Paper

A Saturation Computation Method of Artificial Binary Neural Networks
for Combinatorial Optimization Problems

Rong Long Wang* Student Member
Zheng Tang* Non-member
Qi Ping Cao* Non-member

In this paper, we propose a saturation computation method of neural networks for efficiently solving com-
binatorial optimization problems. In this computation method, once the neuron is in excitatory state, then
its input potential is considered to be in positive saturation where the input potential can only be reduced

" but cannot be increased, and once the neuron is in inhibitory state, then its input potential is considered.
to be in negative saturation where the input potential can only be increased but cannot be reduced. The
proposed method is applied to N-Queens problem. The performance is evaluated through simulations where
the results show that the saturation method improves the searching capability of neural networks and short-
ens the computation time. Particularly, the simulation results show that the performance of the proposed
method surpasses the exiting methods for N-queens problem in synchronous parallel model.
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1. Introduction

A number of commonly encountered problems in
mathematics, computer science, molecular biology, man-
agement science, seismology, communications, and op-
eration research belong to a class of combinatorial op-
timization problems [1]. The goal of combinatorial op-
timization problems is to minimize or maximize a cost
function subject to constraints. Most of practical combi-
natorial optimization problems are of the NP-complete.
Because it is unlikely that there exist efficient algorithms
for NP-completeness problems, many polynomial time
approximation algorithms have been proposed to solve
the NP-completeness problems. The inherent paral-
lelism in neural network provides a promising alterna-
tive for solving these problems. Since McCulloch and
Pitts proposed a simplified artificial neuron model in
1943 [2], several neuron models have been investigated.
Hopfield and Tank [3] [4] were the first to propose a
neural network called the Hopfield network for solving
combinatorial optimization problems. The Hopfield net-
work has a large number of neurons or processing ele-
ments where neuron #¢ has an input U; and an output
V;. It uses the gradient descent method to seek the local
minimum of the Liapunov energy function E by using
motion equations of these neurons. The energy function
is given by the constraints and the objective function
in the problem. Hopfield proposed a motion equation
with a partial derivation term of the energy function
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. and a decay term with a time constant 7[3] [4].

Since
Hopfield and Tank’s work [3], [4], there has been grow-
ing interest in the Hopfield network because of its ad-
vantages over other approaches for solving optimization
problems. The advantages include massive parallelism,
convenient hardware implementation of the neural net-
work architecture, and a common approach for solving
various optimization problems.

However the work by Wilson and Pawley [5] showed
that the Hopfield network often failed to converge to
valid solutions. Even when it converged, the obtained
solution was often far from the optimal solution. Since
then, various modifications have been proposed to im-
prove the convergence of the Hopfield network. Takefuji
et al. showed that the decay term in Hopfield-type neu-
ral network increased the energy function under -some
conditions [6]. They modified the motion equation in or-
der to guarantee the local minimum convergence. How-
ever, the Hopfield-type neural network was forced to con-
verge to the local minimum. Therefore, several neuron
models and heuristics such as hysteresis binary neuron
model [7], neuron filter [8], the hill-climbing term and
omega function [9], Lagrange relaxation [10] and pots
spin [11] have been proposed to improve the convergence
of the networks. Despite the improvement of the perfor-
mance of the Hopfield network over the past decade,
this model still has some basic problems [12], [13]. To
improve the solution quality is still a question of both
practical and theoretical interests.

In Neural netwoek, there are two kinds of methods
to compute the input potential of neurons: the time-
independent one in which the input potential of neurons
at time t+1 does not directly depend on their value



at time ¢[14][15] and the time-dependent one in which
the input potential of neurons at time ¢ + 1 depends on
their. value at time ¢[6]. In this paper, we propose a
new method to compute the input potential of neurons
named saturation computation method. This method
offers a new idea to compute the input potential of
neurons to improve the global convergence quality and
shorten the convergence time. In the proposed compu-
tation method, once the neuron is in excitatory state, its
input potential is considered to be in positive saturation
and the input potential can only be reduced but cannot
be increased, and once the neuron is in inhibitory state,
its input potential is considered to be in negative satu-
ration and the input potential can only be increased but
cannot be reduced. The effectiveness of the saturation
computation method is demonstrated by simulating N-
Queens problem. The simulation results show that the
proposed saturation computation method improves the
searching capability of neural networks and shortens the
computation time.

2. Hopfield Neural Network for Combinatorial
Optimization

The Hopfield neural network model for combinatorial
optimization problems consists of two elements named
“neuron unit” and “motion equation”. The neuron unit
is a collection of simple processing elements called neu-
rons. Each neuron has an input potential U; and an
output potential V;. The dynamic behavior of the net-
work is described by the following motion equation with
a partial derivation term of the energy function and a
decay term with a time constant 7[3][4].

dUi(t) ~ 0E(V1, Vs Vn) Ui (1)
dt ov; T

Takefuji et al. showed that the decay term increases
the energy function under some conditions [6]. They
modified the motion equation in order to guarantee the
local minimum convergence.

dU;(t) ,
= S A (2)

There are two kinds of methods to compute the input
potential of neurons:

(1) The time-independent one in which the input po-
tential of neurons at time ¢+ 1 does not directly depend
on the value at time ¢[14][15]. Thus the input poten-
tial is simply the partial derivation term of the energy
function.

_ OB(Vi, Va, ., Vi)
l{z = v (3)

(2)The time-dependent one in which the input poten-
tial of neurons at time ¢+1 depends on the value at time

(6.

dU;(t)
dt

Ui(t + 1) = Ui(t) 4/ e (4)

The output is updated from U; using a non-linear func-
tion called neuron model. The follow two binary neuron
models have been used for optimization problems:

(1) The McCulloch-Pitts binary neuron model [2]

Vi:{l ifU>0 (5)

0 otherwise
(2) The hysteresis McCulloch-Pitts neuron model [7]

1 if U; > UTP
V; = 0 if U; < LTP (6)
unchanged if LTP < U; < UTP

Where, UT'P and LT P are constant parameters satisfy-
ing UTP > LTP. ‘

Each neuron updates its input potential according to
the computation rule (Eq.(3) or Eq.(4)) and sends its
output state in response to the input according to the
input/output function (Eq.(5) or Eq.(6)). All neurons
operate in parallel and each adjusts its own state to the
states of all the others; in consequence, the whole net-
work converges to a final configuration. The structure
of combinatorial optimization problems can be mapped
onto the structure of a Hopfield network by deciding the
connection weights between the neurons. In this way, we
can find the solution to a problem simply by observing
the final configuration that the network reaches.

3. Saturation Computation Method of Neural
Networks

In this paper, a saturation computation method is
proposed to improve the global convergence quality and
shorten the convergence time. The proposed saturation
computation method consists of two main rule:

(1) Once a neuron is in excitatory state, then its input
potential is considered to be in positive saturation. In
the positive saturation, the input potential U; can only
be reduced but cannot be increased.

For the case of V; = 1:

if dU;(t)/dt <0

Ui(t_|_1) :Ui(t)‘f‘%'t(t) At e SETRERRE (7)

else
Uit +1) = Us(t)

(2) Once the neuron is in inhibitory state, then its in-
put potential is considered to be in negative saturation.
In the negative saturation, the input potential can only
be increased but cannot be reduced.

For the case of V; =0

if dU;(¢)/dt > 0

du;(t)

Ui(t_|_1)‘:(]i<t)+_c;t_ CAE ...... (8)

else

Ui(t + 1) = Us(2)
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The output of each neuron at iteration (¢ -+ 1) is up-
dated according to the updating rule specified by Eq.(6).

We analyze the details of the time-independent, the
time-dependent and the proposed saturation compu-
tation method and explain their differences in perfor-
mance.

In the time—indépendent computation method, the in-
put potential of neuron updates according to computa~
tion rule (Eq.(3)). Because the input potential of neuron
at time t+1 does not directly depend on its value at time
t, the network usually causes undesirable oscillation [16].

The time-dependent computation method is the most
popular method. This computation method has been
successfully used for several optimization problems [17]-
[20]. However this computation method is not as
good as expected. In the time-dependent computation
method, the input potential U;(t) is updated accord-
ing to Eq.(4) unconditionally. We consider the case of
Ui(t) > UTP, Vy(t) =1 and (—0E/0V;) > 0 in the time-
dependent computation method. Because Vi(t) = 1 and
(—OFE/JV;) > 0, the neuron dose not change its output,
but the input U;(t + 1) will be increased, and as time
goes on, the input U;(t + 1) may become so large that
. the neuron is insensitive to its input. Similarly in the
case of U;(t) < LTP, V;(t) = 0 and (-0E/0V;) <0 in
the time-dependent computation, the input potential U;
may become so small that the neuron is not sensitive to
its input. Once it happens, the convergence will become
very slow and the states of network may be very diffi-
cult to be changed. The solution obtained under this
condition is less likely to have high quality.

In contrast to the time-independent and. the time-
dependent computation method, the proposed satura-
tion computation method uses the updating conditions
(Eq.(7) and Eq.(8)) to update the input potential of each

neuron. According to the updating conditions (Eq.(7).

and Eq.(8)), when the output state of neuron is 0, its
input potential can only be increased but cannot be de-
creased and once the input potential exceed the UTP,
the output state of the neuron becomes 1 and the input
potential will be in positive saturation. Thereafter the
input potential will not be increased until the input po-
tential falls into a negative saturation. Thus, different
neuron may have different range for the input potential,
and the same neuron may have different range for the
input potential when the network is in different config-
uration. This kind of variation behavior of input po-
tential in the proposed saturation computation method
can restrain the undesirable oscillation of network and
the insensitivity to the input of neurons, and may result
in better performance for the network.

4. Algorithm

The following procedure describes the synchronous
parallel algorithm for solving combinatorial optimization
problems based on the proposed saturation computation
method. Note that targ_cost is the target total cost set
by user as an expected total cost. f_limit is the maxi-
mum number of iteration step allowed by user.

(1) Set t =0, At and set targ_cost, t_limit, and other
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constants.

(2) Initialize value of U; for i = 1,---, N in the range
from LTP to UTP randomly.

(3) For ¢ = 1,---, N, Evaluate V;(¢) using binary neu-
ron model. ,

(4) Check the network. If targ.cost is reached, then
terminate this procedure.

(5) Increment ¢ by 1. If ¢ > ¢_limit, then terminate
this procedure.

(6) For i=1,*,N

(a) Compute Eq.(2) to obtain AU;(t).

dU;(t)

dt

AU(?)

(b) Update U;(¢t + 1) using updating conditions (Eq.7
and Eq.8). :
= 0 and

If (V; = 1 and dU(t)/dt < 0) or (V;
dU;(t)/dt > 0)
Ui(t +1) = Uz(t) + AUZ(t) AL e (10)

else

Ui(t+1) = Us(t)

(M UU;(t+1) =U;(t) for i = 1,--, N, then terminate
this procedure
(8) Go to the step 3.

5. Application to N-Queens Problem

In this section, we evaluate the performance of the pro--
posed saturation computation method through simula-
tions, and compare it with two traditional computation
methods and other improved methods. The evaluation
in our experiments is based on N-Queens problem.

5.1 The N-Queens Problem N-Queens prob-
lem is classic of difficult optimization. The task is given a
standard chessboard and N chess queens, to place them
on the board so that no queen is on the line of attack
of any other queen. The problem can be solved by con-
structing an appropriate energy function and minimizing
the energy function to zero (E = 0) using an N X N two-
dimensional binary Hopfield-type neuron network[21].

The objective energy function of N-Queens problem is
given by:

A N N A N N
E=3 DO v —1)7+ 2 DO w17
: i=1 k—1 =1 k=1
BN ‘
+§(ZZW( > Yimkoj—k
i=1j=1  1<i—k,j—k<N,k#0
+ Z Yikojik)) ~o (12)

1<i—k,j+k<N,k#0

Where A, B are coeflicients, the output y;; = 1 repre-
sents that a queen is placed at i-th row j-th column on
the chessboard, and output y;; = 0 represents no place-
ment there. The first term becomes zero if one queen is



placed in every row. The second term becomes zero if
one queern is placed in every column and the third term
becomes zero if no more than one queen is placed on any
diagonal line.

The motion equation for the ¢j-th neuron is given by:

Zyzk_l

—B(

Zyk] - 1

Yi—k,j—k
1<i—k,j—k<N,ks£0
+ Z Yiokjik) "ot (13)
1<i—k,j+k<N,k#0 ‘
5.2 Simulations and Discussions The pro-

posed saturation computation method was implemented
and simulations were performed in C++ on PC Station
(PentiumlIIl 800MHz). In simulations, the parameters
A and B were set to 2 and 1. The maximum updat-
ing step was set to 1000. The hysteresis binary neuron
model was used to update the output of neurons.
According to the input potential updating conditions
(Eq.(7) and Eq.(8)) of the proposed saturation compu-
tation method, we can see that the band size (LTP
and UTP) of the hysteresis binary neuron is an impor-
tant parameter in the proposed saturation computation

method. When LTP and UTP are near zero, undesir- -

able oscillation similar to that in the time-independent
computation method will appear. When LT P and UT P
is too large (negative large value for LT P), the network
will become insensitive to the input of neurons, which
is similar to the behavior of the time-dependent com-
putation method. To see this characteristic, we simu-
lated a 20-Queens problem using different band size of
the hysteresis binary neuron. Figure 1 shows the rela-
tion between the percentage of valid solution and the
band size (LT P and UT P) of the hysteresis binary neu-
ron. Note that 100 simulation runs with different initial
states of neurons were performed to obtain the percent-
age of valid solution per pair of LT P and UTP. From
Fig.1 we can see that when LT P and UT P are near zero
or very large (LTP < —20 and UTP > 20), the rate to
find a valid solution is very low. Especially we can see
that when LT P and UTP are zero, the network did not
find a valid solution. The reason is that when LT P and
UTP is zero, the proposed method is nearly as same as
the time-independent computation method, and unde-
sirable oscillation appears. We can also see from this
figure that when the LTP is in the range from -2 to -20
and the UT'P is in the range from 2 to 20, the rate to
find a valid solution is very high. Figure 2 shows the
relation between the average number of iteration steps
to find valid solution and the band size of the hysteresis
binary neuron. From Fig.2 we can see that the larger is
the band size of the hysteresis binary neuron, the large is
the number of iteration steps to find valid solution. The
reason of this relation is that for the larger band size of
the hysteresis binary neuron, the network becomes in-
sensitive to the input of neurons, which is similar to the

Fig.1. The relation between the percentage of
valid solution and the band size (LT'P and UTP)
of hysteresis binary neuron.

Step

500

- Fig. 2.
of iteration steps to find valid solution and the band
size of hysteresis binary neuron.

The relation between the average number

behavior of the time-dependent computation method.
From these simulation results, we can summarized that
the proposed saturation computation method could re-
strain the undesirable oscillation of the network and the
insensitivity of the network to the input of neurons by
selecting a reasonable pair of band size (LTP and UT P)
of the hysteresis binary neuron. Furthermore, our simu-
lations found that the range of the reasonable pair of the
band size of the hysteresis binary neuron is very large;
it is easy to select the reasonable pair of the band size
of the hysteresis binary neuron.

In order to widely verify the proposed method, we
tested the proposed algorithm with a large number of
instances. The band size UT P and L1'P of the hystere-
sis binary neuron were set to 3 and -3 respectively. The
time-independent and the time-dependent computation
methods were also executed for comparison. Three com-
putation methods are all executed in synchronous paral-
lel model. In simulating 20-queens problem, we recorded
the variation process of the input potential of neurons
in three computation methods. Figure 3 shows a vari-
ation of the input potential of one neuron in the time-

. independent method. From Fig.3 we can see that in the
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Table 1. Computational results.
Q Propbse Method | Time-independent | Time-dependent | Takefuji’s Network[22] | Maximum Neural[22]
ueens
Conv. Steps Conv. Steps Conv. Steps Conv. Steps Conv. Steps
20 100 148 0 - ' 29 310 57 169 84 129
30 98 168 0 - 47 338 54 381 96 172
50 100 191 0 - 53 395 62 107 97 154
100 100 242 0 - 53 676 44 82 98 199
150 100 298 0 - - 46 757 13 103 99 245
200 100 326 0 - 13 771 0 - 93 271
300 100 415 0 - 8 918 0 - 94 335
20 7
5 .
u d IX 1 5
1 fn 5 4
-20 sl
—40 | 2
1+
-0 } aQ
-1 5] 9] 13 17 25 |28 33 37 4

Fig.3. An example of the variation process of in-
put potential of neuron under the time-independent
computation method.

20

D T T T T T T T
1 101 201 301 401 s 801 70N

801 M

._‘l DU s

Fig.4. An example of the variation process of in-
put potential of neuron under the time-dependent
computation method.

time-independent computation method, after the second
updating, the input poteﬁtial caused oscillation. Figure
4 shows the variation of the input potential of a neuron
in time-dependent computation method. From this fig-
ure we can see that after the 100th updating, the input
potential U; became very small and the neuron was not
sensitive to its input. The variation of the input poten-
tial under the proposed saturation computation method
is shown in Fig.5. We can see from this figure that in
the proposed saturation computation method, the vari-
ation of the input potential was very calm due to the
saturation of the input potential of neuron. Thus, the
undesirable oscillation of the network and the insensi-
tivity of the network to the input of neurons were re-
strained. The detail simulation results were shown in

THHC, 123 %25, 2003 &

-2
-3
-4
-5
-5
-7
g L]

Fig.5. An example of the variation process of in-
put potential of neuron under the proposed satura-
tion computation method.

Table 1, where the convergence rates and the average
numbers of iteration steps required for the convergence
were summarized. The simulation results showed that
the proposed saturation computation method could in-
crease the percentage of valid solutions and reduce the
average numbers of time steps as compared with the
other two computation methods. We also compared our
results with these produced by other improved neural
network methods. Takenaka et al. [22] simulated N-
Queens problem using Takefuji’s network and maximum
neural network in synchronous parallel model. Table 1
also showed the simulation results reported by Takenaka
et al. [22]. From Table.1 we could see that the proposed
saturation computation method performed better than
Takefuji’s neural network and maximum neural network
in terms of the solution quality for N-queens problem.
Focusing on combinatorial optimization problems,
some other optimization téchniques have been proposed.
Simulated Annealing (SA) [23] i$ a widely used meta-
heuristic. It could be described as a randomized scheme,
which reduces the risk of getting trapped in local min-
ima by allowing moves to inferior solution. Simulated
annealing is a powerful method for solving combinato-
rial optimization problems, but it always requires more
iterations than exhaustive search to find a good solution
[24]. To further: evaluate the performance of the pro-
posed method, simulated annealing was also executed
for comparison. We used the annealing algorithm given
by Johnson et al [25]. It started with a randomly gener-
ated assignment; repeatedly picked a random variable,
and computed the change (A) of energy when the state
of that variable was flipped. If A > 0, it made the
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Table 2.© Comparison with the simulated annealing.

Propose Method | Simulated Annealing
Queens
Conv. | CPU(S) | Conv. CPU(S)
20 100 0.05 98 18.57
30 98 0.13 90 88.01
50 100 2.63 78 1448.34
80 100 11.89 25 8245.63

'

flip. Otherwise, it flipped the variable with probability
e /T, We slowly decreased the temperature (T') from
3.0 to 0.00001. Because of the unreasonable computa-
tion time for N > 80 queens, we executed the simulated
annealing only for 20, 30, 50 and 80 Queens. 100 simu-
lation runs were performed for 20, 30 and 50 queens, 50
simulation runs were performed for 80 queens. To com-
pare the proposed method with the simulated annealing,
the rate to find the valid solution and the average com-
putation time were shown in Table 2., From this table,
we can see that the proposed method worked better than
simulated annealing in terms of the solution quality and
the computation time. ‘

6. Conclusion

A saturation computation method in binary Hopfield-
type neural networks for efficiently solving combinatorial
optimization problems was proposed in this paper. The

“differences in the performance among the traditional two
computation methods and the proposed saturation com-
putation method were analyzed. The effectiveness of the
proposed saturation computation method was demon-
strated by simulating N-Queens problem. The simula-
tion results showed that the proposed saturation com-
putation method could improve the global convergence
quality and shorten the convergence time. The sim-
ulation results also showed that the proposed satura-
tion computation method was better than the other im-
proved methods.
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