel has its own significant.
(2) The effects of noise and/or rotation spread through-
out the entire skeleton and the values of the skeleton
function are also influenced in a wide range. Distor-
tion can easily disrupt the main structure of the skele-
ton as well as the skeleton function. The variations of
these two components cause the similarity measure to
diverge. Not like the mES, the extent of noise distur-
bance and/or rotation merely affects the local parts of
the mES nearby the noise and the variation of the mesf
is relatively small (see Fig. 2(f)).

3. Matching Algorithm

Our proposed matching algorithm has been developed
for use with either the skeleton or the mFES, it esti-
mates the similarity between two objects based on the
distance measure and the (exo)skeleton function. The
fundamental scheme has been implemented on 2D bi-
nary images " and is extended to 3D version.

'In the case of the mES, the algorithm searches for the

. matches each voxel in the mES; with its nearest one

local similitude between the mES of the observed object -

and the mFE S of a model in two steps. First, it compares
the size of the two objects, the mES of the larger object
is assigned as a mES7 and that of the smaller one as
a mESs. To handle translation, the origin of the axial
system is moved to the center of gravity of the objects
so that both objects have center of gravity at the origin
and one object is superimposed on the other. It, then,
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in the mES,. In finding the best match for each voxel,
the mesf is also taken into account. When matching
voxels of the two mESs that represent similar compo-
nents, their mes fs should be similar. On the other hand,
these values should be different if they represent different
components. The mesf is used as a weight function to
ensure that the matching of voxels representing similar
components has less effect on similarity measure whereas
the matching of different components has greater effect.
The distance between the voxels and the difference be-
tween their mes fs are accumulated and used to compute
the similarity measure F; with respect to the first ob-
ject. Second, each voxel in the mESy is matched with
its nearest one in the mFE.S7, and the similarity measure
Ey with respect to the second object is computed. The
similarity measure F, which provides a mean for deter-
mining the overall similarity, can be calculated from the
following equations:

E= Hﬂin{El (a) + Ex(a)}

{ZZstl(u,v,w)}/Kl
(Y sy, 20} /Ko

E1 (0,) =

E2 ((L)

sdy = /(2" — au)? + (v — av)? + (2/ — aw)?+

[mesfo(z!,y, 2') — a(mes f1(u, v, w))]?

sdy = /(& — au')? + (y — )2 + (z — aw')>+
[mes fo(z,y, 2) — a(mesfi (v, v/, w'))]?

(2’9, 7')" = Rot(e, B,7)(w,y, 2)"

(u',v", w')* = Rot(e, B,7)(u, v, w)*

where (z,y, 2), (z',v/,7"), (u,v,w), (v,v',w") are coor-
dinates of voxels in the two mESSs, a is a scaling fac-
tor, and K3, Ko are the numbers of voxels in mES
and mES,, respectively. The Rot(a, ,) represents a
rotation matrix around the three major axes. These an-
gles are iteratively varied within the range of —90° <
o, B,v < 90° to find the values that best match with the
orientation of the object. Meanwhile, the scaling fac-
tor is exhaustively searched within a range. This search
range can be set from p which is obtained from the ratio
of the longest distances from the boundary voxels to the
centroids of the objects. This longest distance is actually
equal to the radius of the spherical background when &
is equal to zero, and thus, the p is computed from:

where the subscripts of R denote the name of the mESs.
This matching process is performed on every pair of ob-
jects and the algorithm finally recognizes the observed
object as a model in the database whose similarity mea-
sure [ is minimal.
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(a) An original sphere (b) A skeleton

(d) A deformed sphere (e)

Fig. 2.

(a) An original object (b) After step 1

Fig. 3.

4. Experimental Results

To evaluate the robustness of the mES and the per-
formance of the recognition system, we compared the re-
sults obtained from the mES-based method with those
obtained from the skeleton-based method. Both the
skeleton and the mES extractions were based on the
Euclidean distance transformation. The experiments
were conducted on a database of nine 3D artificial bi-
nary objects in images of size 80 x 80 x 60 voxels, and
a database of seventeen volumetric lung tumors seg-
mented from CT images of size 152 x 152 x 152 voxels,
where the scaling range used in all the experiments was
p*1.0171 < a < p % 1.01%5 interval of 1.01.

4.1 Artificial Data The experiments for arti-
ficial objects were divided into three different cases.
The first experiment was the matching between differ-
ent shapes; i.e., between the observed object and each
model in the database. The second experiment con-
sisted of two tests, one was the matching between each
object and its rotated versions, and the other one was
the matching between each rotated version and mod-

#
e
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" (c) A mES

f) A mS

Examples of the skeletons and the mESs of 3D objects with their central slices.

(¢) A mES and its central slice

Exoskeletonization process for 3D object.

els in the database. The degree of rotation 8,0,,0,
around the three coordinate axes varied within the range
of —90° < 6,,0,,0, < 90°. Finally, the third experiment
was the matching between noisy versions of each object
and models in the database where two kinds of noise
were added to the original object, namely internal noise
and boundary noise.

In the first experiment, the matching between differ-
ent shapes was performed on the object database con-
sists of nine different shapes. Examples of the original
objects and their mFESs are as shown in Fig. 4. The
confusion matrix of the similarity measure E based on
the skeleton and the mKES is shown in Table 1, where
the upper-triangular matrix shows the matching results
of the skeleton-based method, and the lower-triangular
matrix shows the results of the mFES-based method.
Smaller value of E indicates similarity whereas larger
value of F indicates dissimilarity. It can be verified that
there is an anology between these two approaches, i.e.,
most of the matching results give the same order of sim-
ilarity. However, some differences can be seen from the



confusion matrix. For example, the order of similarity

for a ’Cross’ shape based on the skeleton in ascending

order is an ’E’, a ’Cylinder’, and a 'Box’ while the or-
der of similarity for the same shape based on the mES
in ascending order is a 'Box’, a ’Sphere’, and a 'Cylin-
der’. The reason that the 'Cross’ shape is best matched

with the letter ’E’ for the skeleton-based method is be-.

cause the letter 'E’ is composed of both vertical and hor-
izontal components similar to the ’Cross’.On the other
hand, the position of these vertical and horizontal com-
ponents with respect to the spherical background can
be determined from the mesf since the values stored in
the mesf can tell how far the boundary of an object is
from the spherical background, thus the ’Cross’ is more
like a 'Box’ for the mFES-based method. It is difficult to
explicitly declare which method gives better matching
results, it depends on each observer’s perception. Most
of the matching results obtained from both methods are
reasonable and coincide with human perception. The
quantitative evaluation is given in the second experi-
ment. Another interesting result is the matching of a
"Sphere’ shape, the order of similarity based on skele-
ton seems to be reasonable, but the similarity measures
are too extreme to be acceptable. The main reason for
such extreme similarity measures between the ’Sphere’
and other objects is because the skeleton of the sphere
contains only one voxel.

The matching based on the mES was repeated sev-
eral times with different sizes of spherical background.
Various sizes of the sphere were used in order to exam-
ine the effect of the radius over the similarity measures.
The constant value ¢ was varied from 1 to 50 in 10 steps.
From a number of experiments, the results reveal that
the size of the sphere imposes no effect on the matching
results because the orders of similarity are always the
same no matter how large or how small the sphere is.
The only difference is that the similarity measure grad-
ually increases as the sphere gets larger, this is because
the similarity measure relies on the distance between two
voxels and the mesf value, and these values increase as
the sphere gets larger. However, this increment is propo-
tional to others and not significant enough to affect the
order of similarity. Thus, smaller size is more preferable
in terms of memory requirement, and computation time
as the size of the mES depends on the size of the sphere.
In our experiments, € = 2 was used.

In the second experiment, each object was rotated
around the three coordinate axes in the range —90° <
0z,0y,0, < 90° and 36 rotated versions were produced.
The experiment was divided into two cases. The first
case was to compare each object with its rotated ver-
sions to observe the variation of its representation. The
results obtained from the skeleton-based and the mES-
based methods were evaluated by their relative disper-
sions or coeflicients of variation (CV'). It measures vari-
ability in relation to the mean, and lower value of CV
is more preferable since it indicates that less variation
occurs. To calculate the coefficient of variation, we find
the mean p and the standard deviation o of the simi-
larity measures E between each object and its rotated
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versions. The coefficient of variation expresses the vari-
ation of the throughput as a percentage of the mean and
can be calculated as follows:

oV = (S—D) 100 = (5>
\'mean S\

The results shown in Table 2 indicate that all of the coef-
ficients of variation of the mE S-based method are lower
than those of the skeleton-based method which means
that the mES is less sensitive to distortion caused by ro-
tation even though the skeleton obtained from Euclidean
distance transformation is known to be insensitive to ro-

- tation.

In the latter case of the second experiment, each ro-
tated version was compared with models in the database
and the following relative distance with respect to the
two distributions was calculated.

Relative distance(RD) = |pu1 — pz|/o,

where 0 = (01 + 02)/2. The mean p; and the stan-
dard deviation oy were calculated from the similarity
measures between rotated versions of the object and
the models except the object itself, whereas the mean
p2 and the standard deviation oo were calculated from
those between the original object and its rotated ver-
sions. The relative distance for each object is shown in
Table 3. It can be notified that most of the relative dis-
tances derived from the mES-based method are larger
than those derived from the skeleton-based method. We
also evaluated the performance of the mES-based shape
recognition by. comparing the error rates based on the
mES with those based on the skeleton as shown in Table
4. The average error rate for the mES is 0.068 which
is smaller than 0.133 for the skeleton. By observing the
experimental results in detail, we found that most of the
errors occurred when the degrees of rotation were in the
vicinity of 45° for both methods.

The third experiment was performed regarding recog-
nition of noisy objects. Most of the conventional skele-
tons are known to be very sensitive to noise. If we con-
sider a hole or a cavity as noise, only one additional voxel
of noise can absolutely transform the skeleton structure.
In the last experiment, each object was distorted by in-
ternal noise and boundary noise. Noise was added to the
object by converting object voxels to background voxels
with a probability 6. The amount of added noise can
be varied by changing the value of § within the range of
0 < § < 1. For internal noise, noise was added to the
object in arbitrary position, and fifteen noisy versions
were generated for each object. For boundary noise,
noise was added to the object by randomly selecting the
boundary voxels and their neighbor background voxels
and reversing these selected voxels, and fifteen deformed
versions were generated for each object. Each noisy ob-
ject was then compared with models in the database.
The skeletons and the mESs of the Cross’ shape and
its noisy version are shown in Fig. 5. The error rates of
both methods are shown in Table 4. It can be seen that
a small cavity caused the main structure of the skeleton
to vary in a wide range, whereas, the main structure of
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(a) An original object (b) A mES of (a)

Fig.4. Examples of 3D objects and their mESs with their cross-section slices.

Table 1. Confusion matrix of similarity F based on the skeleton and the mES

Object | Box | Ring d | Cylinder | Sphere | Cross E U | Ribbon
Box 0| 20.10 | 19.00 9.17 | 101.43 | 11.38 | 11.75| 21.73 13.22
Ring | 11.20 0| 7.50 19.04 | 129.16 | 13.36 6.17 3.89 7.44
d|37.76 | 17.64 0 22.38 | 135.92 | 15.09 5.59 7.26 10.63
Cylinder | 9.21 | 15.70 | 49.74 0| 88.09| 10.06 | 16.47| 18.02 14.79
Sphere | 11.84 | 18.49 | 56.68 ‘ 6.28 0| 109.93 | 125.31 | 130.24 | 132.306
Cross | 9.28 | 15.99 | 37.33 11.32 9.31 0 8.92 | 16.13 11.64
E|17.29 | 9.78 | 13.43 25.85 | 28.85| 18.28 0 6.81 10.35

U |[10.37| 5.99 | 27.36 13.94 | 18.06 | 15.73 | 12.04 0 6.308
Ribbon | 14.57 | 11.44 | 23.87 17.26 | 22.25| 16.81| 11.55 9.53 0

(Upper-triangular matrix: skeleton-based method, lower-triangular matrix: mES-based method)

Table 2. Variation of matching results between each object and its rotated versions based
on the skeleton and the mES

skeleton mEBES (e = 2)
Object | maximum | mean (x) | SD (o) CV | maximum | mean (u) | SD (o) (4%
Box 4.25 2.67 1.76 | 65.92 3.00 2.22 1.00 | 45.14
Ring 8.28 2.99 2.65 | 88.42 10.37 4.02 3.13 | 77.97
d 8.94 3.21 2.88 | 89.91 8.86 3.64 2.78 | 76.35
Cylinder 7.10 2.87 2.33 | 81.46 4.94 2.1146 1.55 | 73.29
Sphere 80.05 57.08 39.01 | 68.33 3.68 2.21 1.21 | 54.89
Cross 9.81 5.03 3.81 | 75.76 8.96 4.48 3.38 | 75.28
B 10.33 4.70 3.69 | 78.59 8.22 4.02 2.97 | 74.00
U 6.65 3.11 2.46 | 79.17 5.19 2.78 1.82 | 65.44
Ribbon 5.12 1.88 1.56 | 83.12 3.92 1.57 1.28 | 81.63

Table 3. Relative distances of the skeleton-based and the mFES-based methods on rotation.

skeleton mES (e = 2)

Object T oHa o o1 oq | relative distance p1 Ha o1 oz | relative distance

Box | 23.09 | 2.67 | 30.11| L1.76 1.28 | 18.50 | 2.22 | 10.25 | 1.00 2.01

Ring | 22.96 | 3.00|40.38| 2.65 0.93 | 11.80 | 4.02| 6.013.13 1.70

d| 2482 3.21|42.24| 2.88 0.96 | 29.32 | 3.64 | 17.97 | 2.78 2.47

Cylinder | 22.00| 2.87|25.66| 2.33| 1.37 | 16.59 | 2.11 | 14.39 | 1.55 1.82

Sphere | 105.82 | 57.08 | 42.83 | 39.00 3.98 | 19.08 | 2.21 | 16.57 | 1.21 ‘ 1.89

Cross | 21.83| 5.03|33.37| 3.81 0.90 | 14.89 { 4.48 | 10.11 | 3.78 1.49

E| 21.26| 4.70|39.28| 3.69 1.21 | 15.23 | 4.02 | 8.66 | 2.97 1.93

U| 23.37| 3.11|40.71 | 2.46 . 0.94|12.56 | 2.78 | 7.72 |1.82 : 2.05

Ribbon | 22.96 | 1.88|41.23| 1.56 0.99 | 14.15 | 1.57 | 7.18 | 1.28 2.97

average ' 1.40 | average 2.04
the mES was almost unchanged and only a few voxels rates of the mESs are lower than those of the skeletons
nearby the cavity were added to the mKS. The ma- for both boundary and internal noise. The results yield
jority of errors occur when the noise density increases, the average error rate of 0.081 for the mES and 0.174

however, improvement in error rates for noisy objects for the skeleton.

based on the mES is exemplified in Table 4, the error
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Table 4. Exrror rates of the skeleton-based and the mES-based (¢ = 2) methods regarding rotation

and noise disturbances.

Rotated version || Boundary noise | Internal noise Noisy version Total

Object || Skeleton | mES || Skeleton | mES | Skeleton | mES | Skeleton | mES || Skeleton | mES

Box 0 0 0.200 | 0.133 0.333 | 0.267 0.267 | 0.200 0.121 | 0.091
Ring 0.361 | 0.306 0.067 | 0.067 0.067 | 0.133 0.067 | 0.100 0.227| 0.212|

d 0.278 [-0.028 0| 0.133 0.067 | 0.333 0.033 | 0.233 0.167| 0.121

Cylinder 0 0] 0 0 0 0 0 -0 0 0

Sphere 0 0 0.933 0 0.933 o] 0.933 0 0.424 0

Cross 0.083 | 0.111 0 0 0.133 | 0.067 0.067 | 0.033 0.076 | 0.076

B 0.056 | 0.028 0 0 0 0| 0 0 0.080 | 0.015

U 0.250 0 0 0 0.067 0 0.033 0 0.152 0

Ribbon 0.167 ] 0.139 0.133 | 0.133 0.200 | 0.200 0.167 | 0.167 0.182| 0.152

average 0.133| 0.068 || . 0.148 | 0.052 0.200| 0.111 0.174|.0.081 0.153 | 0.074

4.2 CT Lung Data We conducted the experi-
ment on a database of seventeen real volumetric images
of lung tumors segmented from CT images by a 3D re-
gion growing method. The CT data have a resolution
of 512 x 512 where the pixel size is 0.38 ~ 0.42 mm and
slice interval and thickness are 1.0 ~ 2.0 mm which were
altered to be equal to the pixel size by using cubic in-
terpolation. After segmentation of each volumetric Iung
tumor, the image size was cropped to 152 x 152 x 152
voxels. Each image has one tumor and there are nine
malignant and eight benign tumors as shown in Fig. 6.
In general, benign tumor has smooth and round shape,
whereas malignant tumor tends to have irregular shape
with bulges. ‘

In this experiment, we first calculated the similar-
ity measure between every pair of lung tumors, then
the k-clustering algorithm was used to classify lung tu-
mors as either benign or malignant. The initial proto-
types(seeds) of the two classes are selected from a pair of
the tumors whose similarity measure is maximal, then
each tumor is classified into one of these classes using
k-clustering algorithm (k = 2) with the sum of the sim-
ilarity measure as the cost function. To evaluate the
classification results based on the mES, we compared
them with those of the skeleton, and the results indicate
four misclassifications for the mES-based method and
five misclassifications for the skeleton-based method. In
Fig. 6, misclassified tumors are surrounded by rectan-
gles. As can be seen from this figure, the errors of the
mES-based classification mostly occur in the case of
benign tumors with protrusions which may result from
parts of the tumor that touch the blood vessels, and the
malignant tumors with smooth surface.

5. Conclusions

In this paper, a 3D binary object representation called
a modified exoskeleton (mFES) and a methodology for
3D shape recognition are presented. The mES inte-
grates the original exoskeleton with rotation invariant
property of symmetrical object and the skeleton function
into an efficient object representation. Its main purpose
is to alleviate distortion caused by rotation and noise
that most conventional skeletons have encountered. A
recognition system is then used to evaluate the robust-
ness of the mFES against that of the skeleton in how
well they can represent the object. The system extracts

the skeleton/mESs from the objects using the Euclidean
distance transformation, and matches the observed ob-
Jject with the most similar model in the database regard-
less of its size, position, and orientation. The matching
algorithm presents the similarity between two objects in
term of distance measure where the object is recognized
as a shape model whose distance is minimal.

The results obtained from the experiments on arti-
ficial objects are quite promising. The statistical re-
sults in Tables 2, and 3 indicate that the mES is more
stable to distortion caused by rotation, and the error
rates shown in Table 4 ensure that the mES is also less
sensitive to noise disturbance than most conventional
skeletons. From the experiments on artificial objects,
the overall recogintion rate of the mES-based method
is 92.6% whereas that of the skeleton-based method is
84.7% which indicates an improvement of 7.9%. For
real volumetric lung tumor classification, we obtained
the recognition rate of 70.6% for the mE'S-based method
and 64.7% for the skeleton-based method which accounts
for 5.9% improvement.

Furthermore, the experiments on lung tumor indicate
that shape feature is one of the features that can be used
to classify tumor, however, the experimental results re-
veal that we may need to combine shape with other fea-
tures to make our classification more accurate since the
problem arises when both classes of tumors have similar
shapes.

This research work is our first step in 3D shape recog-
nition using the mES. The development of better lung
tumor classification is in the progress. Further exten-
sions concerning recognition and classification system
based on the mES for 3D gray scale images are our
future research projects.
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(a) A cross

(d) A cross with a cavity (e) A skeleton

Fig. 5.

(f) A mES

A skeleton and a mES of a cross and a cross with a cavity.

(b) Benign tumors.

Fig. 6.
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