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The maximum clique problem is a classic graph optimization problem that is NP-hard even to approximate.
For this and related reasons, it is a problem of considerable interest in theoretical computer science. The
maximum clique also has several real-world applications. In this paper, an efficient algorithm for the max-
imum clique problem using improved Hopfield neural network is presented. In this algorithm, the internal N
dynamics of the Hopfield neural network is modified to efficiently increase exchange of information between -
neurons and permit temporary increases in the energy function in order to avoid local minima. The proposed
algorithm is tested on two types of random graphs and DIMACS benchmark graphs. The simulation results
show that the proposed algorithm is better than previous works for solving the maximum clique problem in

terms of the computation time and the solution quality.
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1. Introduction

A clique of an undirected graph G(V, E) with a vertex
set V and an edge set E is a subset of V such that all
pairs of vertices are connected by an edge in E. The
maximum clique problem is to find a clique of maxi-
mum size of a graph (. The maximum clique problem
is highly intractable. It is one of the first problems which
have been proven to be NP-complete [1]. Moreover, even
its approximations with a constant factor are NP-hard
(2]. In particular, Hastad [3] states that if NP + P then

no polynomial time algorithm can approximate the max- '

imum clique to within a factor of N'/2=¢ for any £ > 0,
where IV is the number of nodes of the graph.

The maximum clique problem has many practical ap-
plications in science and engineering [4]. These include
cluster analysis, information retrieval, mobile networks,
computer vision, and alignment of DNA with protein
sequences. . Determining maximum clique is also very
useful in circuit design. The problem is to create an op-
timal geometric layout for different chip hardwares, such

as programmable logic array and CMOS transistors. En-

countered by different real life applications, many re-
searchers have widely studied this problem using differ-
ent methods.
~ In 1974, Johnson [5] introduced two greedy algorithms
to the maximum clique problem; one selecting a vertex
connected to most vertices among candidates and adds
‘it one-by-one to a clique until no addition is possible,
and another one that selecting a vertex connected to
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least vertices and removing it one-by-one from a graph
until a clique appears. Lecky et al. [6] proposed the
modified greedy algorithm by selecting each vertex of a
graph in turn as the initial vertex in a clique. Tomita
and Fujii proposed three algorithms using the depth-
first search and preprocessing procedure [7]. Balas and
Yu proposed the algorithm using the properties of trian-
gulated graphs and the relationship between cliques and
vertex colorings [8]. Carraghan and Pardalos proposed
the algorithm based on a partial enumeration [9]. Parda-
los and Philips formulated the maximum clique problem
as a linearly constrained indefinite quadratic global opti-
mization problem [10]. Pardalos and Rodgers proposed
the algorithm using the unconstrained quadratic zero-
one programming formulation [11]. Soule and Foster cre-
ated a genetic algorithm to search for maximum cliques
in general graphs [12]. Marchiori proposed a Heuristic
based genetic algorithm for the maximum clique prob-
lem, which consists of the combination of a simple ge-
netic algorithm and a native heuristic algorithm [13].

For solving such combinatorial optimal problems,
energy-descent optimization algorithms also constitute
an important avenue. The Hopfield network algorithm
[14] [15] is a typical energy-descent optimization algo-
rithm. In 1995, Jagota. proposed five energy-descent
optimization algorithms using the Hopfield neural net-
work for approximating the maximum clique problem
[16]. Yamada et al. proposed the energy-descent op-
timization algorithm called “RaCLIQUE” based on the
Boltzman machine method for approximating the maxi-
mum clique problem [17]. Funabiki and Nishikawa com-
pared the performance of four promising energy-descent
optimization algorithms [18]. ‘

In this paper, we introduce an improved Hopfield neu-
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Fig.1. (a) A 10-vertex 2l-edge undirected graph. (b) first maximum clique consisted of the black
vertices (c) second maximum clique consisted of the black vertices.

ral network algorithm for efficiently solving the maxi-
mum clique problem. In the proposed improved Hopfield
neural network algorithm, the internal dynamics is mod-
ified to efficiently increase exchange of information be-
‘tween neurons and permit temporary increases in the en-
ergy function in order to avoid local minima. Two types
of random graphs are simulated to verify the proposed
algorithm. The performance of the proposed algorithm
is compared with that of RaCLIQUE [16] and Funabiki’s
Binary Neural Network (BNN) [18]. The simulation re-
sults show that the proposed algorithm works well on
finding a maximum or a better clique than RaCLIQUE
[16] and BNN [18]. We also test the proposed algorithm
on several DIMACS benchmark graphs [19]. The simu-
lation results show that the proposed algorithm can find
thimal solutions in these test graphs.

2. Maximum Clique Problem and Its Neural
Representation

Let G = (V, E) be an undirected graph, where V' =
1,---,nis the set of vertices, and £ C V' x V is the set of
edges. A clique of G is a subset of V' in which every pair
of vertices is connected by an edge. A clique is called
maximal if no strict superset of it is also a clique. ‘A max-
imum clique is a clique having largest cardinality (note
that a maximal clique is not necessary a maximum one).
Hence, the maximum clique problem consists of finding
a clique of maximum size of a graph G. Figure 1(a) il-
lustrates a 10-vertex 21-edge undirected graph. There
exist two maximum cliques which are consisted of the
black vertices shown in Figl(b) and (c).

In general, the N-vertex maximum clique problem can
be mapped onto the Hopfield neural network with N
neurons. An objective function can be formulated for
this optimization problem whose minimum value corre-
sponds to the optimal solution. In a reasonable formula-
tion there are two components to the objective function:
goal term which is to realize the number of vertices in
clique is maximum, and constrain term which is to sat-
isfy that in clique every pair of vertices is connected by
an edge. Suppose the output y; of neuron #¢ represent
vertex #4 and constant d;; represent the edge between
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vertex #+ and vertex #7, this optimization problem can
be mathematically stated as finding the minimum of the
following Hopfield network energy function: '

N N N
B= Azz(l — dij) Yy — B,Zyi ....... (1)

i=1 joki
where the output y; of neuron #4 is 1 if vertex #i is
in the clique, 0 otherwise and constant d;; is 1 if vertex
#4 and vertex #j is connected by an edge, 0 otherwise.
A and B are constant coeflicients.
‘We rewrite this energy function into the standard en-
ergy function of the Hopfield network:

LA N
b= 2 Z Zwijyiyj - Z Ryt «-eveeeeee (2)
i=1

i=1 j=1
where the weights and the thresholds of the Hopfield
network become:

W5 = —2A<1 — dl‘j)(l —
hi =B

Tn Eq.(3), the notation 6;; is 1if i = j, 0 otherwise.

3. The Improvement of the Internal Dynamics
of the Hopfield Network

For the Hopfield neural network, the motion equation
is composed of the partial derivation term of the energy
function as the gradient descent method.

N

da; /dt = Zwijyj Ry e (5)
3

There are two kinds of modes to update the internal
potential x; of neuron:

(1) Time-independent one in which the internal po-
tential of neuron at time ¢ + 1 does not directly depend
on its value at time ¢ [20][21].

z;(t+

1)



(2) Time-dependent one in which the internal poten-
tial of neuron at time ¢+ 1 depends on its value at time
-t [22):

zi(t+ 1) =z (t) + o

................... (7)
The neuron state y; (output) is updated from z; using
a non-linear function called neuron model. The follow-
ing two neuron models have been used for optimization
problems:
(1) The McCulloch-Pitts neuron model [23]

_J1
yl_ 0

(2) The sigmoid function.

if x; >0
otherwise

We now propose a new method of modifying the inter-
nal dynamics of the Hopfield neural network to efficiently
increase exchange of information between neurons and
permit temporary increases in the emergy function in
order. to avoid local minima. The motivation for this
modification is that:

(1) In the time-independent updating mode of the in-
ternal potential, if the McCulloch-Pitts neuron model
is used to update the neuron state, energy of the net-
work decrease at each updating step. Thus, the network
- will attempt to take the best path to the nearest mini-
mum, whether global or local. But if a local minimum
is reached, the network will fail to update. Moreover, it
is usually difficult for the network to get out of the local
minimum and find the global minimum.

(2) Also in the time-independent updating mode of
the internal potential, if the sigmoid function is used as
input/output function, because the neuron state at time
t+1 does not directly depend on its value at time ¢, this
kind of updating mode of the internal potential cannot
guarantee energy of the network decrease at each up-
dating step. The proof is given in Appendix. Thus, the
network cannot always converge to a stable state.

(3) In the time-dependent updating mode of the inter-
nal potential, the Hopfield neural network converges to
the first local minimum it encounters and fail to update.
Particularly, in this updating mode, the internal poten-
tial z;(t) is updated according to Eq.(7) unconditionally.
The internal potential z;(¢) may become so large or so
small that the neuron state is insensitive to its internal
potential. Once it happens, the convergence will become
very slow and the states of network may be very difficult
to be changed. The solution formed under this condition
is less likely to have high quality.

In order to overcome the above difficulty, we modify
the updating mode of the internal potential as following:

daci (t)
dt

where 0 < a;(y;,t) < 1. This modified internal dy-
namic behavior means that the internal potential change

zit+1) = ily, t) i) + T2 (10)
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in any neuron is now controlled by a new parameter
@;i(yi, t) which represents the stabilization of neuron #i.
When the neuron state is far from 0 and 1 or the network
is in the initial stage (far from stable state), the stabi-
lization of neuron is very low (c;(y;,t) is near 0). Thus,
the internal potential of neuron (z;(t+ 1)) is mainly de-
cided by the weight states of other neurons (second term
of Eq.(10)). Clearly, this internal dynamic behavior is
similar to that in time-independent mode. As time pro-
ceeds and the neuron state approaches to 0 or 1, the
stabilization of neuron increases. Finally the stabiliza-
tion of neuron (;(y;,t)) is near 1, and the internal dy-
namic behavior of neuron (z;(¢ + 1)) tends toward that
in time-dependent updating mode. This kind of varia-
tion behavior of the internal potential is more similar
to that of actual neuron than that in the simple time-
independent and simple time-dependent modes. This
variation of the internal potential may cause an efficient
exchange of information between neurons and result in
better performance for the network. In this improved
Hopfield neural network, the sigmoid function is used
to update the neuron state. We define the parameter
a;(y;, t) as following:

_ 05—y )2 4
£ PN

o (y,t)=1—e

where y; is the state of neuron #4, ¢ is updating itera-
tion, € and A are constant which can decide the growing
speed of neuron and the convergent speed of network.
The smaller these constant are, the faster the network
converges to a stable state. For practical purpose we
choose these constants that are as smaller as possible.
This offers the most rapid convergence. But too smaller
values will cause the network fall into local minima eas-
ily. In general, ) is selected at or near maximum number
of iteration step allowed by user. About the value of ¢,
because at stable state, y; is at or near 0 or 1, from

‘Eq.(11) we can see that £ must be selected at a positive

value smaller than 0.25. Although the optimal value of
€ sometimes depends on the size of problem, in our sim-
ulations we found the e around 0.1 worked very well in
the maximum clique problem.

We have described the modification of the internal dy-
namics of the Hopfield network and analyzed the inter-
nal dynamics behavior of neuron. This kind of dynamics
behavior of neuron can guide the network avoids some
local minima. In the initial stage, the internal potential
of each neuron is mainly decided by the weight states
of other neurons. In other words, in this stage the net-
work has the similar nature with the network working
in time-independent mode. Furthermore due to the sig-
moid function is used as input/output function, we can
know that while descent of the energy function is always
permitted, ascent of the energy function is permitted
temporary in this stage. The ascent of the energy func-
tion can make the network avoids some local minima.
Thus, we can say that the improved Hopfield neural net-
work provides a mechanism for avoiding local minima.
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Table 1. Simulation results on p-random graphs.
Propose Method BNN RaCLIQUE
Notes | Edges | Probability
Time(S) | Clique | Time(S) | Clique | Time(S) | Clique
100 2475 0.5 0.11 9 0.23 9 0.87 9
100 3960 0.8 0.12 20 0.4 19 0.68 19
100 4455 0.9 0.11 31 0.51 30 0.59 30
200 9950 0.5 0.47 12 9.65 10 6.21 11
200 15920 0.8 0.48 25 10.01 21 10.09 21
200 17910 0.9 0.45 40 12.18 35 9.41 39
300 22425 0.5 1.28 12 45.63 10 26.6 11
300 .| 35880 0.8 1.35 28 39.15 25 28.34 27
300 140365 0.9 1.25 46 56.45 45 26.71 46
500 62375 0.5 3.94 12 95.31 10 123.03 11
500 99800 0.8 3.38 31 115.01 29 127.64 31
500 112275 0.9 3.86 56 101.76 50 126.19 56
Table 2. simulation results on k-random clique graphs (k = 20).
Propose Method BNN RaCLIQUE
Notes | Edges | Probability -
Time(S) | Clique | Time(S) | Clique | Time(S) | Clique
200 16291 0.82 0.49 94 3.34 94 6.26 94
200 17453 0.87 0.51 103 4.36 101 7.02 102
200 15578 0.78 0.57 96 14.55 94 7 94
200 14114 0.71 0.54 86 5.07 83 6.64 80
200 16927 0.85 0.49 96 11.81 95 6.96 93
200 17973 0.9 0.50 113" 6.33 111 6.82 111
200 13822 0.69 0.58 88 10.23 88 6.87 88
200 16100 0.81 0.51 85 13.86 84 6.75 84
200 14704 0.73 0.54 88 9.56 83 6.81 83
200 15728 0.79 0.54 95 8.07 95 7.54 94
400 65030 0.81 3.14 179 16.11 175 70.87 177
400 72140 0.9 2.58 192 7.45 192 76.95 188
400 68327 0.86 2.62 180 14.01 177 78.12 176
400 70425 0.88 2.51 194 19.37 192 73.5 190
400 67527 0.85 2.72 185 9.87 175 70.08 181
400 73417 0.92 2.35 198 19.03 197 78.03 196
400 65518 0.82 2.65 199 15.11 199 77.15 197
400 71376 0.89 2.46 188 13.02 188 72.45 185
400 62997 0.79 1.99 187 14.31 187 71.33 187
400 62481 0.78 2.67 180 16.02 180 71.05 180

4. Algorithm

In generally, the algorithm procedure of solving the
maximum clique problem of an N-vertex graph using
the proposed improved Hopfield neural network in asyn-
chronous mode can be described as following:

(1) Set constant A, B, T', € and A, and set iteration
step t=1.

(2) Randomly initialize the internal potentlal z; for
i=1,---,N.

(3) Update the neuron state y; fori =1,---,
sigmoid function (Eq.(9)).

(4) Set loop_time = 1.

(5) Loop until loop_time >= N, where N is the num-
ber of vertices.

(a)Randomly select a neuron ##i.

(b) Use Eq.11 and Eq.10 to update the mternal po-
tential z; of neuron #i.

(c) Use Eq.9 to update neuron state y;.

(d) Increment the loop_time by 1.

(6) Increment the t by 1.

(7) If the system reaches an equilibrium state go to
step 8, else go to step 4.

(8) Compute the maximum clique using the stable
state of the network.

N using
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5. Simulation Results

In order to assess the effectiveness of the proposed
algorithm, extensive simulations were carried out over
randomly generated graphs of various sizes on digital
computer (PentiumlIIl 733MHz) in asynchronous. Sim-
ulations referred to parameter set at A = 1.0 B = 1.0.
In the experiments, € and A were selected at 0.1 and 135
respectively. The temperature parameter 7' in Eq.(9)
was set to 0.64. The RaCLIQUE [16] and Funabiki’s Bi-
nary neural network (BNN) [18] were also executed for
comparison. The reason to compare the proposed algo-
rithm to RaCLIQUE and BNN is that in [18] Funabiki
et al. indicated that RaCLIQUE and BNN were the effi-
cient energy-descent algorithm in solving the maximum
clique problem.

The first type of graphs we tested was p-random graph
[16] where each of vertex pairs is connected by an edge
with the probability of p independently to other edges.
The size of this type of graph in our simulation were
N=100, 200, 300, 500 and the probability were p=0.5,
0.8, 0.9. Because in general, the solution quality depend
on the initial state selection of neuron input potential,
all methods were executed by 100 simulation runs with
different initial state on each graph. Because the objec-



tive of the maximum clique problem is to find a clique
of maximum size of a graph, the best solution among
100 runs was used for the evaluation. It is worth to
note that the rates to find the best solution of the pro-
posed method were more than 90 percent for each graph.
‘RaCLIQUE also had high rate (> 90%) to find its best
solution for each graph. Comparing with the proposed
method and RaCLIQUE, BNN was very sensitive to the
initial state selection of neuron input potential. The re-
sults of simulations were summarized in Table 1. The
first three columns indicate the graph size (i.e., the num-
ber of notes and edges) and probability. The other
columns indicate the average computation time to find
the best cliques, and the best cliques using the proposed
algorithm, BNN and RaCLIQUE. From this Table, we
can see that the proposed algorithm outperformed BNN
and RaCLIQUE for solving such kind of graphs.

The second type of graphs we tested was so called
k-random clique graph [16]. This kind of graphs is gen-
erated by generating k cliques of varying size at random
and taking their union. Such graphs have a wide range of
clique sizes, much-wider than in p-random graphs. This
suggests that such graphs should be hard for approx-
imating maximum clique and might separate the poor
algorithm from the good ones. In our simulation we
generated 20 such graphs to test the proposed algorithm.
BNN and RaCLIQUE were also executed for compari-
son. The best solutions of 100 simulation runs on each
graph were summarized in Table 2. From Table 2, we
can note that the proposed algorithm was also the best
algorithm for solving k-random clique graph.

We also evaluated experimentally the performance of
the. proposed algorithm on the DIMACS benchmark
graphs [19]. These graphs provide a valuable source for
testing the performance of algorithms for the maximum
clique problem, because they arise from different areas of
application. For example the Hamming graphs are from
coding theory problem [24], the Keller graphs are based
on Keller’s conjecture on tilings using hypercubes [25].
We tested the proposed algorithm on Hamming8-4 and
Keller4 [19]. The maximum clique size of Hamming8-4
and Keller4 generated by the proposed algorithm were

16 and 11, respectively which were as same as the best

clique size which were found by all fifteen heuristic algo-

rithms presented at the second DIMACS Challenge [19]
and have been proven to be global optimality.

6. Conclusions

We have proposed an efficient algorithm for efficiently
solving the maximum clique problem using the improved
Hopfield neural network, and showed its effectiveness by
simulation experiments. In the proposed neural network
algorithm, the internal dynamics of the Hopfield network
is modified to efficiently: increase exchange of informa-

- 'tion between neurons and permit temporary increases in
the energy function in order to avoid local minima. The
proposed algorithm was tested on two types of random
graphs and DIMACS benchmark graphs. The simula-
tion results showed that the proposed algorithm is better
than the previous work for solving the maximum clique

_ problems.

366

problem in terms of the computation time and the solu-
tion quality. Because the proposed method is problem
independent, the method can be applied to other com-
binatorial optimization problems. As the future works
we plan to apply the proposed method to other NP-hard
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Appendix

Theorem : If sigmoid function is used as input/output
function, the time-independent updating mode of the in-
ternal potential cannot guarantee energy of the Hopfield
network to decrease at each updating step.

Proof : We define energy at time £ to be:

Z Z WiYiY; — Z hiy;

7,41 FF#i
The change in energy caused by the change in the states
of neurons is:

AE = —EZZwU [yi(t + Dy (t+1) —

=1 j#i

- Z hilyi(t +1) — 3:(2)]

vi()y; (1))

Adding and subtracting y;(t + 1)y;(t), and simplifying,
we get: :

=5 S wiwilt + DA+ 1)
i G
5 IO i At 1) 1)
i g
—ZhiAyi(t+ 1) ................. (Al)

Suppose that at time ¢, the state of the kth neuron is
changed. define the change in the state of the ith unit
as following:

Ayi(t +1) = yi(t+1) — ()

We have Ayg(t + 1) # 0 and Ay;(t + 1) = 0 for ¢ # k.
Thus, Eq.(Al) can be reduced to:
1
AFE = —5 szkyl(t + 1)Ayk(t + 1)
ik
—= ZwkZAyk (t+ 1ya(t)
z#k
—hkAyk(t-l— 1) .................... (Az)

B/HFHR C, 1234525, 2003 F

Because of the facts that Ay;(t+1) =0, i.e., ys(t+1) =
y;(t) for i # k and w;; = wj;, Eq.(A2) can be rewritten
to:

AB = ~ gt + 1Y wei(t) + el - (A3)
itk

Using the Eq.(10) and Eq.(9), we have:

AE = —Ayp(t+ Dap(t 1) covveeeeens (A4)

If the sigmoid function is used as input/output func-
tion, the following change in state of the kth neuron is
possible:

ye(t) > yp(t+1) > 05 - o e (A5)

Using sigmoid function (Eq.(13)), from the Eq.(A5), we
can know that Ayx(t + 1) < 0, and zx(t +1) > 0. In
this case, it is very clear that AE > 0, in other words,

energy of the network increase at this updating step.
Q.E.D. '
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