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This paper proposes a gradient ascent learning algorithm of the Hopfield neural networks for graph pla-
narization. This learning algorithm which is designed to embed a graph on a plane, uses the Hopfield neural
network to get a near-maximal planar subgraph, and increase the energy by modifying weights in a gradient
ascent direction to help the network escape from the state of the near-maximal planar subgraph to the state

of the maximal planar subgraph or better one.
graphs up to 150 vertices and 1064 edges.

The proposed algorithm is applied to several benchmark
The performance of the proposed algorithm is compared with

that of Takefuji/Lee’s method. Simulation results show that the proposed algorithm is much better than
Takefuji/Lee’s method in terms of the solution quality for every tested graphs.
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1. Introduction

(V, E), the graph planarization is
to find & largest subset F' of E, such that H = (V, F) is
planar. The graph planarization problem is an impor-
tant problem in automatic graph drawing, in designing
printed circuit boards and routing very-large-scale in-
tegration (VLSI) circuits. Several graph planarization
heuristics have been presented. In 1989 Jayakumar et
al. proposed a O(n?) near-maximal planarity testing al-
gorithm [1]. Kant[2] presented a corrected and more
generalized version of Jayakumar’s algorithm. Gold-
schmidt and Takvorian presented a two-phase graph pla-
narization heuristic [3]. Based on two different ideas,
Cai et al.[4] and Di Battista and Tamassia[5] described
two O(mlogn) algorithm for this problem. However
the graph planarization problem is a well known NP-
complete for general graphs [6]. No tractable algorithm
is known for solving it. Furthermore, few parallel al-
gorithms have been proposed to solve the planarization
problem. A possible parallel algorithm for solving such
" optimization problems was introduced by Hopfield and
Tank [7], which found a good solution to some optimiza-
tion problems in a reasonable amount of time. Using the
neural network techniques, Takefuji and Lee presented
a parallel planarization algorithm for generating a near-
maximal planar subgraph within O(1) time [8][9]. Un-
fortunately, due to its inherent local minimum problems
and sensitivity to parameter values [3][8], the rate to get
the maximal planar subgraph is very low, and perfor-
mance of the algorithm becomes poorer with large prob-
lem. This may be improved by some more sophisticated
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architecture, such as Boltzmann machine [10]. However,
the Boltzmann machine is very slow because of the need
for extensive averaging over stochastic variables [11].

In this paper we present a parallel planarization algo-
rithm for graph planarization based on gradient ascent
learning for Hopfield networks [12]. The learning algo-
rithm has two phases, the Hopfield network updating
phase and the gradient ascent learning phase. The first
phase uses the Hopfield network to decrease the energy
in state domain and find a near-maximal planar sub-
graph. The second phase intentionally increases the en-
ergy of the Hopfield network by modifying parameters
in weight domain in a gradient ascent direction, thus
making the network escape from the near-maximal pla-
nar subgraph (i.e., a local minimum) which the network
once falls into in the phase one. The learning algorithm
is applied to 19 graphs with up to 150 vertices and 1064
edges. Simulation results are compared with the ones
found by Takefuji/Lee’s algorithm [3](8]. It is found that
the proposed algorithm works well on generating a max-
imal or a better planar subgraph than Takefuji/Lee’s
algorithm [8][9] for solving the graph planarization prob- .
lem in the same vertex ordering within O(1) time.

2. Hopfield Neural Network Updatlng Phase
for Graph Planarlzatlon

A graph is said to be planar, or embeddable in the
plane, if it can be drawn on a plane, such that no two
edges crossing each other except for their end vertices.
Given a nonplanar graph, the graph planarization' prob-
lem is to find a spanning planar subgraph with a max-
imum number of edges. The problem is known to be
NP-complete, and it is generally believed the compu-
tational power needed to solve it grows exponentially
with the number of edges. Consider a simple undirected
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Fig.1. (a) A graph with four vertices and six
edges. (b) A planar graph (c) Possible planar graph
based on the single-row routing representation.

graph composed of four vertices and six edges as shown
in Fig.1(a). The graph is planar as long as two edges
(1,3) and (2,4) do not cross each other. Figure 1(b)
shows a planar graph. In the single-row routing repre-
sentation used here, connection is established by either
an upper edge or a lower edge. Two neurons (y;; and
Yji, J > i) express the upper and lower line connec-
tion between the i — th and j — th vertices, respectively.
The following states (y;;=v;=0, 7 > 1), (y:;=0, y;;=1,
Jj >1)and (y;; = y;s = 1, j > 1) express no connection,
lower line connection, and double-line connection viola-
tion, respectively. Figure 1(c) shows a possible planar
graph based on the single-row routing representation.
The number of edges in a given graph determines the
number of neurons required. Actually the system re-
quires 2M neurons, where M is the number of edges in
a given graph. For example the graph shown in Fig.1(c)
can be represented by a 2 x 6 two-dimensional neural
network array (yi2 = 1, 423 = 1, yaa = 1, 13 = 1,
Yyaz =1, y21 = 1L and y21 = 0, y32 = 0, ya3 = 0, y31 = 0,
yaa = 0, y14 = 0). In general, the planarization problem
for a graph with N vertices and M edges can be solved
by an N x N Hopfield neural network. The double-line
connection violation condition can be expressed by fol-
low:

Z Z Yigji = 0 oo (1)

i G
The two-edge-crossing violation condition is:
Z Z Qijhiigar =0 - v oevmrmmene e (2)
1§ ki

where diji s 1 i <k < j<lLi>k>3j>I
k<i<l<jork>i>I[>j, 0 otherwise.

Then the energy function for the graph planarization
problem is given by:

E

B C, 1234535, 2003 &

e= %A Z Z YijYji + %A Z z dijriYii Yri
: Kl

i g7 ij

1
_EBZQZ.J.%]. ......................... (3)
ij

where g;; is 1 if edge (i,j) exists in the given graph, 0
otherwise, and A, B are coefficients. The third term in
Eq.(3) gives the number of embedded edges to be max-
imized.

Thus, the weights of the Hopfield network become:

Wikt = —Abi0ji(1 — 8ij) — Adijrr oo (4)

And the thresholds become:

The Hopfield network energy function for the graph
planarization problem can be rewrited as follow:

e= *% D> wigyigyet — ) higyi +C - (6)

%7 Kkl i

where C is a constant.

Hopfield showed that the Hopfield network is guaran-
teed to converge with the energy taking on lower and
lower values until the network reaches a steady state. It
can be viewed as seeking a minimum in a mountainous
terrain. Thus, in the first phase we can use the Hopfield
network to find a local minimum or a global minimum
of the energy function. However, it is usually difficulty
for the network to find the global minimum because its
inherent local minimum problem. Furthermore, there
is no effective method to lead the network to reach the
global minimum from a local minimum.

3. The Gradient Ascent Learning Phase for
Graph Planarization )

In the section 2, we have described the neural network
representation of graph planarization. Using the Hop-
field network updating we can find a local minimum or
a global minimum of the energy function. However, it
is usually difficulty for the network to find the global
minimum because of its inherent local minimum prob-
lem. In this section we propose a learning algorithm
which can help the network escape from a local mini-
mum to the global minimum. In order to explain the
learning method, we use a two-dimensional graph (Fig.
2) of energy function with a local minimum and a global
minimum. The energy function value is reflected in the
height of the graph. Each position on the energy terrain
corresponds to a possible state of the network. For ex-
ample, if the network is initialized onto the mountainous
terrain A, the updating procedure of the Hopfield net-
work makes the state of network move towards a mini-
mum position and reach a steady state B (Fig. 2(a)).

Because the weights and the thresholds of the Hopfield
network determine the energy terrain, we can change the
weights and the thresholds to increase the energy at the
point B so as to fill up the local minimum valley and



finally drive the point B out of the valley. Here, sup-
pose that a vector v corresponds to the weights and the
thresholds of the Hopfield network. Since for a parame-
ter vector v the learning requires the parameter change
to be in the positive gradient direction, we take:

Where ¢ is a positive constant and Ve is the gradient of
energy function e with respect to the parameter vector
v in the state B. Applying this learning rule (Eq. (7))
to the graph planarization problem, we can obtain

Awiju :/pawijkl ........................... (8)

Ahyy = qaah‘; .............................. 9)
and
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where, p and ¢ are small positive constants and y;;,
yr1 correspond to the state of B.

Now we show that after we change the weights and
the thresholds according to Eq.(10) and Eq.(11), point
B will be on the slope of a valley. Suppose yg;; repre-
sent the state of point B, yp;; represent the state of any
point P of energy terrain, then the change of energy in
point P by the learning rule (Eq.(10) and Eq.(11)) will
be:

= % Z Z Wij kY PijYPrl + Z‘hijypij
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Because point B is a minimum of energy function and
the output of neuron in point B is at or near 0 or 1 [9],
from Eq.(12), we can know easily that the increase of
energy is largest when point P is at the same point as
point B, and the larger the difference of state between
point P and point B, the smaller energy increases in
point P. Thus, we can see that the valley will be filled
up in a most effective way. In general, point B may
become a point on the slope of the valley. Thus, the
learning ( the second phase ) makes the previous stable
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Fig.2. The conceptual graph of the relation be-
tween energy and state transition in the learning
process of the Hopfield network with two stable
states.

state B becomes a point on the slope of a valley (B').
After updating of the Hopfield network with the new
weights and the new thresholds in the Hopfield network
updating phase again, point B’ goes down.the slope of
the valley and reaches a new stable state C' (Fig.2(b)).
Thus, the Hopfield network updating (Phase 1) and the
gradient ascent learning (Phase 2) in turn may result

IEEJ Trans. EIS, Vol.123, No.3, 2003



A Parallel Graph Planarization Algorithm

in a movement out of a local minimum, and, lead the
network converge to a global minimum or a new local
minimum (Fig.2(c) and (d)).

4. Algorithm

The following procedure describes the proposed algo-
rithm. Note that there are two kinds of conditions for
end of the learning. One has a very clear condition, for
example, the N-queen problem in which the energy is
zero if the solution is the optimal. Another one has not
a clear condition, for example, the travelling salesman
problem and the graph planarization problem in which
the energy is not zero even the solution is the optimal.
For the latter case, we have to set a maximum number
of the learning (learn_limit) in advance. Learning stops
if the maximum number of learning is performed. In
general, we can determine the value of learn_limit ac-
cording to the allowable computation time and the com-
plexity of the problem. For planarization problem, we
found that the network can always find good solutions
within 10 learning times; therefore, we selected 30 as the
maximum number of learning time in our simulations.
If the learn limit is the maximum number of learning
times for the system termination condition, we have,

(1) Set learn_time = 0 and set A, B and learn_limit.

(2) Randomize the initial values of ysj for 4,5 = 1=+
, N in the range of 0.0 to 1.0.

(3) The updating procedure is performed on the Hop-
field network with original weights and thresholds until
the network reaches a steady state (Phase 1).

(4) Use Eq.(8)-Eq.(11) to computer the new weights
and the new thresholds (Phase 2).

(5) The updating procedure is taken on the Hopfield
network with the new weights and thresholds until the
network reaches a steady state.

(6)In order to avoid the shift of the state of the global
minimum to a specific problem, the updating procedure
on the Hopfield network may be re-performed with orig-
inal weights and thresholds until the network reaches a
new steady state.

(7) If the new steady state is better than the old one
- then the old state is replaced by the new state using the
steady state obtained from step 6.

(8) Increment the learn_time by 1. If learn_time =
learn_limit then terminate this procedure, otherwise us-
ing the new steady state obtained from step 5, go to the
step 4. ‘ :

5. Simulation Results

The proposed algorithm was experimented on IBM
NetVista A40 (Pentium IIT 733MHz) to a total of 19
benchmark graphs. These graphs provide a valuable
source for testing the performance of algorithms for the
planarization problem, because they arise from different
areas of application. The Hopfield network updating
phase used the weights and thresholds matrix defined in
Egs.(4) and (5) and the gradient ascent learning phase
used the rules defined in Egs.(8)-(11). Simulations refer
to parameters set at or near A = 1.0 and B = 1.0. In
the experiments learn_limit was set to 30. The initial
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(d)

Fig.3. (a) A maximal planar subgraph of G11 be-

fore learning. (b) After 2" learning. (c) After 37
learning. (d) Optimum maximal planar subgraph
of G1 found by proposed algorithm

values of neurons were randomized in the range of 0.0 to
1.0.

Fig. 3 shows the results of a simulation on the 10 ver-
tices and 22 edges nonplanar graph(G1) of Jayakumar
et.al[1] which illustrate a typical progressive intermedi-
ate maximal planar subgraph during the Hopfield net-
work updating phase (Phase 1) and the gradient ascent
learning phase (Phase 2). Initially the Hopfield network
converges to a time independent state (Fig.3(a)). It had
17 embedded edges. It is obviously not an optimum pla-
nar subgraph. After the 274 37¢ and 8'" learning, the
numbers of embedded edges increased to 18, 19 and 20,
and generated the maximal planar subgraphs (b), (c)
and finally (d), the optimum solution to the problem.
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from 100 different initial states using the proposed
algorithm.

In order to gain some insight into the optimization pro-
cess, the energy can be studied by plotting the energy as

time. Figure 4 shows the variation of the energy during ’

the Hopfield network updating and the gradient ascent
learning. It can be seen from the figure that the 15, 4%,
50, 6t and 7t" learnings did not lead to a movement out
of local minimum, and therefore there is no new planar
subgraphs generated. The 2"?, 37% and 8" learning did
yield a movement out of local minimum, thus resulting
in new planar subgraphs (Fig.3(b), (c) and (d)).

To see how well the proposed algorithm was be-
ing made of a maximal planar subgraph, we generated
100 different initial states and performed updating and
learning for G1 graph. Figure 5 shows the relation of
percentage to find optimal solution of G1 and learning
epochs with 100 different initial states using the pro-
- posed algorithm. The simulations found that the al-
gorithm always converged to the optimal planar sub-
graph for every these 100 simulations within 10 learn-
ings. Farthermore because of Hopfield network/Takefuji
algorithm’s sensitivity to parameters A and B, we chose
several different parameters and performed our algo-
rithm on these parameters. Fig.6 shows the rate of
the optimal planar subgraph from 100 different initinal
states under different parameter values. As shown, our
method worked well for every parameter set.

To evaluate our results, we compared Takefuji/Lee’s
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Fig.6. The rate of the maximal planar subgraph

from 100 different initial states under different pa-
rameter values.

results with our results because the Takefuji/Lee’s algo-
rithm is one of the most popular parallel algorithm and
also because they claim superior performance to that
of previously published algorithm [9]. Information on
the test graphs as well as all results are shown in Table
1. The results that we recorded for each graph are the
solutions in number of embedded edges, produced by
Takefuji/Lee’s algorithm (col 4), and by the proposed
algorithm (col 5), the learning epochs (col 6) and the
computation times (col 7) of the proposed algorithm to
find the maximal planar subgraph. The learning epochs
and the computation times are the average of 100 simu-
lations.

We can see from Table 1 that under the same vertex
ordering and O(1) time, the proposed algorithm works
well on generating a maximal or a better planar sub-
graph than Takefuji/Lee’s algorithm [8][9] for solving
the graph planarization problems. For the graphs (G1,
G2 and G4 — G7) our algorithm and Takefuji/Lee’s al-
gorithm obtained the same planar subgraph. But our

" algorithm finds a hundred percent good solution, while
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Takefuji/Lee’s algorithm could only find a very low per-
centage (about 20%) good solution to the problems. The
results for graphs G3 and G8 — G12 show that our algo-
rithm managed to obtain a triangulated graph in most
case, which outperforms the Takefuji/Lee’s algorithm.
For example, for the graph of 10 vertices 24 edges (G3),
the latest experiment using Takefuji/Lee’s algorithm re-
ported 21 edges. Our simulator using the proposed Hop-
field network learning algorithm generated a new max-
imal planar subgraph with 22 edges, which is usually
difficult and important for an algorithm or method to
generate new, even a more edge for NP-complete prob-
lem [8]. Fig.7 shows the maximal plannar subgraph
of graph G3 generated by Takefuji/Lee’s algorithm (a)
and our algorithm (b). Furthermore, simulations were
also carried out for several random graphs, for exam-
ple G13 — G19 and showed that the proposed algorithm
performed extremely well for these random graphs too.
From the simulation result, we can summary that the
proposed learning method is very efficient in the every
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Table 1. Computational results.

Graph | No.vertices | No.edges | Takefuji/Lee | Proposed algorithm | Learning epochs | CPU times(s)
Gl 10 22 20 20 8 0.30
G2 45 85 80 80 14 1.09
G3 10 24 21 22 6 0.24
G4 10 25 22 22 3 0.12
G5 10 26 22 22 3 0.16
a6 10 27 22 22 4 '0.26
G7 10 34 23 23 5 0.40
G8 25 69 58- 61 10 0.81

G9 25 70 59 61 15 1.15
G10 25 71 58 61 5 0.28
G11 25 72 60 61 7 0.30
G12 25 90 61 63 3 0.32
G13 50 367 70 82 11 82.17
Gl4 50 491 100 109 3 47.71
G15 50 582 101 115 4 107.43
G16 100 451 92 100 9 122.62
G17 100 742 116 126 4 246.98
G18 100 922 115 135 5 504.40
G19 150 1064 127 138 4 680.07

Fig. 7.
found by Takefuji/Lee’s algorithm. (b) A new max-

(a) A maximal planar subgraph of G3

imal planar subgraph of G3 found

by proposed
algorithm. :

test kinds of graphs compared with Takefuji/Lee’s algo-
rithm. The reason why the proposed algorithm could
generate better solution compared with that found by
Takefuji/Lee’s algorithm is that in the proposed algo-
rithm, we used gradient ascent learning on the Hopfield
network to help the network escape from the local min-
ima as described in section 3. But in Takefuji/Lee’s al-
gorithm, there is no method to make the network escape
from a local minimum to the global minimum.

6. Conclusion

We have proposed a Hopfield network learning algo-
rithm for graph planarization and showed its effective-
ness by simulation experiments. The learning algorithm
which is designed to embed a graph on a plane, has two
phases, the Hopfield network updating phase and the
gradient ascent learning phase. In the first phase we im-
plemented the Hopfield network for optimizing the en-
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ergy function in state space. In the second phase we
intentionally increased the energy of the Hopfield net-
work by modifying parameters in weight domain in a
gradient ascent direction, thus making the network es-
cape from the near-maximal planar subgraph (i.e., a lo-
cal minimum). 'As a parallel algorithm for the graph
planarization, our algorithm not only generated an op-
timal or near-optimal planar subgraph from the nonpla-
nar or planar graph, but also embedded the subgraph
on a planar. The proposed algorithm was applied to
many graphs up to 150 vertices and 1064 edges and was
compared with Takefuji/Lee’s method. The simulation
results showed that the proposed algorithm was much
better than Takefuji/Lee’s method in terms of the solu-
tion quality for every tested graph.
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