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A robust matching scheme for computing optical flow within a sequence of grayscale images is proposed.
The technique employs the gradient information in textured images for extracting features in the form of ori-
entation codes, which are then used for matching. The proposed method has been found to be robust in cases
of matching under different ill-conditionings especially illumination variations. We utilize its robustness to
compute optical flow in cases where illumination fluctuation is a problem and matching pixel brightness can
introduce errors. Results of computation of optical flow field on real world scenes in the cases of translation,
rotation and zooming have been presented and compared with other region matching techniques.
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1. Introduction

Computation of optical flow (apparent relative mo-
tion between 3-D objects and camera obtained as its
projection on image plane) is an area of active research
with many applications like robotics, surveillance, tele-
vision coding, etc. Approximations to image motion
are obtained by computation of image velocity fields
by finding the optical flow vectors from consecutive im-
ages of a sequence. The computed velocity fields can
then be used to extract information about 3-D motion
and scene structure (V. The following various methods
for computing optical flow have been proposed: gradi-
ent based methods introduced by Horn and Schunck ¢
and its many variations @~ frequency-based filter-
ing methods ® © and correlation-based methods **~¢2),
Detailed surveys of the various methods and issues in-
volved are available in references *® @4, A comparison
of performance of most popularly known optical flow
computation techniques is provided in Barron et al. @%.

Differential methods require algorithms to minimize
some functionals for computing optical flow since their
basic optical flow constraint equations are ill-posed.
Correlation-based methods search for the closest match-
ing patterns in successive images within the vicinity of
the point for which the velocity vector is desired. These
methods are inherently stable since the displacements for
all pixels in & region which is used for computing optical
flow for a certain pixel are similar and largely overlap
with the region used for finding flow vectors for adja-
cent pixels; thus no additional constraints are necessary
for smoothing the flow vectors. However, direct use of
image brightness for establishing a match can cause er-
roneous results since brightness can vary in real images
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which may be attributable to many factors, e.g. illu-
mination fluctuations due to the variations commonly
encountered in the indoor lighting, shadowing effects by
different objects in a cluttered environment, highlighting
etc.

Although the optical flow estimates the 2-D velocity
vectors in image frames separated by very small (differ-
ential) time intervals, many physical systems may ex-
ist for which it may be desirable to increase the inter-
val from the order of milliseconds to the order of min-
utes. For example, in processing a pre-recorded video for
tracking objects, the interval between image frames to be
used for computing optical flow may be selected based on
a-priori information about expected object speed. There
may be cases when the apparent speed of certain object
is too slow to justify the image capture rate at very
high frequencies such as tracking a marine vessel from
shore or the tracking of plant growth “®. For such situa-
tions, the larger intervals between two successive frames
may sometimes cause significant brightness variations
between the two images.

In indoor environments, the movement of some glossy
object at some instant may cause some part of it to
be highlighted resulting from reflection of the indoor il-
lumination. Similarly, a fast moving light source may
cause a shiny object to illuminate suddenly at different
points during a sequence capture. Yet another source of
sudden variation in illumination can be the indoor flu-
orescent light which involves flickering due to periodic
ionization of the gas inside the tube. This flickering, al-
though not perceptible by human eye, can be captured
by cameras sensitive enough to such flickering resulting
in brightness variations between frames.

Some pre-filtering has been proposed for computing
optical flow by matching-based methods such as sum of
squared difference (SSD) or the sum of absolute differ-
ences (SAD), like construction of Laplacian pyramid "
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Fig. 1.  Tlustration of matching with occurrence of
shadow. :

to make them more stable in these situations.

In this study, we propose the use of a robust matching
scheme called the orientation-code matching (OCM) 7
for estimating displacement vectors within a sequence
of images. This method has been found to be robust in
cases of matching under different ill-conditionings like
varying illumination and partial occlusion. We utilize

the robustness of this method to compute the optical -

flow vectors in cases where illumination fluctuation is a
problem and matching pixel brightness can introduce er-
rors. The problem of occlusion is not attempted in this
study since we use small subtemplates for finding their
closest matches in the next frame, while for handling the
problem of occlusion, relatively large templates are re-
quired which is not suitable for computing optical flow
field. ‘

The paper is organized as follows: Section 2 describes
the use of matching algorithms for finding optical flow
and formalizes the definition of OCM and its robustness
to brightness variations. A simple algorithm for comput-
ing flow vectors and implementation are given in Section
3. Experimental results are given in Section 4 and the
conclusions are given in Section 5.

2. Optical Flow Estimation

by Region
Matching ‘

Region-based matching methods like SSD use small
patches of predefined size from one frame to search its
best possible match within the vicinity of the same point

in the next frame in order to estimate the optical flow. In

general, for the case of rigid body motion nearly parallel
to the image plane, this method is quite realistic since
motion vectors will be similar for all the pixels consti-
tuting the part of an object *®. However, in real envi-
ronments, variations in image brightness may be caused
by shadows or environmental lighting fluctuations and
as a result, the computed vector field may not be well-
posed. An example is illustrated in Fig. 1 in which
a region from the first frame is searched in the second
frame for the closest match; a shadowing effect causes
the brightness of some part of the target to change as

it moves across the shadow boundary. Computation of

optical flow vectors using brightness matching only can
lead to erroneous results. For handling such problems of
matching under varying illuminations, we propose the
use of orientation code matching (OCM).

*
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Fig.2. Tllustration of orientation codes and the
definition of error function d(-).

2.1 Definition of OCM OCM is defined as
matching of orientation codes of two images which are
to be compared for similarity evaluation. For discrete
images, the orientation codes are obtained as quantized
values of gradient angle around each pixel by apply-
ing some operator for computing horizontal and vertical
derivatives like Sobel operator, and then using the tan~!
function on their ratio to obtain the gradient angle. The
orientation code for a pixel location (¢, j), letting 0; ; be
a gradient angle, for a preset sector size of Ay is given
as:

05,
Cij = { [A‘?}

L

V1| +|VI,|>T

otherwise

A separate code L is assigned for low contrast regions
(defined by the threshold level '), for which it is not pos-
sible to compute the gradient angles. For all the exper-
iments, we used 16 orientation codes, which was found
to be the best through experimental evaluation. The
threshold value I plays an important role in suppressing
the effects of noise and has to be selected according to
the problem at hand; too large values can cause the sup-
pression of texture information. We used a small value
of 10 for I' which was good for most of our experiments;
however, for the images containing uniform stationary
regions involving illumination variations, better results
were noted with larger values.:

A dissimilarity measure is defined as the summation of
the difference between the orientation codes of the corre-
sponding pixels of the two regions being matched. The
cyclic property of orientation codes is used for finding
the difference. If O1 and O2 represent the orientation
code images of the two regions, then the dissimilarity
function between them is given by:

§ =23 d01(i,9), 020, )

where M is the total number of pixels used in the match
and d(-) is the error function based on an absolute dif-
ference criterion.

Let C = {0,1,--- ,N — 1} be the set of orientation
codes for N orientation codes, then the error function
can be written as:

min{la —b|,N —|a—b|}: (a,b) € C
d(a,b) = & wa=Lxorb=1L
O a,:b:L

For all of the experiments, we used 16 orientation codes
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Fig.3. Ilustration of reference extraction.

corresponding to a sector width Ag of §. Illustration of
orientation codes is shown in Fig. 2. Cyclic property of
the codes utilized for defining the error function d(-) is
noted in contrast with the absolute difference.

2.2 Robustness of OCM to Brightness Changes
Any similarity measure simply based on aggregation of
brightness difference between a reference image and ob-
ject images, such as SSD or SAD, is not invariant for
even slight change in illumination. Normalized cross
correlation (NCC), however, is known to be invariant
against global change in illumination by a constant mag-
nifier and an offset, but it is also known to be quite
sensitive to local fluctuation in illumination that is un-
evenly distributed in the scene. We show the robustness
of OCM against both the global and local illumination
changes. This is because the gradient operation, such as
Sobel operator, is defined in local domain, say a 3 X 3
region, maintaining phase angles unchanged even under
non-uniform illumination. Let a represent the magnifi-
cation and the constant offset be represented by b, then
any observed brightness g corresponding to the actual
pixel brightness f can be presented as: g = a- f +b.
A fraction of f,/fs is transformed to the phase angle ¢
through the relation, § = tan™*(f,/f;). From the above
eqution, g, = a - fy and g, = a - f, and consequently
the fraction with respect to observed brightness g, /g is
the same as fy/ fz.

2.3 Verification of Invariance of OCM For
verification of the above formalization, we performed
experiments involving a pair of images of a magazine
cover. A number of overlapping square templates were
extracted from a reference image as illustrated in Fig.
3. These templates were matched in the same position
in the target image which is identical to the reference
image except for a shifted shadow cast over the scene.
The template-target pairs had varying extents of areas
covered by the shading. The pair of images is shown in
Fig. 4 with marking with squares showing the extracted
templates in the first image and the corresponding tar-
gets in the second one. Values of evaluation functions
were noted for OCM, SSD and NCC and the plots of
dissimilarity values for the three are shown in Fig. 5;
(for the sake of consistency, we changed the correlation
curve of NCC into dissimilarity curve as well). As can
be seen from the plots, variation in dissimilarity function
was minimal in the case of OCM compared with both
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Reference image.
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Fig.4. Matching in shifted shading.
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Fig.5. Plots of variations in dissimilarity for Fig.
4. The scaling factor 1/6000 in SSD plots is intro-
duced so that the maximal SSD value is just under
1 and the plot corresponding to NCC show the val-
ues subtracted from 1.0 to make it a dissimilarity
curve like the other two.

SSD and NCC. Correlation values of NCC are rather
large (represented by smaller values on the dissimilarity
curve) for the pairs that are located in the right and the
left regions and consist of the images of overall shading
in either component. But they are degraded at around
the center region where each component image has lo-
cal fluctuation in brightness. For the case of SSD, the
curve has the tendency similar to that of NCC. In con-
trast with them, error values of OCM are rather low and
their variations are prominently small and vary between
0.2 and around 0.35. This variation can be attributed
to additive and multiplicative noise in the images.

As another measure of stability in the cases of illumi-
nation fluctuations, each extracted template from refer-
ence image was searched globally within the second one.
OCM was successful for all 15 cases, while NCC and
SSD reported 1 and 8 mismatches, respectively.

Matching results from some more real image data are
shown in Fig. 6, where the template objects (shown
as insets at the upper right corners on the correspond-
ing scene images) undergo illumination variations due to
shading by a nearby object (Fig. 6(a)) or appear high-
lighted due to surface reflection (Fig. 6(b)). Matching
results (marked by rectangles as the best matches for
each method) show the inherent stability of OCM in
comparison with SSD or NCC.

3. OCM for Optical Flow Estimation

The optical flow vector (u,v) for a pixel is computed
by selecting a small subtemplate around the position,
say (m,n), from the first image and then searching its
closest match in the second image inside a window of
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Fig.6. Matching result for ill-conditioned images.
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Fig.7. Tllustration of region-matching based opti-

cal flow computation.

pre-defined size within the neighbourhood of the same
location. An illustration is given in Fig. 7 for the above-
mentioned procedure. ‘

If Ol,,,, and 02, ,, are the corresponding orientation
code images for the images involved in the computation,
then the computation of the optical flow vector at the
pixel position (m,n) can be expressed as:

(Uy V), = argmin Sy, ,(z,y)
z,y

1 .. ..
Sm,n(xa y) = I Z d(Olm,n(ZJ)a O2m+x,n+y(7ﬁ]))
5,7

Y(z,y) e W

where W is a window, centered at the origin, whose size
is pre-selected to accommodate the maximum expected
displacement of regions within image frames.

3.1 Implementation In order to compute the
optical flow efficiently using the OCM based search, a
table can be constructed for reference at run time in-

Table 1. Orientation code differences.

o 1 .- N/2 | N/2 | N/2 | .- N-1 | N
-1 + 1
0 3} 1 N/2-| N/2 | N/2-| .- 1. N/4
1 1
1 1 0 N/2-| N/2-| N/2 | ... 2 N/4
| 2 1
2 2 1 N/2-| N/2-| N/2-| - 3 N/4
3 2 1
N-2 | 2 3 N/2 | N/2-| N/2-| .- 1 N/4
1 2
N-1 | 1 2 N/2-| N/2 | N/2-| .- 0 N/4
1 1
N N/4& | N/4 | i N/4 | 0

stead of time-consuming mathematical and logical op-

erations. If we set L (the code assigned in place of the
orientation code to pixels corresponding to low contrast
regions) equal to N (maximum number of orientation
codes) then the error function d(-) can be expressed in
the form of an (N +1) x (N +1) table based on the defi-
nition given in Section 2.1. The table, shown as Table 1,
is like a symmetric matrix and all diagonal elements are
zero. The last row and column (except the last element)
represent the match in low contrast region. As a result,
the computation of the error function reduces to table
reference as d(a,b) = OCTable[a, b].

4. Experiments

Some experiments were performed for checking the ef-
fectiveness of OCM based computation of the optical
flow.

This study focuses on the computation of optical flow
for the cases when there is a possibility of illumination
variation between the frames involved as can be expected
in many situations like those mentioned earlier in Sec-
tion 1. For achieving such effects, time interval between
images used for the experiments was not fixed and a
few frames were skipped after capturing the image se-
quence before performing actual computation in order to
increase the time interval between the two images.- This
helped us in performing better qualitative evaluation of
the OCM based optical flow computation in compari-
son with other commonly used matching techniques viz.
SDD and NCC. For all the experimental images shown
here, a grid has been superimposed to increase the visi-
bility of the difference between the two images. Details
of the experimental setup and computer setup are given
in Table 2

4.1 Translation In the experiment described
here, a camera was set to view a scene containing some
magazines and an object (a video card). A normal elec-
tric lamp was used for providing the lighting conditions
in the scene. The camera was translated parallel to the
plane containing objects of interest causing the domi-
nant apparent motion to be along the axis of camera
displacement. A shadow was cast on the scene at the
same time to provide effects of illumination variations.

The results obtained by using OCM were compared
with those obtained by using SSD and NCC. The im-

IEEJ Trans. EIS, Vol.123, No.2, 2003
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Table 2. Experimental setup.

JAI CV-M10BX CCD
Progressive Scan Monochrome
(lens = 8mm focal length)

& Victor GR-DVL7 digital video
Leutron Picport Framegrabber
& Adaptec AHA-8945

Cameras

Capture Boards

Image type 8-bit gray scale
CPU Pentium-1II, 1.0 GHz
oS Windows 2000

Frame size
Subtemplate size

320 X 240 pixels
15 x 15 pixels

(b) Image2.

Fig.8. Pair of images used in the experiment (9

(shading was added in image2 along with motion).

ages used in the experiment are shown in Fig. 8 and
the resultant flow vectors are shown in Fig. 9 for the
three methods used for comparison. Since the displace-
ment vectors are a function of depth of objects in the
scene, the ground truths are not easy to compare. We
use the distribution of angles obtained for all the pix-
els for comparing the actual results since it is generally
independent of depth information in the case of camera,
_translations. The three distributions are shown in Fig.
10. The correct value can be assumed to correspond to
the peak value, which was about -26.5 degrees in this
" case.

Since the optical flow vectors were computed to pixel
accuracy only, the results are rounded to the nearest
pixel position for the flow vectors. As can be seen from
the results in Fig. 9, OCM had a rather smooth velocity

field corresponding to the regions containing sufficient.

texture, whereas SSD-based computation had many er-

rors in the regions affected by the lighting; unaffected re-

gions have the same results as those obtained by OCM.
NCC had better results in comparison with SSD, but it
also suffered from some errors in the affected region.
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Fig.9. 2-D flow vectors as obtained
OCM, SSD and NCC. )

by using

4.2 Rotation ‘While region matching techniques
are not very robust for searching the objects rotated by
arbitrary angles, there are some tolerance limits for an-
gle of rotation within which the object may be located
even if matched directly without causing rotation of one
to align with the other. Also, if the range of search is
confined to within the vicinity of the expected location
of occurrence of the object, the chances of locating the
correct position improve; the case of computation of op-
tical flow is similar, where a small region from one frame
is searched inside a window within the neighbourhood of
the previous location. OCM can also be used for finding
the correct position of the target object if the relative
angle difference between the template and the target is
not too large to be outside the tolerance limits for OCM.
This characteristic of the region matching techniques can
be used for finding the optical flow field for the cases of
rotating flow fields as as well. ' ‘ ‘

For the experiment involving computation of optical
flow for rotated objects, a glossy magazine cover was
rotated freely to create the effect of rotation. The mo-
tion was confined to 2-D rotation; however, since the
movement was manual, a small perspective tilt during
the rotation caused some part of the magazine cover to
reflect the illumination, thereby causing a highlighting
effect. The image pair is shown in Fig. 11 and the re-
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Fig.10. Normalized histograms of angles obtained.
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Fig.11. Pair of images used in the rotation -

. experiment.
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sults by using the three methods are shown in Fig. 12.
As can be seen from Fig. 12(b), SSD based computation
had many errors in the region affected by highlighting.

4.3 Zooming For the case of zooming, similar
reasoning as in the case of rotation can be used for as-
suming that minor variation in scale can also be handled
by region matching techniques, especially if the search
is within the neighbourhood of the original subtemplate
location.

In the experiment, an object was moved along the op-
tical axis to create the zooming effect; the image pair is
shown in Fig. 13. Results by using the three methods
are shown in Fig. 14. Small variation in the brightness
between the two frames caused the SSD based computa-
tion to make some errors during the computation around
the regions where brightness variation is more conspic-
uous. OCM had better overall results except for the
regions in the first frame which undergo occlusion in the
second due to the looming motion of the object.

4.4 Computation Time The overall computa-
tion time depends on the sizes of the subtemplate and
the search window used for computing the flow field. We
noted the total processing time for the three method
used here. For the sake of efficiency, we constructed ta-
bles for performing squares of differences, multiplication
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Fig.12. 2-D flow vectors as obtained by using
OCM, SSD and NCC for Fig. 11.
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(b) Image?2.

Fig.13. Pair of images used in the zooming
experiment.
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Fig.14. 2-D flow vectors as obtained by using
OCM, SSD and NCC for Fig. 13.
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and squares for all the gray values in a fashion similar to
Table 1 in order to speed up the computation for SSD
and NCC as well; however the computation for NCC in-
volved floating point operations, which made the search
slower in comparison with both SSD and OCM. For the
images used in the experiment in Fig 8, the total com-
putation time for dense flow field for 300 x 220 region
and the search window size of 35 x 35 was found to be
136.8, 146.7 and 288.7 seconds by using OCM, SSD and
NCC respectively. As can be noted, the computation
time for OCM was almost same as SSD; the preprocess-
ing involved for computation of the two OC images took
about 80 milliseconds in total. The small difference in
favor of the OCM may be attributed to the smaller size
of lookup table which made the access time shorter for
the computer system used in the experiment.

5. Conclusions

Application of OCM for computing optical flow has
been introduced for situations where lighting conditions
change rapidly, thereby causing erroneous result in the
conventional matching. Such problems may arise in sit-
uations when the time interval between two successive
frames is large enough to make the significant bright-
ness variation more likely. Comparative analysis of the
results obtained by OCM on the real world images show
its reliability for computing optical flow for the cases of
translation, rotation and zooming. For the case of trans-
lation, it was possible to compare the obtained results
with the ground truths since the angle for the whole op-
tical flow field was almost same. In general, results by
OCM and NCC were very close but in terms of com-
putation time, OCM has an advantage with almost half
the time compared to NCC.

Low contrast regions are one of the source of problem
in any optical flow computation strategy in general; how-
ever, for the region matching based methods, the size of
the subtemplates can be varied optimally to increase the
likelihood of including some texture which may be help-
ful in discrimination. The increase in subtemplate size
may increase the processing time required for computing
the optical flow vectors and at the same time, the effec-
tive domain of computable vectors may be reduced due
to the exclusion of some boundary points necessary for
accommodating the search window of the subtemplates.

From the point of view of real time implementation,
OCM based computation involves an additional step
of pre-processing for computing the orientation codes
from gradient angles; however, with the availability of
hardware implementations of gradient operators like So- .
bel, computing optical flow by OCM can also be im-
plemented efficiently in real time as well. The pre-
processing time can be compensated by the faster search
during the computation of optical flow field due to the
shorter lookup table required for computing the error
function.

(Manuscript received February 28, 2002, revised July

5, 2002)
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